Secondary organic aerosol (SOA) has been shown to significantly impact climate, air quality, and human health. Hydroxyl dicarboxylic acids (OHDCA) are generally of secondary origin and ubiquitous in the atmosphere, with high concentrations in South China. This study explored the formation of representative OHDCA species based on time-resolved measurements and explainable machine learning. Malic acid, the most commonly studied OHDCA, had higher concentrations in the noncontinental air (63.7 ± 33.3 ng m-3) than in the continental air (7.5 ± 1.4 ng m-3). Machine learning quantitatively revealed the high relative importance of aromatics and monoterpenes SOA, as well as aqueous processes, in the noncontinental air, due to either shared precursors or similar formation pathways. Isoprene SOA, particle surface area, and ozone corrected for titration loss (O x ) also elevated the concentrations of malic acid in the continental air. Aqueous photochemical formation of malic acid was confirmed given the synergy between LWC, temperature, and O x . Moreover, the OHDCA-like SOA might have facilitated a relatively rare particle growth from early afternoon to midnight in the case with the highest malic acid concentrations. This study enhances our understanding of the formation of OHDCA and its climate impacts.
二次有机气溶胶(SOA)已被证明对气候、空气质量和人类健康产生重大影响。羟基二羧酸(OHDCA)一般是次生来源,在大气中普遍存在,华南地区浓度较高。本研究基于时间分辨测量和可解释的机器学习探索了具有代表性的OHDCA物种的形成。苹果酸是最常见的OHDCA,在非大陆空气中的浓度(63.7±33.3 ng m-3)高于大陆空气中的浓度(7.5±1.4 ng m-3)。机器学习定量地揭示了非大陆空气中芳烃和单萜烯SOA以及水过程的高度相对重要性,这是由于共享前体或相似的形成途径。异戊二烯SOA、颗粒表面积和经滴定损失(O x)校正的臭氧也提高了大陆空气中苹果酸的浓度。考虑到LWC、温度和O x之间的协同作用,苹果酸的水光化学生成得到了证实。此外,在苹果酸浓度最高的情况下,类似ohdca的SOA可能会促进从下午早些时候到午夜的相对罕见的颗粒生长。本研究增强了我们对OHDCA形成及其气候影响的认识。
{"title":"Hydroxyl Dicarboxylic Acids at a Mountainous Site in Hong Kong: Formation Mechanisms and Implications for Particle Growth.","authors":"Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Tianshu Chen, Dawen Yao, Haoxian Lu, Beining Zhou, Hai Guo","doi":"10.1021/acsenvironau.4c00119","DOIUrl":"10.1021/acsenvironau.4c00119","url":null,"abstract":"<p><p>Secondary organic aerosol (SOA) has been shown to significantly impact climate, air quality, and human health. Hydroxyl dicarboxylic acids (OHDCA) are generally of secondary origin and ubiquitous in the atmosphere, with high concentrations in South China. This study explored the formation of representative OHDCA species based on time-resolved measurements and explainable machine learning. Malic acid, the most commonly studied OHDCA, had higher concentrations in the noncontinental air (63.7 ± 33.3 ng m<sup>-3</sup>) than in the continental air (7.5 ± 1.4 ng m<sup>-3</sup>). Machine learning quantitatively revealed the high relative importance of aromatics and monoterpenes SOA, as well as aqueous processes, in the noncontinental air, due to either shared precursors or similar formation pathways. Isoprene SOA, particle surface area, and ozone corrected for titration loss (O <sub><i>x</i></sub> ) also elevated the concentrations of malic acid in the continental air. Aqueous photochemical formation of malic acid was confirmed given the synergy between LWC, temperature, and O <sub><i>x</i></sub> . Moreover, the OHDCA-like SOA might have facilitated a relatively rare particle growth from early afternoon to midnight in the case with the highest malic acid concentrations. This study enhances our understanding of the formation of OHDCA and its climate impacts.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 3","pages":"277-286"},"PeriodicalIF":6.7,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CO is both a key intermediate in the electrocatalytic conversion of CO2 and a valuable C1 resource, with the potential to reduce carbon emissions and mitigate the energy crisis. However, industrially emitted CO remains underutilized due to inefficiencies and economic challenges. Electrocatalytic CO reduction offers a promising approach for the efficient and environmentally friendly utilization of CO-containing flue gases. Nevertheless, current technologies face limitations, such as low operating currents and difficulties in adaptation to complex reaction gas components. Here, we report a low-cost silver-doped porous copper oxide (Ag-pCuO) catalyst. The doping of a moderate amount of Ag (0.875% doping) endows porous CuO with highly selective Cu-Ag active sites, enhanced CO adsorption, and improved surface valence stability, allowing Ag0.875%-pCuO to achieve remarkable catalytic performance in a carbon-doped titanium-based membrane electrode assembly electrolytic cell. It achieves a remarkable C2+ faradic efficiency of up to 94% at a high current density of -4 A under a simulated calcium carbide furnace gas atmosphere and demonstrates exceptional stability, with only a 6.08% decline in C2+ faradic efficiency after over 110 h of continuous operation. In summary, this research presents a novel approach for applying Ag-doped copper-based catalysts to industrially utilize CO-containing flue gases, especially from calcium carbide furnaces.
{"title":"Silver-Doped Porous Copper Catalysts for Efficient Resource Utilization of CO-Containing Flue Gases.","authors":"Zhengkai Zhuang, Guangtao Wang, Wen Zhao, Ruixin Yang, Yilin Zhou, Wenlei Zhu","doi":"10.1021/acsenvironau.4c00121","DOIUrl":"10.1021/acsenvironau.4c00121","url":null,"abstract":"<p><p>CO is both a key intermediate in the electrocatalytic conversion of CO<sub>2</sub> and a valuable C<sub>1</sub> resource, with the potential to reduce carbon emissions and mitigate the energy crisis. However, industrially emitted CO remains underutilized due to inefficiencies and economic challenges. Electrocatalytic CO reduction offers a promising approach for the efficient and environmentally friendly utilization of CO-containing flue gases. Nevertheless, current technologies face limitations, such as low operating currents and difficulties in adaptation to complex reaction gas components. Here, we report a low-cost silver-doped porous copper oxide (Ag-pCuO) catalyst. The doping of a moderate amount of Ag (0.875% doping) endows porous CuO with highly selective Cu-Ag active sites, enhanced CO adsorption, and improved surface valence stability, allowing Ag<sub>0.875%</sub>-pCuO to achieve remarkable catalytic performance in a carbon-doped titanium-based membrane electrode assembly electrolytic cell. It achieves a remarkable C<sub>2+</sub> faradic efficiency of up to 94% at a high current density of -4 A under a simulated calcium carbide furnace gas atmosphere and demonstrates exceptional stability, with only a 6.08% decline in C<sub>2+</sub> faradic efficiency after over 110 h of continuous operation. In summary, this research presents a novel approach for applying Ag-doped copper-based catalysts to industrially utilize CO-containing flue gases, especially from calcium carbide furnaces.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 3","pages":"287-297"},"PeriodicalIF":6.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-25eCollection Date: 2025-03-19DOI: 10.1021/acsenvironau.5c00020
Paul D Goring, Amelia Newman, Christopher W Jones, Shelley D Minteer
{"title":"Celebrating 5 Years of the ACS Au Journal Family.","authors":"Paul D Goring, Amelia Newman, Christopher W Jones, Shelley D Minteer","doi":"10.1021/acsenvironau.5c00020","DOIUrl":"https://doi.org/10.1021/acsenvironau.5c00020","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"145-147"},"PeriodicalIF":6.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14eCollection Date: 2025-05-21DOI: 10.1021/acsenvironau.4c00133
Di Zhang, Qiming Shen, Xing-Fang Li
Amino-containing compounds are key precursors to highly toxic nitrogenous disinfection byproducts (DBPs) and odorous DBPs, posing a critical challenge for drinking water utilities. This study systematically evaluated the adsorption performance of six commercial powdered activated carbons (PACs) for removing soluble amino-containing compounds using amino acids as model compounds. Among them, PHF and AN PAC demonstrated superior removal efficiencies for six tested amino acids, ranging from 77 to 98% for PHF PAC and 83 to 96% for AN PAC. Subsequent analysis focused on PHF, AN, and HB PACs to investigate adsorption kinetics and effects of water parameters, including initial amino acid concentration, pH, and natural organic matter (NOM) on removal efficiencies. Optimal removal efficiencies were observed for PHF and AN PACs at pH levels between 6 and 8, while increased NOM levels significantly reduced amino acid adsorption. Finally, a hydrogen/deuterium isotopic labeling-based nontargeted analysis was applied to evaluate the removal of amino-containing compounds from source water (represented by Suwannee River standard reference materials). PHF exhibited the highest removal efficiency, achieving a 47% reduction in the total ion chromatogram (TIC) intensity of labeled amino-containing features, followed by AN at 21% and HB at 19%. The decrease in the TIC intensity and number of labeled amino-containing features aligned with the trends observed in adsorption, establishes a consistent ranking of PHF > AN > HB PAC. PAC can be seamlessly integrated into existing drinking water treatment processes and applied on an as-needed basis. Our results could provide valuable guidance for its effective application in water treatment plants.
{"title":"Evaluating Powdered Activated Carbon for Adsorption of Nitrogenous Organics in Water Using HDPairFinder.","authors":"Di Zhang, Qiming Shen, Xing-Fang Li","doi":"10.1021/acsenvironau.4c00133","DOIUrl":"10.1021/acsenvironau.4c00133","url":null,"abstract":"<p><p>Amino-containing compounds are key precursors to highly toxic nitrogenous disinfection byproducts (DBPs) and odorous DBPs, posing a critical challenge for drinking water utilities. This study systematically evaluated the adsorption performance of six commercial powdered activated carbons (PACs) for removing soluble amino-containing compounds using amino acids as model compounds. Among them, PHF and AN PAC demonstrated superior removal efficiencies for six tested amino acids, ranging from 77 to 98% for PHF PAC and 83 to 96% for AN PAC. Subsequent analysis focused on PHF, AN, and HB PACs to investigate adsorption kinetics and effects of water parameters, including initial amino acid concentration, pH, and natural organic matter (NOM) on removal efficiencies. Optimal removal efficiencies were observed for PHF and AN PACs at pH levels between 6 and 8, while increased NOM levels significantly reduced amino acid adsorption. Finally, a hydrogen/deuterium isotopic labeling-based nontargeted analysis was applied to evaluate the removal of amino-containing compounds from source water (represented by Suwannee River standard reference materials). PHF exhibited the highest removal efficiency, achieving a 47% reduction in the total ion chromatogram (TIC) intensity of labeled amino-containing features, followed by AN at 21% and HB at 19%. The decrease in the TIC intensity and number of labeled amino-containing features aligned with the trends observed in adsorption, establishes a consistent ranking of PHF > AN > HB PAC. PAC can be seamlessly integrated into existing drinking water treatment processes and applied on an as-needed basis. Our results could provide valuable guidance for its effective application in water treatment plants.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 3","pages":"308-318"},"PeriodicalIF":6.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-12eCollection Date: 2025-05-21DOI: 10.1021/acsenvironau.4c00130
Anna N Walsh, Ann G Dunlea, Christopher M Reddy, Collin P Ward
The composition and environmental impacts of inorganic additives in consumer plastics have received little attention within the plastic pollution discipline relative to organic additives. In this work, X-ray florescence spectroscopy, loss-on-ignition, and inductively coupled plasma mass spectrometry were used to qualitatively and quantitatively characterize inorganic additives from up to 80 consumer plastic items. On average, consumer plastic goods contained ∼8% inorganic additives by mass. Concentrations of each element often varied by orders of magnitude. The most common elements detected were from the alkali metal, alkaline earth metal, and first-row transition metal groups, with Ca, Ti, and Al being most abundant. The diversity and abundance of inorganic additives was notably higher in consumer-grade plastics than in standard plastics routinely used to assess the fate and impacts of plastic pollution. Sunlight exposure readily liberated most elements from consumer plastics, typically in the <10 and <1 μm fractions. However, the relative percent of photochemical liberation varied considerably across element and plastic articles, suggesting that formulation is a key control of their liberation from consumer plastics. Compared to average upper continental crust concentrations, Sb and Zn were most enriched, with median enrichment factors of 2 and 1 orders of magnitude, respectfully. Mass balance calculations indicate that plastic pollution may represent a substantial proportion of natural riverine elemental fluxes, particularly for Sb and Zn, which could reach ∼13% and ∼4% of the global natural riverine fluxes by 2060, respectively. Localized impacts in many small, highly polluted rivers could be even larger. However, such impacts are highly dependent on the riverine plastic loading rate to the ocean. Overall, these findings highlight the need for increased consideration of inorganic additives when assessing the fate and impacts of consumer plastics leaking into the environment.
{"title":"Characterization of Inorganic Additives in and Photochemically Liberated from Consumer Plastics: Implications for Global and Local Biogeochemical Cycles.","authors":"Anna N Walsh, Ann G Dunlea, Christopher M Reddy, Collin P Ward","doi":"10.1021/acsenvironau.4c00130","DOIUrl":"10.1021/acsenvironau.4c00130","url":null,"abstract":"<p><p>The composition and environmental impacts of inorganic additives in consumer plastics have received little attention within the plastic pollution discipline relative to organic additives. In this work, X-ray florescence spectroscopy, loss-on-ignition, and inductively coupled plasma mass spectrometry were used to qualitatively and quantitatively characterize inorganic additives from up to 80 consumer plastic items. On average, consumer plastic goods contained ∼8% inorganic additives by mass. Concentrations of each element often varied by orders of magnitude. The most common elements detected were from the alkali metal, alkaline earth metal, and first-row transition metal groups, with Ca, Ti, and Al being most abundant. The diversity and abundance of inorganic additives was notably higher in consumer-grade plastics than in standard plastics routinely used to assess the fate and impacts of plastic pollution. Sunlight exposure readily liberated most elements from consumer plastics, typically in the <10 and <1 μm fractions. However, the relative percent of photochemical liberation varied considerably across element and plastic articles, suggesting that formulation is a key control of their liberation from consumer plastics. Compared to average upper continental crust concentrations, Sb and Zn were most enriched, with median enrichment factors of 2 and 1 orders of magnitude, respectfully. Mass balance calculations indicate that plastic pollution may represent a substantial proportion of natural riverine elemental fluxes, particularly for Sb and Zn, which could reach ∼13% and ∼4% of the global natural riverine fluxes by 2060, respectively. Localized impacts in many small, highly polluted rivers could be even larger. However, such impacts are highly dependent on the riverine plastic loading rate to the ocean. Overall, these findings highlight the need for increased consideration of inorganic additives when assessing the fate and impacts of consumer plastics leaking into the environment.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 3","pages":"298-307"},"PeriodicalIF":6.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10eCollection Date: 2025-03-19DOI: 10.1021/acsenvironau.4c00114
Laurinda Nyarko, Christian Dewey, Jeffrey A Nason, Rene M Boiteau
Wastewater is a significant source of copper to freshwater environments, which can severely harm aquatic life. The bioavailability and toxicity of copper in water are influenced by its complexation with dissolved organic matter (DOM). Speciation models, like the biotic ligand model (BLM) that guides Cu regulations, assume DOM is dominated by humic substances. Research suggests that anthropogenic compounds in wastewater discharge may be important copper binding ligands, although their identities remain largely unknown. To address this knowledge gap, we identified and quantified organic copper species isolated from 24 h composite wastewater samples by solid phase extraction (SPE) using liquid chromatography (LC) with inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization mass spectrometry (ESIMS). Analyses of samples across different stages of treatment revealed the net removal of Cu (73%) and DOC (66%). LC-ICPMS showed that certain complexes were selectively removed, while others evaded removal or were generated during treatment. Relatively hydrophobic complexes decreased in abundance from the initial to the secondary treatment stage. In contrast, more hydrophilic organic Cu complexes, likely formed during treatment, showed a significant increase from the secondary to the tertiary stage. The molecular mass and formula of seven discrete chromatographically resolved complexes were identified by LC-Orbitrap MS. Six were detected only in wastewater, and one was detected in all the wastewater and river samples. Identification of these compounds provides additional evidence for the formation of new copper-binding ligands during treatment and confirms the presence of nitrogen- and sulfur-containing compounds with copper-chelating properties in the wastewater. These findings demonstrate the utility of LCMS approaches for identifying and quantifying distinct organic-copper species in wastewater, as well as tracking their changes and removal during the treatment process.
{"title":"Tracking Changes in Organic-Copper Speciation during Wastewater Treatment Using LC-ICPMS-ESIMS.","authors":"Laurinda Nyarko, Christian Dewey, Jeffrey A Nason, Rene M Boiteau","doi":"10.1021/acsenvironau.4c00114","DOIUrl":"10.1021/acsenvironau.4c00114","url":null,"abstract":"<p><p>Wastewater is a significant source of copper to freshwater environments, which can severely harm aquatic life. The bioavailability and toxicity of copper in water are influenced by its complexation with dissolved organic matter (DOM). Speciation models, like the biotic ligand model (BLM) that guides Cu regulations, assume DOM is dominated by humic substances. Research suggests that anthropogenic compounds in wastewater discharge may be important copper binding ligands, although their identities remain largely unknown. To address this knowledge gap, we identified and quantified organic copper species isolated from 24 h composite wastewater samples by solid phase extraction (SPE) using liquid chromatography (LC) with inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization mass spectrometry (ESIMS). Analyses of samples across different stages of treatment revealed the net removal of Cu (73%) and DOC (66%). LC-ICPMS showed that certain complexes were selectively removed, while others evaded removal or were generated during treatment. Relatively hydrophobic complexes decreased in abundance from the initial to the secondary treatment stage. In contrast, more hydrophilic organic Cu complexes, likely formed during treatment, showed a significant increase from the secondary to the tertiary stage. The molecular mass and formula of seven discrete chromatographically resolved complexes were identified by LC-Orbitrap MS. Six were detected only in wastewater, and one was detected in all the wastewater and river samples. Identification of these compounds provides additional evidence for the formation of new copper-binding ligands during treatment and confirms the presence of nitrogen- and sulfur-containing compounds with copper-chelating properties in the wastewater. These findings demonstrate the utility of LCMS approaches for identifying and quantifying distinct organic-copper species in wastewater, as well as tracking their changes and removal during the treatment process.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"230-240"},"PeriodicalIF":6.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-04eCollection Date: 2025-03-19DOI: 10.1021/acsenvironau.5c00004
Xiang-Dong Li, Ian T Cousins, Keri C Hornbuckle
{"title":"<i>ACS Environmental Au</i> Honors Rising Stars in Environmental Research in 2024.","authors":"Xiang-Dong Li, Ian T Cousins, Keri C Hornbuckle","doi":"10.1021/acsenvironau.5c00004","DOIUrl":"https://doi.org/10.1021/acsenvironau.5c00004","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"138-144"},"PeriodicalIF":6.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30eCollection Date: 2025-03-19DOI: 10.1021/acsenvironau.4c00097
Justine Kei T Lim-Ortega, Chenju Liang, Analiza P Rollon, Mark Daniel G De Luna
The back diffusion of trichloroethylene (TCE) between low permeability zones (LPZ) and transmissive zones in the subsurface presents remediation challenges. This study investigates in situ chemical oxidation (ISCO) using a sodium persulfate sustained release rod (SPS SR-rod) for potential TCE remediation in the LPZ within a two-dimensional sand tank. The tank simulates a dual permeability porous medium with hydraulic gradients of 0.01 and 0.05. The SPS SR-rod placed within the LPZ released an average PS concentration of ∼625 mg/L laterally, with initial peak concentrations of 7000-10,000 mg/L. When the rod was placed atop the LPZ, lower PS concentrations were observed compared to placement within the LPZ. A separate evaluation of both SPS SR-rod placements in a 2D sand tank injected with pure TCE tested the oxidant's ability to address soil-sorbed TCE. The rod atop the LPZ can mitigate dual permeability layers and creates a depletion zone at the high permeability zone to reduce contaminant transport from the LPZ. The rod within the LPZ reduces TCE lateral dispersion. The persistence and slow release of SPS in the LPZ suggest that the SPS SR-rod could effectively extend the time period of ISCO remediation of low-concentration TCE in the LPZ and the surrounding environment.
三氯乙烯(TCE)在地下低渗透层(LPZ)和透射层之间的反扩散给修复带来了挑战。本研究利用过硫酸钠缓释棒(SPS sr -棒)原位化学氧化(ISCO)对二维砂槽内LPZ中潜在的TCE修复进行了研究。该槽模拟双渗透多孔介质,水力梯度为0.01和0.05。放置在LPZ内的SPS sr棒横向释放的平均PS浓度为~ 625 mg/L,初始峰值浓度为7000-10,000 mg/L。当棒放置在LPZ上时,与放置在LPZ内相比,观察到的PS浓度较低。在注入纯TCE的2D砂槽中放置SPS sr棒的单独评估测试了氧化剂处理土壤吸附TCE的能力。在LPZ上方的抽油杆可以减轻双渗透层的影响,并在高渗透层形成一个枯竭区,以减少污染物从LPZ的输送。LPZ内的棒减少了TCE的横向分散。SPS在LPZ内的持久性和缓释性表明SPS sr棒可以有效延长ISCO对LPZ及周围环境中低浓度TCE的修复时间。
{"title":"Evaluation of Sustained Persulfate Oxidant Release for Remediating Trichloroethylene Contaminated Low Permeability Soil in the Phreatic Zone.","authors":"Justine Kei T Lim-Ortega, Chenju Liang, Analiza P Rollon, Mark Daniel G De Luna","doi":"10.1021/acsenvironau.4c00097","DOIUrl":"10.1021/acsenvironau.4c00097","url":null,"abstract":"<p><p>The back diffusion of trichloroethylene (TCE) between low permeability zones (LPZ) and transmissive zones in the subsurface presents remediation challenges. This study investigates in situ chemical oxidation (ISCO) using a sodium persulfate sustained release rod (SPS SR-rod) for potential TCE remediation in the LPZ within a two-dimensional sand tank. The tank simulates a dual permeability porous medium with hydraulic gradients of 0.01 and 0.05. The SPS SR-rod placed within the LPZ released an average PS concentration of ∼625 mg/L laterally, with initial peak concentrations of 7000-10,000 mg/L. When the rod was placed atop the LPZ, lower PS concentrations were observed compared to placement within the LPZ. A separate evaluation of both SPS SR-rod placements in a 2D sand tank injected with pure TCE tested the oxidant's ability to address soil-sorbed TCE. The rod atop the LPZ can mitigate dual permeability layers and creates a depletion zone at the high permeability zone to reduce contaminant transport from the LPZ. The rod within the LPZ reduces TCE lateral dispersion. The persistence and slow release of SPS in the LPZ suggest that the SPS SR-rod could effectively extend the time period of ISCO remediation of low-concentration TCE in the LPZ and the surrounding environment.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"211-219"},"PeriodicalIF":6.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29eCollection Date: 2025-03-19DOI: 10.1021/acsenvironau.4c00134
Danting Shi, Tao Liu
Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.
{"title":"Versatile Gas-Transfer Membrane in Water and Wastewater Treatment: Principles, Opportunities, and Challenges.","authors":"Danting Shi, Tao Liu","doi":"10.1021/acsenvironau.4c00134","DOIUrl":"10.1021/acsenvironau.4c00134","url":null,"abstract":"<p><p>Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"152-164"},"PeriodicalIF":6.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}