首页 > 最新文献

ACS Measurement Science Au最新文献

英文 中文
Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers 脂质等位质量标记用于增强不饱和 sn 位异构体的相对定量
Q3 Chemistry Pub Date : 2024-01-11 DOI: 10.1021/acsmeasuresciau.3c00062
Tingyuan Yang, Shuli Tang, Jiaxin Feng and Xin Yan*, 

Changes in the levels of lipid sn-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid sn-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the sn-positions of fatty acyl chains and enhanced relative quantification. The analysis of Escherichia coli lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from sn-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid sn-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.

脂质 Sn 位异构体水平的变化与生物系统内生理环境的干扰有关。因此,了解这些脂质的浓度对于揭示它们在疾病诊断和病理机制中的参与具有重要意义。然而,由于脂质的结构多样性和异构形式,现有的脂质定量方法往往不够准确。为了应对这一挑战,我们开发了一种基于氮丙啶的异构体标签标记策略,可在一次运行中(i)区分和(ii)增强来自不同样本的脂质 Sn-位置异构体的相对定量。氮丙啶化、同位标签标记和石碳酸化方法已应用于多种磷脂,可确定脂肪酰基链的 sn 位置并提高相对定量。对大肠杆菌脂质提取物的分析表明,通过测量 Sn 位置诊断离子释放的质量报告强度比,可以更好地确定脂质异构体的浓度比。此外,我们还将该方法应用于人类结肠癌血浆的分析。有趣的是,我们同时鉴定并定量了17种PC脂质sn-定位异构体,其中7种在结肠癌血浆中显示出显著的丰度变化,可作为诊断人类结肠癌的潜在血浆标记物。
{"title":"Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers","authors":"Tingyuan Yang,&nbsp;Shuli Tang,&nbsp;Jiaxin Feng and Xin Yan*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00062","DOIUrl":"10.1021/acsmeasuresciau.3c00062","url":null,"abstract":"<p >Changes in the levels of lipid <i>sn</i>-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid <i>sn</i>-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the <i>sn</i>-positions of fatty acyl chains and enhanced relative quantification. The analysis of <i>Escherichia coli</i> lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from <i>sn</i>-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid <i>sn</i>-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139420672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Different Classes of VOCs Based on Optical Emission Spectra Using a Dielectric Barrier Helium Plasma Coupled with a Mini Spectrometer 根据光学发射光谱识别不同类别的挥发性有机化合物--使用介质屏障氦等离子体与微型光谱仪耦合
Q3 Chemistry Pub Date : 2024-01-01 DOI: 10.1021/acsmeasuresciau.3c00066
Jingqin Mao, Yahya Atwa, Zhenxun Wu, David McNeill and Hamza Shakeel*, 

In this study, a micro helium dielectric barrier discharge (μHDBD) plasma device fabricated using 3D printing and molding techniques was coupled with a mini spectrometer to detect and identify different classes of volatile organic compounds (VOCs) using optical emission spectrometry (OES). We tested 11 VOCs belonging to three different classes (straight-chain alkanes, aromatics, and polar organic compounds). Our results clearly demonstrate that the optical emission spectra of different classes of VOCs show clear differences, and therefore, can be used for identification. Additionally, the emission spectra of VOCs with a similar structure (such as n-pentane, n-hexane, n-heptane, n-octane, and n-nonane) have similar optical emission spectrum shape. Acetone and ethanol also have similar emission wavelengths, but they show different line intensities for the same concentrations. We also found that the side-chain group of aromatics will also affect the emission spectra even though they have a similar structure (all have a benzene ring). Moreover, our μHDBD-OES system can also identify multiple compounds in VOC mixtures. Our work also demonstrates the possibility of identifying different classes of VOCs by the OES shape.

在这项研究中,利用三维打印和成型技术制造的微型氦介质阻挡放电(μHDBD)等离子体装置与微型光谱仪相结合,使用光学发射光谱法(OES)检测和识别不同类别的挥发性有机化合物(VOCs)。我们测试了属于三个不同类别(直链烷烃、芳烃和极性化合物)的 11 种挥发性有机化合物。我们的结果清楚地表明,不同类别的挥发性有机化合物的光学发射光谱显示出明显的差异,因此可用于识别。此外,具有相似结构的挥发性有机化合物(如正戊烷、正己烷、正庚烷、正辛烷和正壬烷)的发射光谱具有相似的光学发射光谱形状。丙酮和乙醇也具有相似的发射波长,但在浓度相同的情况下,它们显示出不同的线强度。我们还发现,芳烃的侧链基团也会影响发射光谱,尽管它们具有相似的结构(都有一个苯环)。此外,我们的 μHDBD-OES 系统还能识别挥发性有机化合物混合物中的多种化合物。我们的工作还证明了通过 OES 形状识别不同类别挥发性有机化合物的可能性。
{"title":"Identification of Different Classes of VOCs Based on Optical Emission Spectra Using a Dielectric Barrier Helium Plasma Coupled with a Mini Spectrometer","authors":"Jingqin Mao,&nbsp;Yahya Atwa,&nbsp;Zhenxun Wu,&nbsp;David McNeill and Hamza Shakeel*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00066","DOIUrl":"10.1021/acsmeasuresciau.3c00066","url":null,"abstract":"<p >In this study, a micro helium dielectric barrier discharge (μHDBD) plasma device fabricated using 3D printing and molding techniques was coupled with a mini spectrometer to detect and identify different classes of volatile organic compounds (VOCs) using optical emission spectrometry (OES). We tested 11 VOCs belonging to three different classes (straight-chain alkanes, aromatics, and polar organic compounds). Our results clearly demonstrate that the optical emission spectra of different classes of VOCs show clear differences, and therefore, can be used for identification. Additionally, the emission spectra of VOCs with a similar structure (such as <i>n</i>-pentane, <i>n</i>-hexane, <i>n</i>-heptane, <i>n</i>-octane, and <i>n</i>-nonane) have similar optical emission spectrum shape. Acetone and ethanol also have similar emission wavelengths, but they show different line intensities for the same concentrations. We also found that the side-chain group of aromatics will also affect the emission spectra even though they have a similar structure (all have a benzene ring). Moreover, our μHDBD-OES system can also identify multiple compounds in VOC mixtures. Our work also demonstrates the possibility of identifying different classes of VOCs by the OES shape.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Analysis of Extracellular Matrix Invasion of Cancer Cells from Tumor Spheroids 肿瘤球状体细胞外基质侵袭癌细胞的自动化分析
Q3 Chemistry Pub Date : 2023-12-28 DOI: 10.1021/acsmeasuresciau.3c00064
Jacob Heiss,  and , Hossein Tavana*, 

The main cause of mortality among cancer patients is metastatic disease. Metastasis develops from cancer cells that invade the stromal tissue and intravasate the circulatory or lymphatic systems to eventually form new tumors in other organs. Blocking cancer cell invasion can potentially prevent or reduce the metastatic progression of cancers. Testing different chemical compounds against cell invasion in three-dimensional cultures is a common laboratory technique. The efficacy of the treatments is often evaluated from confocal microscopic images of the cells using image processing. However, the analysis approaches are often subject to variations and inconsistencies due to user decisions that must be made while processing each image. To overcome this limitation, we developed a fully automated method to quantify the invasion of cancer cells from a 3D tumor spheroid into the surrounding extracellular matrix. We demonstrated that this method resolves cell invasion from spheroids of different shapes and sizes and from cells that invade as a cluster or individually. We also showed that this approach can help quantify the dose-dependent anti-invasive effects of a commonly used chemotherapy drug. Our automated method significantly reduces the time and increases the consistency and accuracy of cancer cell invasion analysis in three-dimensional cultures.

癌症患者死亡的主要原因是转移性疾病。癌细胞侵入基质组织并侵入循环系统或淋巴系统,最终在其他器官形成新的肿瘤,这就是转移。阻止癌细胞入侵有可能预防或减少癌症的转移。在三维培养物中测试不同化合物对细胞侵袭的作用是一种常见的实验室技术。通常使用图像处理技术,通过共聚焦显微镜下的细胞图像来评估治疗效果。然而,由于用户在处理每张图像时必须做出决定,因此分析方法往往会出现差异和不一致。为了克服这一局限性,我们开发了一种全自动方法,用于量化癌细胞从三维肿瘤球体侵入周围细胞外基质的情况。我们证明,这种方法可以分辨不同形状和大小的球体中的细胞侵袭,以及细胞以集群或单个形式的侵袭。我们还证明,这种方法有助于量化一种常用化疗药物的剂量依赖性抗侵袭效果。我们的自动化方法大大缩短了时间,提高了三维培养物中癌细胞侵袭分析的一致性和准确性。
{"title":"Automated Analysis of Extracellular Matrix Invasion of Cancer Cells from Tumor Spheroids","authors":"Jacob Heiss,&nbsp; and ,&nbsp;Hossein Tavana*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00064","DOIUrl":"10.1021/acsmeasuresciau.3c00064","url":null,"abstract":"<p >The main cause of mortality among cancer patients is metastatic disease. Metastasis develops from cancer cells that invade the stromal tissue and intravasate the circulatory or lymphatic systems to eventually form new tumors in other organs. Blocking cancer cell invasion can potentially prevent or reduce the metastatic progression of cancers. Testing different chemical compounds against cell invasion in three-dimensional cultures is a common laboratory technique. The efficacy of the treatments is often evaluated from confocal microscopic images of the cells using image processing. However, the analysis approaches are often subject to variations and inconsistencies due to user decisions that must be made while processing each image. To overcome this limitation, we developed a fully automated method to quantify the invasion of cancer cells from a 3D tumor spheroid into the surrounding extracellular matrix. We demonstrated that this method resolves cell invasion from spheroids of different shapes and sizes and from cells that invade as a cluster or individually. We also showed that this approach can help quantify the dose-dependent anti-invasive effects of a commonly used chemotherapy drug. Our automated method significantly reduces the time and increases the consistency and accuracy of cancer cell invasion analysis in three-dimensional cultures.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine 通过热解多聚多巴胺调节纸基碳电极的化学和电化学性质
Q3 Chemistry Pub Date : 2023-12-15 DOI: 10.1021/acsmeasuresciau.3c00063
Jaqueline F. Rocha, Julia C. de Oliveira, Jefferson Bettini, Mathias Strauss, Guilherme S. Selmi, Anderson K. Okazaki, Rafael F. de Oliveira, Renato S. Lima and Murilo Santhiago*, 

Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300–1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4] ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.

基于电化学纸的分析设备是便携式、低成本、经济实惠和分散诊断的重要平台。在这类应用中,化学功能化起着关键作用,可通过调整电极的表面特性和面积来确保高临床性能。然而,通过单一的功能化途径来控制电极的不同表面特性仍具有挑战性。在这项工作中,我们尝试通过在不同温度下对聚多巴胺(PDA)进行热处理来调节碳纸基器件的润湿性、化学成分和电活性面积。在热解纸(PP)电极上沉积 PDA 薄膜,并在 300-1000 °C 范围内进行热处理。PDA 沉积后,表面富含氮和氧,具有超亲水性和较高的电活性面积。随着温度的升高,表面变得疏水,电活性面积减小。拉曼、X 射线光电子显微镜(XPS)、激光扫描共聚焦显微镜(LSCM)、接触角、扫描电子显微镜(SEM-EDS)、电学测量、透射电子显微镜(TEM)和电化学实验对表面改性进行了跟踪研究。此外,氮物种的化学成分也可以在表面进行调整。作为概念验证,我们使用 PDA 处理过的表面来锚定 [AuCl4]- 离子。电化学还原后,我们观察到可以控制表面纳米粒子的大小。我们的方法开辟了一条新途径,为纸基电化学生物传感器领域的电化学界面增添了多功能性。
{"title":"Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine","authors":"Jaqueline F. Rocha,&nbsp;Julia C. de Oliveira,&nbsp;Jefferson Bettini,&nbsp;Mathias Strauss,&nbsp;Guilherme S. Selmi,&nbsp;Anderson K. Okazaki,&nbsp;Rafael F. de Oliveira,&nbsp;Renato S. Lima and Murilo Santhiago*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00063","DOIUrl":"10.1021/acsmeasuresciau.3c00063","url":null,"abstract":"<p >Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300–1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl<sub>4</sub>]<sup>−</sup> ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technical Evaluation of a Paper-Based Electrochemical Strip to Measure Nitrite Ions in the Forensic Field 在法医领域测量亚硝酸盐离子的纸质电化学条的技术评估
Q3 Chemistry Pub Date : 2023-12-12 DOI: 10.1021/acsmeasuresciau.3c00050
Ada Raucci, Antonella Miglione, Wanda Cimmino, Alessia Cioffi, Sima Singh, Michele Spinelli, Angela Amoresano, Giacomo Musile* and Stefano Cinti*, 

Nitrite is a compound used as a food additive for its preservative action and coloring capability, as well as an industrial agent for its antifreezing action and for preventing corrosion, and it is also used as a pharmaceutical in cyanide detoxification therapy. However, even recently, because of its high toxicity, it has been used as a murder and suicidal agent due to its affordability and ready availability. In this technical report, we describe an electrochemical paper-based device for selectively determining nitrite in complex biofluids, such as blood, cadaveric blood, vitreous humor, serum, plasma, and urine. The approach was validated in terms of the linearity of response, selectivity, and sensitivity, and the accuracy of the determination was verified by comparing the results with a chromatographic instrumental method. A linear response was observed in the micromolar range; the sensitivity of the method expressed as the limit of detection was 0.4 μM in buffer measurements. The simplicity of use, the portability of the device, and the performance shown make the approach suitable for detecting nitrite in complex biofluids, including contexts of forensic interest, such as murders or suicides in which nitrite is used as a toxic agent. Limits of detection of ca. 1, 2, 4, 5, 3, and 4 μM were obtained in vitreous humor, urine, serum and plasma, blood, and cadaveric blood, also highlighting a satisfactory accuracy comprised between 91 and 112%.

亚硝酸盐是一种化合物,可用作食品添加剂,具有防腐和着色作用,也可用作工业制剂,具有防冻和防腐蚀作用,还可用作氰化物解毒疗法的药物。不过,由于其毒性较强,最近还因其价格低廉、随时可用而被用作谋杀和自杀的毒剂。在本技术报告中,我们介绍了一种基于电化学纸的装置,用于选择性地测定复杂生物流体(如血液、尸体血液、玻璃体、血清、血浆和尿液)中的亚硝酸盐。该方法在反应线性、选择性和灵敏度方面都得到了验证,并通过与色谱仪器方法进行比较,验证了测定的准确性。在微摩尔范围内观察到了线性响应;在缓冲液测量中,该方法的灵敏度以检测限表示为 0.4 μM。该方法使用简单,设备便于携带,而且性能良好,因此适用于检测复杂生物流体中的亚硝酸盐,包括法医感兴趣的情况,如亚硝酸盐被用作毒剂的谋杀或自杀事件。在玻璃体、尿液、血清和血浆、血液以及尸体血液中的检测限分别为 1、2、4、5、3 和 4 μM,准确率在 91% 到 112% 之间,令人满意。
{"title":"Technical Evaluation of a Paper-Based Electrochemical Strip to Measure Nitrite Ions in the Forensic Field","authors":"Ada Raucci,&nbsp;Antonella Miglione,&nbsp;Wanda Cimmino,&nbsp;Alessia Cioffi,&nbsp;Sima Singh,&nbsp;Michele Spinelli,&nbsp;Angela Amoresano,&nbsp;Giacomo Musile* and Stefano Cinti*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00050","DOIUrl":"10.1021/acsmeasuresciau.3c00050","url":null,"abstract":"<p >Nitrite is a compound used as a food additive for its preservative action and coloring capability, as well as an industrial agent for its antifreezing action and for preventing corrosion, and it is also used as a pharmaceutical in cyanide detoxification therapy. However, even recently, because of its high toxicity, it has been used as a murder and suicidal agent due to its affordability and ready availability. In this technical report, we describe an electrochemical paper-based device for selectively determining nitrite in complex biofluids, such as blood, cadaveric blood, vitreous humor, serum, plasma, and urine. The approach was validated in terms of the linearity of response, selectivity, and sensitivity, and the accuracy of the determination was verified by comparing the results with a chromatographic instrumental method. A linear response was observed in the micromolar range; the sensitivity of the method expressed as the limit of detection was 0.4 μM in buffer measurements. The simplicity of use, the portability of the device, and the performance shown make the approach suitable for detecting nitrite in complex biofluids, including contexts of forensic interest, such as murders or suicides in which nitrite is used as a toxic agent. Limits of detection of ca. 1, 2, 4, 5, 3, and 4 μM were obtained in vitreous humor, urine, serum and plasma, blood, and cadaveric blood, also highlighting a satisfactory accuracy comprised between 91 and 112%.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138580771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroanalytical Overview: The Sensing of Mesalamine (5-Aminosalicylic Acid) 电分析概述:传感中沙胺(5-氨基水杨酸)
Q3 Chemistry Pub Date : 2023-12-11 DOI: 10.1021/acsmeasuresciau.3c00061
Robert D. Crapnell, Prashanth S. Adarakatti and Craig E. Banks*, 

Mesalamine, known as 5-aminosalicylic acid, is a medication used primarily in the treatment of inflammatory bowel disease, including ulcerative colitis and Crohn’s disease. 5-Aminosalicylic acid can be measured using various benchtop laboratory techniques which involve liquid chromatography–mass spectroscopy, but these are sophisticated and large, meaning that they cannot be used on-site because transportation of the samples, chemicals, and physical and biological reactions can potentially occur, which can affect the sample’s composition and potentially result in inaccurate results. An alternative approach is the use of electrochemical based sensing platforms which has the advantages of portability, cost-efficiency, facile miniaturization, and rapid analysis while nonetheless providing sensitivity and selectivity. We provide an overview of the use of the electroanalytical techniques for the sensing of 5-aminosalicylic acid and compare them to other laboratory-based measurements. The applications, challenges faced, and future opportunities for electroanalytical based sensing platforms are presented in this review.

美沙拉明又称 5-氨基水杨酸,是一种主要用于治疗炎症性肠病(包括溃疡性结肠炎和克罗恩病)的药物。5- 氨基水杨酸可以使用各种台式实验室技术进行测量,其中包括液相色谱-质谱法,但这些技术都很复杂,而且体积庞大,这意味着它们不能在现场使用,因为可能会发生样品运输、化学品以及物理和生物反应,从而影响样品的成分,并可能导致结果不准确。另一种方法是使用基于电化学的传感平台,它具有便携、成本效益高、易于微型化和快速分析等优点,同时还具有灵敏度和选择性。我们概述了 5-氨基水杨酸传感电分析技术的使用情况,并将其与其他实验室测量方法进行了比较。本综述介绍了基于电分析的传感平台的应用、面临的挑战和未来的机遇。
{"title":"Electroanalytical Overview: The Sensing of Mesalamine (5-Aminosalicylic Acid)","authors":"Robert D. Crapnell,&nbsp;Prashanth S. Adarakatti and Craig E. Banks*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00061","DOIUrl":"10.1021/acsmeasuresciau.3c00061","url":null,"abstract":"<p >Mesalamine, known as 5-aminosalicylic acid, is a medication used primarily in the treatment of inflammatory bowel disease, including ulcerative colitis and Crohn’s disease. 5-Aminosalicylic acid can be measured using various benchtop laboratory techniques which involve liquid chromatography–mass spectroscopy, but these are sophisticated and large, meaning that they cannot be used on-site because transportation of the samples, chemicals, and physical and biological reactions can potentially occur, which can affect the sample’s composition and potentially result in inaccurate results. An alternative approach is the use of electrochemical based sensing platforms which has the advantages of portability, cost-efficiency, facile miniaturization, and rapid analysis while nonetheless providing sensitivity and selectivity. We provide an overview of the use of the electroanalytical techniques for the sensing of 5-aminosalicylic acid and compare them to other laboratory-based measurements. The applications, challenges faced, and future opportunities for electroanalytical based sensing platforms are presented in this review.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138577084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects 纳米级单颗粒发光成像/检测:最新技术与未来展望
Q3 Chemistry Pub Date : 2023-12-07 DOI: 10.1021/acsmeasuresciau.3c00052
Muhammad Saqib*, Mariam Zafar, Mohamed Ibrahim Halawa, Shahzad Murtaza, Ghulam Mustafa Kamal and Guobao Xu, 

Single-particle-level measurements, during the reaction, avoid averaging effects that are inherent limitations of conventional ensemble strategies. It allows revealing structure–activity relationships beyond averaged properties by considering crucial particle-selective descriptors including structure/morphology dynamics, intrinsic heterogeneity, and dynamic fluctuations in reactivity (kinetics, mechanisms). In recent years, numerous luminescence (optical) techniques such as chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence (FL) microscopies have been emerging as dominant tools to achieve such measurements, owing to their diversified spectroscopy principles, noninvasive nature, higher sensitivity, and sufficient spatiotemporal resolution. Correspondingly, state-of-the-art methodologies and tools are being used for probing (real-time, operando, in situ) diverse applications of single particles in sensing, medicine, and catalysis. Herein, we provide a concise and comprehensive perspective on luminescence-based detection and imaging of single particles by putting special emphasis on their basic principles, mechanistic pathways, advances, challenges, and key applications. This Perspective focuses on the development of emission intensities and imaging based individual particle detection. Moreover, several key examples in the areas of sensing, motion, catalysis, energy, materials, and emerging trends in related areas are documented. We finally conclude with the opportunities and remaining challenges to stimulate further developments in this field.

在反应过程中进行单颗粒级测量,可避免传统集合策略固有限制的平均效应。它通过考虑关键的粒子选择性描述因子,包括结构/形态动态、内在异质性和反应性(动力学、机理)的动态波动,揭示了平均特性之外的结构-活性关系。近年来,化学发光(CL)、电化学发光(ECL)和荧光(FL)显微镜等多种发光(光学)技术因其光谱原理多样化、非侵入性、灵敏度高和足够的时空分辨率而逐渐成为实现此类测量的主要工具。相应地,最先进的方法和工具正被用于探测(实时、操作、原位)单颗粒在传感、医学和催化方面的各种应用。在此,我们将通过特别强调单颗粒的基本原理、机理途径、进展、挑战和关键应用,简明而全面地透视基于发光的单颗粒检测和成像。本视角侧重于基于发射强度和成像的单颗粒检测的发展。此外,还记录了传感、运动、催化、能源、材料等领域的几个关键实例,以及相关领域的新兴趋势。最后,我们总结了该领域进一步发展所面临的机遇和挑战。
{"title":"Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects","authors":"Muhammad Saqib*,&nbsp;Mariam Zafar,&nbsp;Mohamed Ibrahim Halawa,&nbsp;Shahzad Murtaza,&nbsp;Ghulam Mustafa Kamal and Guobao Xu,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00052","DOIUrl":"10.1021/acsmeasuresciau.3c00052","url":null,"abstract":"<p >Single-particle-level measurements, during the reaction, avoid averaging effects that are inherent limitations of conventional ensemble strategies. It allows revealing structure–activity relationships beyond averaged properties by considering crucial particle-selective descriptors including structure/morphology dynamics, intrinsic heterogeneity, and dynamic fluctuations in reactivity (kinetics, mechanisms). In recent years, numerous luminescence (optical) techniques such as chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence (FL) microscopies have been emerging as dominant tools to achieve such measurements, owing to their diversified spectroscopy principles, noninvasive nature, higher sensitivity, and sufficient spatiotemporal resolution. Correspondingly, state-of-the-art methodologies and tools are being used for probing (real-time, operando, in situ) diverse applications of single particles in sensing, medicine, and catalysis. Herein, we provide a concise and comprehensive perspective on luminescence-based detection and imaging of single particles by putting special emphasis on their basic principles, mechanistic pathways, advances, challenges, and key applications. This Perspective focuses on the development of emission intensities and imaging based individual particle detection. Moreover, several key examples in the areas of sensing, motion, catalysis, energy, materials, and emerging trends in related areas are documented. We finally conclude with the opportunities and remaining challenges to stimulate further developments in this field.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138545847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Depth Glycoproteomic Assay of Urinary Prostatic Acid Phosphatase 尿液前列腺酸性磷酸酶的深度糖蛋白组测定
Q3 Chemistry Pub Date : 2023-12-07 DOI: 10.1021/acsmeasuresciau.3c00055
Wei Wang, Carmen R. de Nier, Manfred Wuhrer and Guinevere S.M. Lageveen-Kammeijer*, 

Prostate-specific antigen (PSA) is a well-known clinical biomarker in prostate cancer (PCa) diagnosis, but a better test is still needed, as the serum-level-based PSA quantification exhibits limited specificity and comes with poor predictive value. Prior to PSA, prostatic acid phosphatase (PAP) was used, but it was replaced by PSA because PSA improved the early detection of PCa. Upon revisiting PAP and its glycosylation specifically, it appears to be a promising new biomarker candidate. Namely, previous studies have indicated that PAP glycoforms differ between PCa and non-PCa individuals. However, an in-depth characterization of PAP glycosylation is still lacking. In this study, we established an in-depth glycoproteomic assay for urinary PAP by characterizing both the micro- and macroheterogeneity of the PAP glycoprofile. For this purpose, PAP samples were analyzed by capillary electrophoresis coupled to mass spectrometry after affinity purification from urine and proteolytic digestion. The developed urinary PAP assay was applied on a pooled DRE (digital rectal examination) urine sample from nine individuals. Three glycosylation sites were characterized, namely N94, N220, and N333, via N-glycopeptide analysis. Taking sialic acid linkage isomers into account, a total of 63, 27, and 4 N-glycan structures were identified, respectively. The presented PAP glycoproteomic assay will enable the determination of potential glycomic biomarkers for the early detection and prognosis of PCa in cohort studies.

前列腺特异性抗原(PSA)是诊断前列腺癌(PCa)的著名临床生物标志物,但由于基于血清水平的 PSA 定量特异性有限且预测价值不高,因此仍需要更好的检测方法。在 PSA 之前,人们使用前列腺酸性磷酸酶(PAP),但由于 PSA 提高了 PCa 的早期检测率,PAP 被 PSA 所取代。重新审视前列腺酸性磷酸酶及其糖基化特性后,它似乎是一个很有希望的候选生物标记物。也就是说,以前的研究表明 PCa 患者和非 PCa 患者的 PAP 糖基化形式不同。然而,目前仍缺乏对 PAP 糖基化的深入研究。在本研究中,我们通过表征 PAP 糖型的微观和宏观异质性,建立了尿液 PAP 的深入糖蛋白组学检测方法。为此,在对尿液进行亲和纯化和蛋白水解消化后,采用毛细管电泳结合质谱法对 PAP 样品进行了分析。所开发的尿液 PAP 检测方法适用于来自九个人的 DRE(数字直肠检查)尿液样本。通过 N-糖肽分析,确定了三个糖基化位点,即 N94、N220 和 N333。考虑到半乳淀粉酸连接异构体,共鉴定出 63、27 和 4 个 N-糖结构。所介绍的 PAP 糖蛋白组测定方法将有助于确定潜在的糖生物标记物,以便在队列研究中对 PCa 进行早期检测和预后判断。
{"title":"In-Depth Glycoproteomic Assay of Urinary Prostatic Acid Phosphatase","authors":"Wei Wang,&nbsp;Carmen R. de Nier,&nbsp;Manfred Wuhrer and Guinevere S.M. Lageveen-Kammeijer*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00055","DOIUrl":"10.1021/acsmeasuresciau.3c00055","url":null,"abstract":"<p >Prostate-specific antigen (PSA) is a well-known clinical biomarker in prostate cancer (PCa) diagnosis, but a better test is still needed, as the serum-level-based PSA quantification exhibits limited specificity and comes with poor predictive value. Prior to PSA, prostatic acid phosphatase (PAP) was used, but it was replaced by PSA because PSA improved the early detection of PCa. Upon revisiting PAP and its glycosylation specifically, it appears to be a promising new biomarker candidate. Namely, previous studies have indicated that PAP glycoforms differ between PCa and non-PCa individuals. However, an in-depth characterization of PAP glycosylation is still lacking. In this study, we established an in-depth glycoproteomic assay for urinary PAP by characterizing both the micro- and macroheterogeneity of the PAP glycoprofile. For this purpose, PAP samples were analyzed by capillary electrophoresis coupled to mass spectrometry after affinity purification from urine and proteolytic digestion. The developed urinary PAP assay was applied on a pooled DRE (digital rectal examination) urine sample from nine individuals. Three glycosylation sites were characterized, namely N<sub>94</sub>, N<sub>220</sub>, and N<sub>333</sub>, via <i>N</i>-glycopeptide analysis. Taking sialic acid linkage isomers into account, a total of 63, 27, and 4 <i>N</i>-glycan structures were identified, respectively. The presented PAP glycoproteomic assay will enable the determination of potential glycomic biomarkers for the early detection and prognosis of PCa in cohort studies.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138552272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HILIC-IM-MS for Simultaneous Lipid and Metabolite Profiling of Bacteria HILIC-IM-MS同时分析细菌的脂质和代谢物
Q3 Chemistry Pub Date : 2023-12-05 DOI: 10.1021/acsmeasuresciau.3c00051
Jana M. Carpenter, Hannah M. Hynds, Kingsley Bimpeh and Kelly M. Hines*, 

Although MALDI-ToF platforms for microbial identifications have found great success in clinical microbiology, the sole use of protein fingerprints for the discrimination of closely related species, strain-level identifications, and detection of antimicrobial resistance remains a challenge for the technology. Several alternative mass spectrometry-based methods have been proposed to address the shortcomings of the protein-centric approach, including MALDI-ToF methods for fatty acid/lipid profiling and LC-MS profiling of metabolites. However, the molecular diversity of microbial pathogens suggests that no single “ome” will be sufficient for the accurate and sensitive identification of strain- and susceptibility-level profiling of bacteria. Here, we describe the development of an alternative approach to microorganism profiling that relies upon both metabolites and lipids rather than a single class of biomolecule. Single-phase extractions based on butanol, acetonitrile, and water (the BAW method) were evaluated for the recovery of lipids and metabolites from Gram-positive and -negative microorganisms. We found that BAW extraction solutions containing 45% butanol provided optimal recovery of both molecular classes in a single extraction. The single-phase extraction method was coupled to hydrophilic interaction liquid chromatography (HILIC) and ion mobility-mass spectrometry (IM-MS) to resolve similar-mass metabolites and lipids in three dimensions and provide multiple points of evidence for feature annotation in the absence of tandem mass spectrometry. We demonstrate that the combined use of metabolites and lipids can be used to differentiate microorganisms to the species- and strain-level for four of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa) using data from a single ionization mode. These results present promising, early stage evidence for the use of multiomic signatures for the identification of microorganisms by liquid chromatography, ion mobility, and mass spectrometry that, upon further development, may improve upon the level of identification provided by current methods.

尽管用于微生物鉴定的MALDI-ToF平台在临床微生物学领域取得了巨大成功,但仅使用蛋白质指纹图谱来区分近缘物种、菌株水平鉴定和抗微生物药物耐药性检测仍然是该技术的挑战。已经提出了几种基于质谱的替代方法来解决以蛋白质为中心的方法的缺点,包括用于脂肪酸/脂质分析的MALDI-ToF方法和代谢物的LC-MS分析。然而,微生物病原体的分子多样性表明,没有一个单一的“基因组”足以准确和敏感地识别细菌的菌株和敏感水平谱。在这里,我们描述了一种微生物分析的替代方法的发展,这种方法依赖于代谢物和脂质,而不是单一种类的生物分子。以丁醇、乙腈和水为基础的单相萃取法(BAW法)对革兰氏阳性和阴性微生物的脂质和代谢物的回收率进行了评估。我们发现含有45%丁醇的BAW提取液在一次提取中对这两类分子的回收率最佳。将单相萃取法与亲水性相互作用液相色谱法(HILIC)和离子迁移质谱法(IM-MS)相结合,对相似质量的代谢物和脂质进行三维解析,并在没有串联质谱法的情况下为特征注释提供多点证据。我们证明,使用单一电离模式的数据,代谢物和脂质可以用于区分四种ESKAPE病原体(屎肠球菌、金黄色葡萄球菌、鲍曼不动杆菌和铜绿假单胞菌)的种和菌株水平的微生物。这些结果为利用多组特征通过液相色谱、离子迁移率和质谱鉴定微生物提供了有希望的早期证据,在进一步发展的基础上,可能会提高当前方法提供的鉴定水平。
{"title":"HILIC-IM-MS for Simultaneous Lipid and Metabolite Profiling of Bacteria","authors":"Jana M. Carpenter,&nbsp;Hannah M. Hynds,&nbsp;Kingsley Bimpeh and Kelly M. Hines*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00051","DOIUrl":"10.1021/acsmeasuresciau.3c00051","url":null,"abstract":"<p >Although MALDI-ToF platforms for microbial identifications have found great success in clinical microbiology, the sole use of protein fingerprints for the discrimination of closely related species, strain-level identifications, and detection of antimicrobial resistance remains a challenge for the technology. Several alternative mass spectrometry-based methods have been proposed to address the shortcomings of the protein-centric approach, including MALDI-ToF methods for fatty acid/lipid profiling and LC-MS profiling of metabolites. However, the molecular diversity of microbial pathogens suggests that no single “ome” will be sufficient for the accurate and sensitive identification of strain- and susceptibility-level profiling of bacteria. Here, we describe the development of an alternative approach to microorganism profiling that relies upon both metabolites and lipids rather than a single class of biomolecule. Single-phase extractions based on butanol, acetonitrile, and water (the BAW method) were evaluated for the recovery of lipids and metabolites from Gram-positive and -negative microorganisms. We found that BAW extraction solutions containing 45% butanol provided optimal recovery of both molecular classes in a single extraction. The single-phase extraction method was coupled to hydrophilic interaction liquid chromatography (HILIC) and ion mobility-mass spectrometry (IM-MS) to resolve similar-mass metabolites and lipids in three dimensions and provide multiple points of evidence for feature annotation in the absence of tandem mass spectrometry. We demonstrate that the combined use of metabolites and lipids can be used to differentiate microorganisms to the species- and strain-level for four of the ESKAPE pathogens (<i>Enterococcus faecium</i>, <i>Staphylococcus aureus</i>, <i>Acinetobacter baumannii</i>, and <i>Pseudomonas aeruginosa</i>) using data from a single ionization mode. These results present promising, early stage evidence for the use of multiomic signatures for the identification of microorganisms by liquid chromatography, ion mobility, and mass spectrometry that, upon further development, may improve upon the level of identification provided by current methods.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Quantitative Analysis of Xenobiotics in Blood Plasma through Cross-Matrix Calibration and Bayesian Hierarchical Modeling 通过交叉矩阵校准和贝叶斯层次模型加强血浆中异种抗生素的定量分析
Q3 Chemistry Pub Date : 2023-12-05 DOI: 10.1021/acsmeasuresciau.3c00049
Nipunika H. Godage, Song S. Qian, Erasmus Cudjoe and Emanuela Gionfriddo*, 

This study addresses the challenges of matrix effects and interspecies plasma protein binding (PPB) on measurement variability during method validation across diverse plasma types (human, rat, rabbit, and bovine). Accurate measurements of small molecules in plasma samples often require matrix-matched calibration approaches with the use of specific plasma types, which may have limited availability or affordability. To mitigate the costs associated with human plasma measurements, we explore in this work the potential of cross-matrix-matched calibration using Bayesian hierarchical modeling (BHM) to correct for matrix effects associated with PPB. We initially developed a targeted quantitative approach utilizing biocompatible solid-phase microextraction coupled with liquid chromatography–mass spectrometry for xenobiotic analysis in plasma. The method was evaluated for absolute matrix effects across human, bovine, rat, and rabbit plasma comparing pre- and postmatrix extraction standards. Absolute matrix effects from 96 to 108% for most analytes across plasma sources indicate that the biocompatibility of the extraction phase minimizes interference coextraction. However, the extent of PPB in different media can still affect the accuracy of the measurement when the extraction of small molecules is carried out via free concentration, as in the case of microextraction techniques. In fact, while matrix-matched calibration revealed high accuracy, cross-matrix calibration (e.g., using a calibration curve generated from bovine plasma) proved inadequate for precise measurements in human plasma. A BHM was used to calculate correction factors for each analyte within each plasma type, successfully mitigating the measurement bias resulting from diverse calibration curve types used to quantify human plasma samples. This work contributes to the development of cost-effective, efficient calibration strategies for biofluids. Leveraging easily accessible plasma sources, like bovine plasma, for method optimization and validation prior to analyzing costly plasma (e.g., human plasma) holds substantial advantages applicable to biomonitoring and pharmacokinetic studies.

本研究解决了基质效应和种间血浆蛋白结合(PPB)在不同血浆类型(人、大鼠、兔和牛)的方法验证过程中测量变异性的挑战。准确测量等离子体样品中的小分子通常需要使用特定等离子体类型的基质匹配校准方法,这可能是有限的可用性或负担得起的。为了降低与人体血浆测量相关的成本,我们在这项工作中探索了使用贝叶斯分层建模(BHM)的交叉矩阵匹配校准的潜力,以纠正与PPB相关的矩阵效应。我们最初开发了一种有针对性的定量方法,利用生物相容性固相微萃取结合液相色谱-质谱法对血浆中的异种生物进行分析。通过比较基质提取前后的标准,评估了该方法在人、牛、大鼠和兔血浆中的绝对基质效应。对于大多数等离子体源的分析物,绝对基质效应从96%到108%表明萃取相的生物相容性使干扰共萃取最小化。然而,在微萃取技术中,当通过自由浓度提取小分子时,不同介质中PPB的程度仍然会影响测量的准确性。事实上,虽然矩阵匹配校准显示出很高的准确性,但交叉矩阵校准(例如,使用牛血浆生成的校准曲线)被证明不足以精确测量人血浆。BHM用于计算每种血浆类型中每种分析物的校正因子,成功减轻了用于定量人类血浆样品的不同校准曲线类型所导致的测量偏差。这项工作有助于开发成本效益高、效率高的生物流体校准策略。利用容易获得的血浆来源,如牛血浆,在分析昂贵的血浆(如人血浆)之前进行方法优化和验证,具有适用于生物监测和药代动力学研究的实质性优势。
{"title":"Enhancing Quantitative Analysis of Xenobiotics in Blood Plasma through Cross-Matrix Calibration and Bayesian Hierarchical Modeling","authors":"Nipunika H. Godage,&nbsp;Song S. Qian,&nbsp;Erasmus Cudjoe and Emanuela Gionfriddo*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00049","DOIUrl":"10.1021/acsmeasuresciau.3c00049","url":null,"abstract":"<p >This study addresses the challenges of matrix effects and interspecies plasma protein binding (PPB) on measurement variability during method validation across diverse plasma types (human, rat, rabbit, and bovine). Accurate measurements of small molecules in plasma samples often require matrix-matched calibration approaches with the use of specific plasma types, which may have limited availability or affordability. To mitigate the costs associated with human plasma measurements, we explore in this work the potential of cross-matrix-matched calibration using Bayesian hierarchical modeling (BHM) to correct for matrix effects associated with PPB. We initially developed a targeted quantitative approach utilizing biocompatible solid-phase microextraction coupled with liquid chromatography–mass spectrometry for xenobiotic analysis in plasma. The method was evaluated for absolute matrix effects across human, bovine, rat, and rabbit plasma comparing pre- and postmatrix extraction standards. Absolute matrix effects from 96 to 108% for most analytes across plasma sources indicate that the biocompatibility of the extraction phase minimizes interference coextraction. However, the extent of PPB in different media can still affect the accuracy of the measurement when the extraction of small molecules is carried out via free concentration, as in the case of microextraction techniques. In fact, while matrix-matched calibration revealed high accuracy, cross-matrix calibration (e.g., using a calibration curve generated from bovine plasma) proved inadequate for precise measurements in human plasma. A BHM was used to calculate correction factors for each analyte within each plasma type, successfully mitigating the measurement bias resulting from diverse calibration curve types used to quantify human plasma samples. This work contributes to the development of cost-effective, efficient calibration strategies for biofluids. Leveraging easily accessible plasma sources, like bovine plasma, for method optimization and validation prior to analyzing costly plasma (e.g., human plasma) holds substantial advantages applicable to biomonitoring and pharmacokinetic studies.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Measurement Science Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1