首页 > 最新文献

IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology最新文献

英文 中文
Experimental Detection of Early-Stage Lung and Skin Tumors Based on Super Wideband Imaging 基于超宽带成像的早期肺癌和皮肤癌实验检测
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-07 DOI: 10.1109/JERM.2024.3395923
Wasan Alamro;Boon-Chong Seet;Lulu Wang;Prabakar Parthiban
In this paper, a super wideband (SWB) radio frequency imaging approach is developed and evaluated for detecting early stages of deep-seated lung and in-situ skin tumors. A life-sized human torso phantom is constructed of tissue mimicking materials and their dielectric properties are thoroughly investigated over the covered frequency range of 3.1−40 GHz. An array of custom-designed antenna elements is employed in an imaging setup to assess the detection capabilities of the SWB imaging approach for both lung and skin tumors. Images reconstructed using the acquired backscattering information and confocal beamforming algorithms demonstrate a successful detection with accurate tumor size and location estimation. Compared to present ultra-wideband (UWB) approach, the proposed SWB approach can enhance the spatial resolution of the reconstructed images by up to 84.4%. This work establishes the foundation for further exploration of SWB imaging in clinical trials, offering the potential to transform early cancer detection and treatment monitoring.
本文开发并评估了一种超宽带(SWB)射频成像方法,用于检测深部肺部肿瘤和原位皮肤肿瘤的早期阶段。用组织模拟材料构建了一个真人大小的人体躯干模型,并在 3.1-40 GHz 的覆盖频率范围内对其介电特性进行了深入研究。在成像装置中采用了定制设计的天线元件阵列,以评估 SWB 成像方法对肺部和皮肤肿瘤的检测能力。利用获取的反向散射信息和共焦波束成形算法重建的图像表明,该方法能成功检测并准确估计肿瘤的大小和位置。与目前的超宽带(UWB)方法相比,所提出的 SWB 方法可将重建图像的空间分辨率提高 84.4%。这项研究为在临床试验中进一步探索 SWB 成像奠定了基础,有望改变早期癌症检测和治疗监测。
{"title":"Experimental Detection of Early-Stage Lung and Skin Tumors Based on Super Wideband Imaging","authors":"Wasan Alamro;Boon-Chong Seet;Lulu Wang;Prabakar Parthiban","doi":"10.1109/JERM.2024.3395923","DOIUrl":"https://doi.org/10.1109/JERM.2024.3395923","url":null,"abstract":"In this paper, a super wideband (SWB) radio frequency imaging approach is developed and evaluated for detecting early stages of deep-seated lung and in-situ skin tumors. A life-sized human torso phantom is constructed of tissue mimicking materials and their dielectric properties are thoroughly investigated over the covered frequency range of 3.1−40 GHz. An array of custom-designed antenna elements is employed in an imaging setup to assess the detection capabilities of the SWB imaging approach for both lung and skin tumors. Images reconstructed using the acquired backscattering information and confocal beamforming algorithms demonstrate a successful detection with accurate tumor size and location estimation. Compared to present ultra-wideband (UWB) approach, the proposed SWB approach can enhance the spatial resolution of the reconstructed images by up to 84.4%. This work establishes the foundation for further exploration of SWB imaging in clinical trials, offering the potential to transform early cancer detection and treatment monitoring.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"182-189"},"PeriodicalIF":3.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and Low Leakage WPT System With Integrated Uncomplicated Matching Circuit Rectifier Using Metamaterial Director and Isolator for Biomedical Application 高效低漏电 WPT 系统,集成了使用超材料导向器和隔离器的简便匹配电路整流器,适用于生物医学应用
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-06 DOI: 10.1109/JERM.2024.3395572
Shimaa Alshhawy;Adel Barakat;Ramesh K. Pokharel
Supplying wireless power to biomedical implants presents numerous challenges, including the compactness, efficiency, and biomedical safety of the receiver (RX). In this work, we propose several solutions to overcome these challenges. Firstly, we designed a metamaterial-inspired transmitter (TX) based on a multi-ring resonator (MRR). This transmitter achieves low magnetic loss and is used as a director to supply power to the RX, featuring an integrated uncomplicated matching circuit rectifier. Secondly, to realize the rectifier, we leverage the high coupling achieved through the proposed MRR metamaterial. The rectifier is integrated on the backside of the RX substrate without requiring additional area for further compactness. Additionally, we introduce a metamaterial-based isolator designed to reduce magnetic field leakage on the back side of the system. Importantly, this isolator has been proven to have no adverse effects on the original wireless power transfer (WPT) system's performance. A prototype was successfully fabricated, and both RF-dc simulation and measurements indicate a peak efficiency of 43% and 39%, respectively, at 50 MHz for a 9 mm embedded RX in chicken breast tissue. The TX size is 20 mm × 20 mm, while the integrated RX/rectifier has dimensions of 7 mm × 7 mm.
为生物医学植入物提供无线供电面临诸多挑战,包括接收器(RX)的紧凑性、效率和生物医学安全性。在这项工作中,我们提出了几种解决方案来克服这些挑战。首先,我们设计了一种基于多环谐振器(MRR)的超材料启发发射器(TX)。该发射器实现了低磁损耗,并用作向 RX 供电的导向器,其特点是集成了不复杂的匹配电路整流器。其次,为了实现整流器,我们利用了所提出的 MRR 超材料实现的高耦合。整流器集成在 RX 衬底的背面,无需额外面积,从而进一步实现了紧凑性。此外,我们还引入了一种基于超材料的隔离器,旨在减少系统背面的磁场泄漏。重要的是,这种隔离器已被证明不会对原始无线功率传输(WPT)系统的性能产生不利影响。原型已成功制作,射频-直流模拟和测量结果表明,在 50 MHz 频率下,鸡胸组织中 9 mm 嵌入式 RX 的峰值效率分别为 43% 和 39%。发射机尺寸为 20 mm × 20 mm,而集成 RX/ 整流器的尺寸为 7 mm × 7 mm。
{"title":"Efficient and Low Leakage WPT System With Integrated Uncomplicated Matching Circuit Rectifier Using Metamaterial Director and Isolator for Biomedical Application","authors":"Shimaa Alshhawy;Adel Barakat;Ramesh K. Pokharel","doi":"10.1109/JERM.2024.3395572","DOIUrl":"https://doi.org/10.1109/JERM.2024.3395572","url":null,"abstract":"Supplying wireless power to biomedical implants presents numerous challenges, including the compactness, efficiency, and biomedical safety of the receiver (RX). In this work, we propose several solutions to overcome these challenges. Firstly, we designed a metamaterial-inspired transmitter (TX) based on a multi-ring resonator (MRR). This transmitter achieves low magnetic loss and is used as a director to supply power to the RX, featuring an integrated uncomplicated matching circuit rectifier. Secondly, to realize the rectifier, we leverage the high coupling achieved through the proposed MRR metamaterial. The rectifier is integrated on the backside of the RX substrate without requiring additional area for further compactness. Additionally, we introduce a metamaterial-based isolator designed to reduce magnetic field leakage on the back side of the system. Importantly, this isolator has been proven to have no adverse effects on the original wireless power transfer (WPT) system's performance. A prototype was successfully fabricated, and both RF-dc simulation and measurements indicate a peak efficiency of 43% and 39%, respectively, at 50 MHz for a 9 mm embedded RX in chicken breast tissue. The TX size is 20 mm × 20 mm, while the integrated RX/rectifier has dimensions of 7 mm × 7 mm.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"144-154"},"PeriodicalIF":3.2,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 2023 Reviewers IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 2023 Reviewers(《电气和电子工程师学会医学与生物学电磁学、射频和微波杂志》2023 年审稿人
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-05 DOI: 10.1109/JERM.2024.3369960
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 2023 Reviewers","authors":"","doi":"10.1109/JERM.2024.3369960","DOIUrl":"https://doi.org/10.1109/JERM.2024.3369960","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"90-91"},"PeriodicalIF":3.2,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10460354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acceleration-Based Low-Cost CW Radar System for Real-Time Elderly Fall Detection 基于加速度的低成本 CW 雷达系统用于实时检测老年人跌倒情况
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-04 DOI: 10.1109/JERM.2024.3368688
Dimitrios G. Arnaoutoglou;Dimitrios Dedemadis;Antigone-Aikaterini Kyriakou;Sotirios Katsimentes;Athanasios Grekidis;Dimitrios Menychtas;Nikolaos Aggelousis;Georgios Ch. Sirakoulis;George A. Kyriacou
Falls can be one of the most damaging events that elders may experience in their lives, especially when they live alone. The impact of a fall can vary from minor bruises, to life altering fractures and even become fatal. The purpose of this study is to establish a novel non-contact radar method of detecting an elderly fall when occurred in home staying. The novelty of the proposed detection technique is the exploitation of a 1D effective acceleration derived from Short Time Fourier Transform (STFT). This technique was tested utilizing a 2.45 GHz Continuous Wave (CW) Radar implemented with a Software Defined Radio (SDR) and low-cost, off-the-shelf components. Herein, we present test results that classify incidents as either falls or non-falls in line-of-sight cases. Firstly, the results are compared with the corresponding values measured with a commercial marker-based optoelectronic motion capture multi-camera system (VICON) showing high similarity. Furthermore, real-time scenarios were conducted to estimate the accuracy and the number of false alarms of the proposed method. The proposed algorithm is proved capable of exploiting the Power Burst Curve (PBC) as a preliminary factor to yield an efficient fall incident classifier based on the effective acceleration, while minimizing the required processing resources.
跌倒可能是老年人一生中可能经历的最具伤害性的事件之一,尤其是当他们独自生活时。跌倒造成的影响可能是轻微的擦伤,也可能是改变生命的骨折,甚至是致命的。本研究的目的是建立一种新颖的非接触式雷达方法,用于检测老人在家中跌倒的情况。所提出的检测技术的新颖之处在于利用了从短时傅立叶变换(STFT)中得到的一维有效加速度。该技术利用 2.45 GHz 连续波 (CW) 雷达进行了测试,该雷达由软件定义无线电 (SDR) 和低成本的现成组件实现。在此,我们介绍了在视线范围内将事件划分为坠落或非坠落的测试结果。首先,我们将测试结果与基于商业标记的光电运动捕捉多摄像头系统(VICON)测得的相应值进行了比较,结果显示两者具有很高的相似性。此外,还进行了实时情景模拟,以估算所提方法的准确性和误报率。事实证明,所提出的算法能够利用功率突发曲线(PBC)作为初步因素,根据有效加速度生成高效的跌倒事件分类器,同时最大限度地减少所需的处理资源。
{"title":"Acceleration-Based Low-Cost CW Radar System for Real-Time Elderly Fall Detection","authors":"Dimitrios G. Arnaoutoglou;Dimitrios Dedemadis;Antigone-Aikaterini Kyriakou;Sotirios Katsimentes;Athanasios Grekidis;Dimitrios Menychtas;Nikolaos Aggelousis;Georgios Ch. Sirakoulis;George A. Kyriacou","doi":"10.1109/JERM.2024.3368688","DOIUrl":"https://doi.org/10.1109/JERM.2024.3368688","url":null,"abstract":"Falls can be one of the most damaging events that elders may experience in their lives, especially when they live alone. The impact of a fall can vary from minor bruises, to life altering fractures and even become fatal. The purpose of this study is to establish a novel non-contact radar method of detecting an elderly fall when occurred in home staying. The novelty of the proposed detection technique is the exploitation of a 1D effective acceleration derived from Short Time Fourier Transform (STFT). This technique was tested utilizing a 2.45 GHz Continuous Wave (CW) Radar implemented with a Software Defined Radio (SDR) and low-cost, off-the-shelf components. Herein, we present test results that classify incidents as either falls or non-falls in line-of-sight cases. Firstly, the results are compared with the corresponding values measured with a commercial marker-based optoelectronic motion capture multi-camera system (VICON) showing high similarity. Furthermore, real-time scenarios were conducted to estimate the accuracy and the number of false alarms of the proposed method. The proposed algorithm is proved capable of exploiting the Power Burst Curve (PBC) as a preliminary factor to yield an efficient fall incident classifier based on the effective acceleration, while minimizing the required processing resources.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"102-112"},"PeriodicalIF":3.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 关于本期刊
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-29 DOI: 10.1109/JERM.2024.3362215
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2024.3362215","DOIUrl":"https://doi.org/10.1109/JERM.2024.3362215","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"C3-C3"},"PeriodicalIF":3.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10454608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 出版信息
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-29 DOI: 10.1109/JERM.2024.3362211
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2024.3362211","DOIUrl":"https://doi.org/10.1109/JERM.2024.3362211","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"C2-C2"},"PeriodicalIF":3.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10454611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-Circuit Combination Method for Solving the Detuning Problem of Magnetic Resonance Human Body Communication 解决磁共振人体通信失谐问题的场-电路组合方法
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-27 DOI: 10.1109/JERM.2024.3367247
Lixuan Huang;Ziliang Wei;Bingheng Chen;Sio Hang Pun;Mang I Vai;Yueming Gao
The technological challenge to realize wearable medical devices is to ensure low power consumption and reliable transmission of communication. Magnetic resonance human body communication (MR HBC) provides ideas to improve the transmission effect. Although the coil's resonance properties have been proposed for MR HBC, the modeling and impedance matching for this method are still in the exploratory stage. However, different human impedances affect the coil resonance frequency to varying extents, leading to individual variability in the degree of magnetic coupling. This paper analyzes the influence of human tissues on the coil through finite element method (FEM) simulation modeling. This effect can be eliminated by employing a dual tunable capacitor matching method based on the field-circuit combination. By dynamically adjusting the values of the dual tunable capacitors in real-time, the human body and the coil can be tuned to a resonant state, effectively improving the degree of magnetic coupling. The results reveal that the proposed method enhances the communication gain by 38.91–42.02 dB at the preset frequency for different human tissues. In vivo experiments verify that the method eliminates the effect of different human impedances on the coil, which is of great significance for further improving the performance of MR HBC.
实现可穿戴医疗设备的技术挑战在于确保低功耗和可靠的通信传输。磁共振人体通信(MR HBC)为改善传输效果提供了思路。虽然已经提出了磁共振人体通信的线圈共振特性,但该方法的建模和阻抗匹配仍处于探索阶段。然而,不同人体阻抗对线圈共振频率的影响程度不同,从而导致磁耦合程度的个体差异性。本文通过有限元法(FEM)模拟建模分析了人体组织对线圈的影响。通过采用基于场-电路组合的双可调电容器匹配方法,可以消除这种影响。通过实时动态调整双可调电容器的值,可将人体和线圈调谐到共振状态,从而有效改善磁耦合度。研究结果表明,在不同人体组织的预设频率下,该方法可将通信增益提高 38.91-42.02 dB。体内实验验证了该方法消除了不同人体阻抗对线圈的影响,这对进一步提高磁共振 HBC 的性能具有重要意义。
{"title":"Field-Circuit Combination Method for Solving the Detuning Problem of Magnetic Resonance Human Body Communication","authors":"Lixuan Huang;Ziliang Wei;Bingheng Chen;Sio Hang Pun;Mang I Vai;Yueming Gao","doi":"10.1109/JERM.2024.3367247","DOIUrl":"https://doi.org/10.1109/JERM.2024.3367247","url":null,"abstract":"The technological challenge to realize wearable medical devices is to ensure low power consumption and reliable transmission of communication. Magnetic resonance human body communication (MR HBC) provides ideas to improve the transmission effect. Although the coil's resonance properties have been proposed for MR HBC, the modeling and impedance matching for this method are still in the exploratory stage. However, different human impedances affect the coil resonance frequency to varying extents, leading to individual variability in the degree of magnetic coupling. This paper analyzes the influence of human tissues on the coil through finite element method (FEM) simulation modeling. This effect can be eliminated by employing a dual tunable capacitor matching method based on the field-circuit combination. By dynamically adjusting the values of the dual tunable capacitors in real-time, the human body and the coil can be tuned to a resonant state, effectively improving the degree of magnetic coupling. The results reveal that the proposed method enhances the communication gain by 38.91–42.02 dB at the preset frequency for different human tissues. In vivo experiments verify that the method eliminates the effect of different human impedances on the coil, which is of great significance for further improving the performance of MR HBC.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"94-101"},"PeriodicalIF":3.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Detection of Fluid Leaks Into the Body by Means of Partially Dissolvable Antennas 利用可部分溶解的天线连续探测漏入人体的液体
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-19 DOI: 10.1109/JERM.2024.3363509
Federica Naccarata;Marco Di Cristofano;Gaetano Marrocco
Internal fluid leaks in the human body can be caused by underlying medical disorders. Leakage may also be relevant to implanted stent grafts for the treatment of abdominal aneurysms. Indeed, blood may leak through the stent into the aneurysm sac with the risk of rupture due to increased internal pressure. As standard screenings cannot be performed frequently enough, this paper proposes wireless monitoring of fluid leaks into human body regions exploiting an implanted antenna partially coated by an engineered material and an auto-tuning IC in the UHF RFID band. The presence of fluid modifies the antenna impedance in a controlled way by the hydrolysis of the coating. An indication of this change can be obtained through radiofrequency interrogation from an external reader even when the antenna is implanted at 6 cm. Simulations and tests with a mock-up demonstrated the ability to distinguish the degradation of the bioresorbable coating. The sensor is responsive to up to 3.5 mm$^{3}$ of dissolved coating, with a sensitivity of more 10 units$/$mm$^{3}$. Provided that the size of the coating has been properly engineered, the response of the sensor is robust w.r.t. the unpredictable interaction with the fluid.
人体内部液体渗漏可能是由潜在的疾病引起的。渗漏也可能与用于治疗腹部动脉瘤的植入支架移植物有关。事实上,血液可能会通过支架渗漏到动脉瘤囊中,由于内压增加而有破裂的危险。由于无法频繁进行标准筛查,本文提出了利用部分包裹工程材料的植入式天线和超高频射频识别(UHF RFID)频段的自动调谐集成电路,对渗漏到人体区域的液体进行无线监测。液体的存在会通过涂层的水解以可控的方式改变天线的阻抗。即使天线被植入 6 厘米处,也能通过外部读取器的射频询问获得这种变化的指示。模拟实验表明,该传感器能够分辨生物可吸收涂层的降解情况。该传感器对高达 3.5 mm$^{3}$ 的溶解涂层反应灵敏,灵敏度超过 10 个单位$/$mm$^{3}$。只要涂层的尺寸设计得当,传感器就能在与流体发生不可预测的相互作用时保持稳定的响应。
{"title":"Continuous Detection of Fluid Leaks Into the Body by Means of Partially Dissolvable Antennas","authors":"Federica Naccarata;Marco Di Cristofano;Gaetano Marrocco","doi":"10.1109/JERM.2024.3363509","DOIUrl":"https://doi.org/10.1109/JERM.2024.3363509","url":null,"abstract":"Internal fluid leaks in the human body can be caused by underlying medical disorders. Leakage may also be relevant to implanted stent grafts for the treatment of abdominal aneurysms. Indeed, blood may leak through the stent into the aneurysm sac with the risk of rupture due to increased internal pressure. As standard screenings cannot be performed frequently enough, this paper proposes wireless monitoring of fluid leaks into human body regions exploiting an implanted antenna partially coated by an engineered material and an auto-tuning IC in the UHF RFID band. The presence of fluid modifies the antenna impedance in a controlled way by the hydrolysis of the coating. An indication of this change can be obtained through radiofrequency interrogation from an external reader even when the antenna is implanted at 6 cm. Simulations and tests with a mock-up demonstrated the ability to distinguish the degradation of the bioresorbable coating. The sensor is responsive to up to 3.5 mm\u0000<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\u0000 of dissolved coating, with a sensitivity of more 10 units\u0000<inline-formula><tex-math>$/$</tex-math></inline-formula>\u0000mm\u0000<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\u0000. Provided that the size of the coating has been properly engineered, the response of the sensor is robust w.r.t. the unpredictable interaction with the fluid.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"15-25"},"PeriodicalIF":3.2,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed Thermal Imaging Can Resolve Short RF Pulse Effects in Tissue Models 高速热成像技术可分辨组织模型中的短射频脉冲效应
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-19 DOI: 10.1109/JERM.2024.3363906
Daniel W. van der Weide;Dustin Kendig;Mo Shakouri
Using high-speed transient infrared microscopy, we resolve induced heating and subsequent conductive diffusion of pulsed RF energy delivered by bipolar microneedles to tissue-mimicking samples, using high spatial and temporal resolution, non-contact advanced thermal imaging to gain insight into direct heating of tissue proximal to RF electrodes. We use both IR and thermoreflectance in the same microscope and find that for the samples and time scales chosen in this first study, the spatiotemporal resolution of IR microscopy was sufficient to reveal local RF-induced thermal effects.
利用高速瞬态红外显微镜,我们解析了双极微针向组织模拟样本输送脉冲射频能量时的诱导加热和随后的传导扩散,利用高时空分辨率、非接触式先进热成像深入了解射频电极近端组织的直接加热情况。我们在同一显微镜中同时使用红外和热反射技术,发现对于首次研究中选择的样本和时间尺度,红外显微镜的时空分辨率足以揭示局部射频诱导的热效应。
{"title":"High-Speed Thermal Imaging Can Resolve Short RF Pulse Effects in Tissue Models","authors":"Daniel W. van der Weide;Dustin Kendig;Mo Shakouri","doi":"10.1109/JERM.2024.3363906","DOIUrl":"https://doi.org/10.1109/JERM.2024.3363906","url":null,"abstract":"Using high-speed transient infrared microscopy, we resolve induced heating and subsequent conductive diffusion of pulsed RF energy delivered by bipolar microneedles to tissue-mimicking samples, using high spatial and temporal resolution, non-contact advanced thermal imaging to gain insight into direct heating of tissue proximal to RF electrodes. We use both IR and thermoreflectance in the same microscope and find that for the samples and time scales chosen in this first study, the spatiotemporal resolution of IR microscopy was sufficient to reveal local RF-induced thermal effects.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"201-205"},"PeriodicalIF":3.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave Vertebrae Strength Probe Development: Robust and Fast Phase Unwrapping Technique 微波椎体强度探头开发:稳健快速的相位解包技术
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-19 DOI: 10.1109/JERM.2024.3363148
Paul M. Meaney;Viktor Mattsson;Robin Augustine;Helena Brisby
We have developed a new transmission-based, open-ended coaxial probe for assessing vertebrae strength during spinal fusion surgery. The approach exploits the fact that the probes are within the far field of each other implying that the phase varies linearly with respect to propagation distance. Determining the absolute phase is critical for recovering the associated tissue dielectric properties from which bone strength will be determined. Unfortunately, unwanted multi-path signals corrupt the signals at the lower end of the operating frequency range from which our conventional unwrapping strategy depends. Our new approach requires only three measurements within the prime frequency range and can be determined robustly with a minimum of computations. This will be vital to developing a commercial device since the signal levels will be extremely low power requiring longer than usual data acquisition times, which will be mitigated by measuring the data at only a few frequencies. Fast and efficient operation will be critical for clinical success.
我们开发了一种新的基于传输的开放式同轴探头,用于在脊柱融合手术中评估椎骨强度。该方法利用了探头彼此处于远场范围内这一事实,这意味着相位随传播距离呈线性变化。确定绝对相位对于恢复相关的组织介电特性至关重要,而骨强度将由此确定。遗憾的是,不需要的多路径信号会破坏工作频率范围低端的信号,而我们的传统解包策略正是依赖于这些信号。我们的新方法只需要在主要频率范围内进行三次测量,并能通过最少的计算稳健地确定信号。这对开发商业设备至关重要,因为信号电平将非常低,需要比通常更长的数据采集时间,而只需在几个频率上测量数据就能缓解这一问题。快速高效的操作对于临床成功至关重要。
{"title":"Microwave Vertebrae Strength Probe Development: Robust and Fast Phase Unwrapping Technique","authors":"Paul M. Meaney;Viktor Mattsson;Robin Augustine;Helena Brisby","doi":"10.1109/JERM.2024.3363148","DOIUrl":"https://doi.org/10.1109/JERM.2024.3363148","url":null,"abstract":"We have developed a new transmission-based, open-ended coaxial probe for assessing vertebrae strength during spinal fusion surgery. The approach exploits the fact that the probes are within the far field of each other implying that the phase varies linearly with respect to propagation distance. Determining the absolute phase is critical for recovering the associated tissue dielectric properties from which bone strength will be determined. Unfortunately, unwanted multi-path signals corrupt the signals at the lower end of the operating frequency range from which our conventional unwrapping strategy depends. Our new approach requires only three measurements within the prime frequency range and can be determined robustly with a minimum of computations. This will be vital to developing a commercial device since the signal levels will be extremely low power requiring longer than usual data acquisition times, which will be mitigated by measuring the data at only a few frequencies. Fast and efficient operation will be critical for clinical success.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 1","pages":"78-83"},"PeriodicalIF":3.2,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1