首页 > 最新文献

IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology最新文献

英文 中文
High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning 高频不可逆电穿孔:通过机器学习进行最佳参数预测
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-04-01 DOI: 10.1109/JERM.2024.3378573
A. De Cillis;C. Merla;G. Monti;L. Tarricone;M. Zappatore
The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.
在各种医学治疗中采用高频不可逆电穿孔技术正变得越来越普遍。目前,高频不可逆电穿孔在肿瘤学中的应用受到特别关注,这为可治疗的肿瘤类型和治疗效果提供了新的视角。许多参数都会影响高频不可逆电穿孔手术的效率和效果,选择合适的电极和预测消融面积就是有趣的例子。在本文中,我们展示了机器学习策略,特别是神经网络,为优化选择某些电极特性和预测消融面积提供了一种合适的方法,这在肿瘤学的高频电穿孔应用中非常有用。反过来,这种可能性可能会导致高频不可逆电穿孔取得更好的效果,并显著缩短实现这些效果所需的时间。
{"title":"High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning","authors":"A. De Cillis;C. Merla;G. Monti;L. Tarricone;M. Zappatore","doi":"10.1109/JERM.2024.3378573","DOIUrl":"https://doi.org/10.1109/JERM.2024.3378573","url":null,"abstract":"The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"220-228"},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metasurface Approach to Generate Homogeneous B1+ Field for High-Field and Ultra-High-Field MRI 为高场和超高场磁共振成像生成均匀 B1+ 场的元表面方法
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-04-01 DOI: 10.1109/JERM.2024.3381333
Chen Xue;Guanglei Zhou;Alex M. H. Wong
A novel electromagnetic excitation method – the Huygens’ cylinder – is proposed to improve the B1+ field homogeneity of the high-field (HF) and ultra-high field (UHF) magnetic resonance imaging (MRI). Based on the concept of the Huygens’ box, we calculate the currents on a cylindrical boundary that can synthesize an arbitrary electromagnetic wave inside the enclosed region. Specifically, we excite a right-handed circularly polarized (B1+) travelling wave with high mode purity inside the Huygens’ cylinder coil. The simulated B1+ field obtained from several 3T and 7T MR scenarios are reported and compared with birdcage coils. In the unloaded scenarios, the Huygens’ cylinder achieves superior B1+-field homogeneity over both the sagittal and axial plane compared to the birdcage coil for both 3T and 7T MRI. In the loaded scenarios, the Huygens’ cylinder achieves superior B1+-field homogeneity over the sagittal plane and comparable B1+-field homogeneity over the axial plane for both 3T and 7T MRI compared to the birdcage coil. Moreover, the 7T Huygens’ cylinder can generate a uniform field over a much larger region, enabling the imaging of a large part of the human body. The Huygens’ cylinder greatly improves the homogeneity of B1+ field and is free from the dielectric resonance limitation suffered by conventional RF coils. It has strong potential as future RF coils in HF and UHF MR systems.
为了改善高场(HF)和超高场(UHF)磁共振成像(MRI)的 B1+ 场均匀性,我们提出了一种新型电磁激励方法--惠更斯圆柱体。基于惠更斯盒的概念,我们计算了圆柱边界上的电流,该边界可在封闭区域内合成任意电磁波。具体来说,我们在惠更斯圆柱线圈内激发了一个具有高模式纯度的右旋圆极化(B1+)行波。报告了在几种 3T 和 7T 磁共振情况下获得的模拟 B1+ 场,并与鸟笼线圈进行了比较。在未加载的情况下,惠更斯圆柱体在 3T 和 7T 磁共振成像中的矢状面和轴面上的 B1+ 场均匀性均优于鸟笼线圈。在加载情况下,惠更斯圆柱体与鸟笼线圈相比,在 3T 和 7T 磁共振成像中,矢状面上的 B1+ 场均匀性更优,轴面上的 B1+ 场均匀性相当。此外,7T 惠更斯圆柱体能在更大的区域内产生均匀场,从而实现人体大部分区域的成像。惠更斯圆柱体大大提高了 B1+ 场的均匀性,摆脱了传统射频线圈的介电共振限制。它极有可能成为未来高频和超高频磁共振系统的射频线圈。
{"title":"Metasurface Approach to Generate Homogeneous B1+ Field for High-Field and Ultra-High-Field MRI","authors":"Chen Xue;Guanglei Zhou;Alex M. H. Wong","doi":"10.1109/JERM.2024.3381333","DOIUrl":"https://doi.org/10.1109/JERM.2024.3381333","url":null,"abstract":"A novel electromagnetic excitation method – the Huygens’ cylinder – is proposed to improve the B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000 field homogeneity of the high-field (HF) and ultra-high field (UHF) magnetic resonance imaging (MRI). Based on the concept of the Huygens’ box, we calculate the currents on a cylindrical boundary that can synthesize an arbitrary electromagnetic wave inside the enclosed region. Specifically, we excite a right-handed circularly polarized (B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000) travelling wave with high mode purity inside the Huygens’ cylinder coil. The simulated B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000 field obtained from several 3T and 7T MR scenarios are reported and compared with birdcage coils. In the unloaded scenarios, the Huygens’ cylinder achieves superior B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000-field homogeneity over both the sagittal and axial plane compared to the birdcage coil for both 3T and 7T MRI. In the loaded scenarios, the Huygens’ cylinder achieves superior B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000-field homogeneity over the sagittal plane and comparable B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000-field homogeneity over the axial plane for both 3T and 7T MRI compared to the birdcage coil. Moreover, the 7T Huygens’ cylinder can generate a uniform field over a much larger region, enabling the imaging of a large part of the human body. The Huygens’ cylinder greatly improves the homogeneity of B\u0000<sub>1</sub>\u0000<sup>+</sup>\u0000 field and is free from the dielectric resonance limitation suffered by conventional RF coils. It has strong potential as future RF coils in HF and UHF MR systems.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"155-162"},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformal Microwave Sensor for Enhanced Driving Posture Monitoring and Thermal Comfort in Automotive Sector 用于增强汽车行业驾驶姿势监测和热舒适度的共形微波传感器
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-31 DOI: 10.1109/JERM.2024.3405185
Sakthi Abirami Balakrishnan;Esther Florence Sundarsingh;Vimal Samsingh Ramalingam;Aishwarya N
The correlation> between driving posture and overall health is paramount, underscoring the necessity of maintaining proper seating positions for individuals. Prolonged periods of incorrect posture significantly contribute to the prevalence of musculoskeletal disorders among sedentary workers. The proposed research presents a novel approach utilizing a conformal and cost-effective body-coupled microwave sensor for monitoring driving positions and enhancing thermal comfort in the automotive sector. Integrated into the backrest of the vehicle seat, the sensor employs microwave-sensing elements to detect various driving postures based on shifts in resonant frequency. Through trials involving 12 participants, including 10 drivers adopting four distinct driving postures, and validation with machine learning classifiers, the effectiveness and reliability of the prototype are demonstrated. Subsequent integration with a Peltier cooling system and dashboard display further enhances occupant thermal comfort by accurately recognizing driving postures, providing corrective messages, and automatically activating the cooling system as needed.
驾驶姿势与整体健康之间的相关性是至关重要的,这强调了保持个人正确坐姿的必要性。长时间的姿势不正确会大大增加久坐工作者肌肉骨骼疾病的发病率。拟议的研究提出了一种新方法,利用保形和经济高效的人体耦合微波传感器监测驾驶姿势,提高汽车行业的热舒适度。该传感器集成在汽车座椅靠背上,采用微波传感元件,根据共振频率的变化检测各种驾驶姿势。通过 12 位参与者(包括 10 位采用四种不同驾驶姿势的驾驶员)的试验,以及机器学习分类器的验证,证明了原型的有效性和可靠性。随后,通过与珀尔帖制冷系统和仪表盘显示屏的集成,可准确识别驾驶姿势、提供纠正信息并在需要时自动激活制冷系统,从而进一步提高乘员的热舒适度。
{"title":"Conformal Microwave Sensor for Enhanced Driving Posture Monitoring and Thermal Comfort in Automotive Sector","authors":"Sakthi Abirami Balakrishnan;Esther Florence Sundarsingh;Vimal Samsingh Ramalingam;Aishwarya N","doi":"10.1109/JERM.2024.3405185","DOIUrl":"https://doi.org/10.1109/JERM.2024.3405185","url":null,"abstract":"The correlation> between driving posture and overall health is paramount, underscoring the necessity of maintaining proper seating positions for individuals. Prolonged periods of incorrect posture significantly contribute to the prevalence of musculoskeletal disorders among sedentary workers. The proposed research presents a novel approach utilizing a conformal and cost-effective body-coupled microwave sensor for monitoring driving positions and enhancing thermal comfort in the automotive sector. Integrated into the backrest of the vehicle seat, the sensor employs microwave-sensing elements to detect various driving postures based on shifts in resonant frequency. Through trials involving 12 participants, including 10 drivers adopting four distinct driving postures, and validation with machine learning classifiers, the effectiveness and reliability of the prototype are demonstrated. Subsequent integration with a Peltier cooling system and dashboard display further enhances occupant thermal comfort by accurately recognizing driving postures, providing corrective messages, and automatically activating the cooling system as needed.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"355-362"},"PeriodicalIF":3.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer Deep Learning for Dielectric Profile Reconstruction in Microwave Medical Imaging 用于微波医学成像中介质剖面重构的传输深度学习
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-30 DOI: 10.1109/JERM.2024.3402048
Fei Xue;Lei Guo;Alina Bialkowski;Amin M. Abbosh
Quantitative medical microwave imaging based on deep learning (DL) faces the overfitting problem due to limited training samples available in the clinic database. In this article, a U-Net-like DL model that can reconstruct the dielectric properties of brain tissue using time-domain signals is presented. A transfer learning approach is employed to alleviate the overfitting problem caused by limited training samples. In the proposed approach, the model is first trained with a dataset of random objects in a defined imaging domain and the corresponding time-domain signals. Subsequently, the pre-trained model is fine-tuned using simulation data from an unhealthy object. The final trained model can accurately reconstruct various tissues and abnormal lesions in an unhealthy object and avoid erroneous reconstruction of unexpected lesions in a healthy image of the object. The method is tested using a 16-antenna head imaging system operating across the band 0.5-2 GHz. The results confirm the superior performance of the method, in imaging both healthy and unhealthy brains, as measured using the root mean squared error, the correlation coefficient, the structural similarity index measure, and the peak signal-to-noise ratio. The presented method is a potential solution to mitigate the problem of erroneously predicting lesions in healthy tissues.
由于临床数据库中的训练样本有限,基于深度学习(DL)的定量医学微波成像技术面临着过拟合问题。本文提出了一种类似 U-Net 的 DL 模型,该模型可以利用时域信号重建脑组织的介电特性。该模型采用迁移学习方法来缓解因训练样本有限而导致的过拟合问题。在所提出的方法中,首先使用定义成像域中的随机对象数据集和相应的时域信号对模型进行训练。随后,利用不健康物体的模拟数据对预训练模型进行微调。最终训练出的模型可以准确地重建不健康物体中的各种组织和异常病变,并避免错误地重建健康物体图像中的意外病变。该方法使用工作频带为 0.5-2 GHz 的 16 天线头部成像系统进行了测试。结果证实,根据均方根误差、相关系数、结构相似性指数测量和峰值信噪比测量,该方法在健康和不健康大脑成像中均表现出色。所提出的方法是缓解错误预测健康组织病变问题的潜在解决方案。
{"title":"Transfer Deep Learning for Dielectric Profile Reconstruction in Microwave Medical Imaging","authors":"Fei Xue;Lei Guo;Alina Bialkowski;Amin M. Abbosh","doi":"10.1109/JERM.2024.3402048","DOIUrl":"https://doi.org/10.1109/JERM.2024.3402048","url":null,"abstract":"Quantitative medical microwave imaging based on deep learning (DL) faces the overfitting problem due to limited training samples available in the clinic database. In this article, a U-Net-like DL model that can reconstruct the dielectric properties of brain tissue using time-domain signals is presented. A transfer learning approach is employed to alleviate the overfitting problem caused by limited training samples. In the proposed approach, the model is first trained with a dataset of random objects in a defined imaging domain and the corresponding time-domain signals. Subsequently, the pre-trained model is fine-tuned using simulation data from an unhealthy object. The final trained model can accurately reconstruct various tissues and abnormal lesions in an unhealthy object and avoid erroneous reconstruction of unexpected lesions in a healthy image of the object. The method is tested using a 16-antenna head imaging system operating across the band 0.5-2 GHz. The results confirm the superior performance of the method, in imaging both healthy and unhealthy brains, as measured using the root mean squared error, the correlation coefficient, the structural similarity index measure, and the peak signal-to-noise ratio. The presented method is a potential solution to mitigate the problem of erroneously predicting lesions in healthy tissues.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"344-354"},"PeriodicalIF":3.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue Mimicking Materials for Shell-Based Phantoms in Breast Microwave Sensing 用于乳腺微波传感壳基模型的组织模拟材料
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-29 DOI: 10.1109/JERM.2024.3379747
Jordan Krenkevich;Gabrielle Fontaine;Evelyne Hluszok;Tyson Reimer;Stephen Pistorius
Breast phantoms are required to test and evaluate microwave breast imaging systems before clinical applications. Shell-based breast phantoms are versatile, reproducible, low-cost, stable, and capable of mimicking the morphology and dielectric properties of the breast. In past work, 3D-printable plastics have been used to fabricate the shells in these phantoms, but the low permittivity plastics limit the dielectric accuracy of the phantoms. Furthermore, the liquids in these shell-based phantoms are prone to air bubbles, which may introduce undesirable microwave scattering. This work examines new tissue-mimicking materials to address these challenges. Low-permittivity 3D-printed plastic filament was replaced with a graphite, carbon-black, and resin mixture to mimic skin properties within the 0.4–9.0 GHz range. Glycerin and Triton X-100 were replaced by diethylene glycol butyl ether (DGBE) solutions to mimic the properties of adipose and fibroglandular tissue. The resin-based material more closely modelled the properties of ex vivo tissue samples than 3D-printed plastics. The DGBE solutions had improved dielectric properties compared to the glycerin and Triton X-100 solutions. The DGBE solutions are advantageous compared to glycerin and Triton X-100 solutions due to their lower viscosity, decreased susceptibility to air bubble formation, improved short-term stability, temperature stability, and enhanced long-term stability, facilitating the reusability of these materials. The materials investigated in this work can be used to produce more dielectrically accurate breast phantoms with improved stability and experimental utility for microwave breast imaging.
在临床应用之前,需要用乳房模型来测试和评估微波乳房成像系统。基于壳体的乳房模型用途广泛、可重现性好、成本低、稳定性高,并且能够模拟乳房的形态和介电特性。在过去的工作中,这些模型的外壳是用三维可打印塑料制造的,但低介电常数塑料限制了模型的介电精度。此外,这些基于外壳的模型中的液体容易产生气泡,可能会带来不良的微波散射。这项工作研究了新的组织仿真材料,以应对这些挑战。在 0.4-9.0 GHz 范围内,用石墨、碳黑和树脂混合物取代了低容性 3D 打印塑料丝,以模拟皮肤特性。甘油和 Triton X-100 被二甘醇丁醚 (DGBE) 溶液取代,以模拟脂肪组织和纤维腺组织的特性。与三维打印塑料相比,树脂基材料更接近于模拟活体组织样本的特性。与甘油和 Triton X-100 溶液相比,DGBE 溶液具有更好的介电性能。与甘油和 Triton X-100 溶液相比,DGBE 溶液具有粘度低、不易产生气泡、短期稳定性和温度稳定性更好以及长期稳定性更强等优点,有利于这些材料的重复使用。这项工作中研究的材料可用于制作介电精确度更高的乳房模型,其稳定性和微波乳房成像的实验实用性都有所提高。
{"title":"Tissue Mimicking Materials for Shell-Based Phantoms in Breast Microwave Sensing","authors":"Jordan Krenkevich;Gabrielle Fontaine;Evelyne Hluszok;Tyson Reimer;Stephen Pistorius","doi":"10.1109/JERM.2024.3379747","DOIUrl":"https://doi.org/10.1109/JERM.2024.3379747","url":null,"abstract":"Breast phantoms are required to test and evaluate microwave breast imaging systems before clinical applications. Shell-based breast phantoms are versatile, reproducible, low-cost, stable, and capable of mimicking the morphology and dielectric properties of the breast. In past work, 3D-printable plastics have been used to fabricate the shells in these phantoms, but the low permittivity plastics limit the dielectric accuracy of the phantoms. Furthermore, the liquids in these shell-based phantoms are prone to air bubbles, which may introduce undesirable microwave scattering. This work examines new tissue-mimicking materials to address these challenges. Low-permittivity 3D-printed plastic filament was replaced with a graphite, carbon-black, and resin mixture to mimic skin properties within the 0.4–9.0 GHz range. Glycerin and Triton X-100 were replaced by diethylene glycol butyl ether (DGBE) solutions to mimic the properties of adipose and fibroglandular tissue. The resin-based material more closely modelled the properties of ex vivo tissue samples than 3D-printed plastics. The DGBE solutions had improved dielectric properties compared to the glycerin and Triton X-100 solutions. The DGBE solutions are advantageous compared to glycerin and Triton X-100 solutions due to their lower viscosity, decreased susceptibility to air bubble formation, improved short-term stability, temperature stability, and enhanced long-term stability, facilitating the reusability of these materials. The materials investigated in this work can be used to produce more dielectrically accurate breast phantoms with improved stability and experimental utility for microwave breast imaging.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"213-219"},"PeriodicalIF":3.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipase Assisted Improved RF Biosensor for Triglycerides Level Detection in Blood Serum 用于检测血清中甘油三酯含量的脂肪酶辅助改进型射频生物传感器
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-28 DOI: 10.1109/JERM.2024.3402985
Prakrati Azad;Ankita Kumari;M. Jaleel Akhtar
Blood cholesterol and triglycerides are vital indicators of heart functioning, as their abnormal values can cause atherosclerosis resulting into conditions like hypertension, cerebrovascular accident, etc. Conventional enzyme-based spectroscopy employed in pathological laboratories necessitate complicated steps involving several extra-pure reagents, expensive instruments, and highly skilled professionals. In this work, a novel RF biosensor with high quality factor (Q) and improved sensitivity is proposed for detection of various solutes such as glucose, electrolytes, lipid profile etc., in human blood. The proposed RF sensor is based on the substrate integrated waveguide (SIW) technology to acquire an enhanced Q of 390. The sensitivity of the proposed biosensor for estimation of Triglycerides mixture (TM) in blood serum is substantially enhanced using the Lipase enzyme as a bioreceptor. Various parameters of the proposed RF SIW sensor structure are optimized using the CST-MWS software, and the designed sensor is fabricated on 1.6 mm thick Taconic (TLY-5) substrate using the photolithography technique. The fabricated RF biosensor is tested using the network analyzer to monitor the transmission coefficient in the S-band frequency range, which provides an enhanced sensitivity of 0.554 MHz/mg.dL−1 for triglyceride levels in blood serum. The proposed RF biosensor with Lipase as a bioreceptor is able to detect the triglyceride concentrations of 150 mg/dL and 200 mg/dL (i.e., healthy, and border-line triglyceride limits) in blood serum, which makes it ideally suited for estimation of various solutes in the blood plasma.
血液中的胆固醇和甘油三酯是心脏功能的重要指标,因为它们的异常值会引起动脉粥样硬化,导致高血压、脑血管意外等病症。病理实验室使用的传统酶联光谱法步骤复杂,需要使用多种超纯试剂、昂贵的仪器和技术精湛的专业人员。本研究提出了一种新型射频生物传感器,它具有高品质因数(Q)和更高的灵敏度,可用于检测人体血液中的各种溶质,如葡萄糖、电解质、脂质等。拟议的射频传感器基于基底集成波导(SIW)技术,可获得 390 的增强 Q 值。利用脂肪酶作为生物受体,大大提高了拟议生物传感器估算血清中甘油三酯混合物(TM)的灵敏度。使用 CST-MWS 软件优化了拟议的射频 SIW 传感器结构的各种参数,并使用光刻技术在 1.6 毫米厚的 Taconic (TLY-5) 基板上制作了所设计的传感器。使用网络分析仪对制作的射频生物传感器进行了测试,以监测 S 波段频率范围内的传输系数,结果表明该传感器对血清中甘油三酯水平的灵敏度提高到了 0.554 MHz/mg.dL-1。以脂肪酶为生物受体的拟议射频生物传感器能够检测血清中 150 毫克/分升和 200 毫克/分升的甘油三酯浓度(即健康和边界甘油三酯限值),因此非常适合用于估算血浆中的各种溶质。
{"title":"Lipase Assisted Improved RF Biosensor for Triglycerides Level Detection in Blood Serum","authors":"Prakrati Azad;Ankita Kumari;M. Jaleel Akhtar","doi":"10.1109/JERM.2024.3402985","DOIUrl":"https://doi.org/10.1109/JERM.2024.3402985","url":null,"abstract":"Blood cholesterol and triglycerides are vital indicators of heart functioning, as their abnormal values can cause atherosclerosis resulting into conditions like hypertension, cerebrovascular accident, etc. Conventional enzyme-based spectroscopy employed in pathological laboratories necessitate complicated steps involving several extra-pure reagents, expensive instruments, and highly skilled professionals. In this work, a novel RF biosensor with high quality factor (Q) and improved sensitivity is proposed for detection of various solutes such as glucose, electrolytes, lipid profile etc., in human blood. The proposed RF sensor is based on the substrate integrated waveguide (SIW) technology to acquire an enhanced Q of 390. The sensitivity of the proposed biosensor for estimation of Triglycerides mixture (TM) in blood serum is substantially enhanced using the Lipase enzyme as a bioreceptor. Various parameters of the proposed RF SIW sensor structure are optimized using the CST-MWS software, and the designed sensor is fabricated on 1.6 mm thick Taconic (TLY-5) substrate using the photolithography technique. The fabricated RF biosensor is tested using the network analyzer to monitor the transmission coefficient in the S-band frequency range, which provides an enhanced sensitivity of 0.554 MHz/mg.dL\u0000<sup>−1</sup>\u0000 for triglyceride levels in blood serum. The proposed RF biosensor with Lipase as a bioreceptor is able to detect the triglyceride concentrations of 150 mg/dL and 200 mg/dL (i.e., healthy, and border-line triglyceride limits) in blood serum, which makes it ideally suited for estimation of various solutes in the blood plasma.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"265-272"},"PeriodicalIF":3.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Multiband Antenna Design and Performance Evaluation for Wireless Electronic Capsule Systems 用于无线电子胶囊系统的新型多频带天线设计与性能评估
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-28 DOI: 10.1109/JERM.2024.3401572
Hailian Liu;Jingjing Shi;Le Song;Lijia Liu;Yukang Wang;Tonglei Cheng;Jianqing Wang
In this work, a novel miniaturized multi-resonant conformal antenna system has been proposed for wireless electronic capsule applications. It consists of a swallowable in-body antenna and two kinds of spiral/meandering on-body antennas with a simple structure and a low profile. The in-body transmitting antenna has a hollow cylinder-like structure with a size of $pi times 8^{2} times$ 26 mm$^{3}$, which is a combination of a helical spiral conformed on a flexible substrate and a planar spiral on a high dielectric substrate, to generate multi-resonant frequencies. It operates in three bands, Medical Implanted Communication Service (MICS) band (402$-$405 MHz), Wireless Medical Telemetry Service (WMTS) band (1427$-$1432 MHz), and the Industrial, Scientific, and Medical (ISM) band (2.4$-$2.4835 GHz). The on-body receiving antennas have a planar spiral structure with a size of 20 × 6.8 × 27 mm$^{3}$ and a planar meandered structure with a size of 42 × 10 × 1.6 mm$^{3}$, respectively, which are suitable for wearable terminals. The performance of the proposed antenna system is analyzed and validated using a muscle-equivalent model, a multi-layer tissue model, a numerical human model in simulations, and a liquid phantom in experiments. Simulation and experimental results show the good potential of the antenna system for intra-body communication scenarios such as wireless electronic capsules.
这项研究为无线电子胶囊应用提出了一种新型微型多谐振共形天线系统。它由一个可吞咽的体内发射天线和两种螺旋/蜿蜒的体外发射天线组成,结构简单,外形小巧。体内发射天线采用空心圆筒状结构,尺寸为 8^{2} 乘以 $pi times$ 26 mm$。times$ 26 mm$^{3}$,由柔性基板上的螺旋形和高介电基板上的平面螺旋形组合而成,可产生多谐振频率。它在三个频段工作,即医疗植入通信服务(MICS)频段(402-405 MHz)、无线医疗遥测服务(WMTS)频段(1427-1432 MHz)和工业、科学和医疗(ISM)频段(2.4-2.4835 GHz)。体外接收天线采用平面螺旋结构,尺寸为 20 × 6.8 × 27 mm$^{3}$;采用平面蜿蜒结构,尺寸为 42 × 10 × 1.6 mm$^{3}$,分别适用于可穿戴终端。仿真中使用了肌肉等效模型、多层组织模型、数值人体模型,实验中使用了液体模型,分析并验证了拟议天线系统的性能。仿真和实验结果表明,该天线系统在无线电子胶囊等体内通信场景中具有良好的应用潜力。
{"title":"Novel Multiband Antenna Design and Performance Evaluation for Wireless Electronic Capsule Systems","authors":"Hailian Liu;Jingjing Shi;Le Song;Lijia Liu;Yukang Wang;Tonglei Cheng;Jianqing Wang","doi":"10.1109/JERM.2024.3401572","DOIUrl":"https://doi.org/10.1109/JERM.2024.3401572","url":null,"abstract":"In this work, a novel miniaturized multi-resonant conformal antenna system has been proposed for wireless electronic capsule applications. It consists of a swallowable in-body antenna and two kinds of spiral/meandering on-body antennas with a simple structure and a low profile. The in-body transmitting antenna has a hollow cylinder-like structure with a size of \u0000<inline-formula><tex-math>$pi times 8^{2} times$</tex-math></inline-formula>\u0000 26 mm\u0000<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\u0000, which is a combination of a helical spiral conformed on a flexible substrate and a planar spiral on a high dielectric substrate, to generate multi-resonant frequencies. It operates in three bands, Medical Implanted Communication Service (MICS) band (402\u0000<inline-formula><tex-math>$-$</tex-math></inline-formula>\u0000405 MHz), Wireless Medical Telemetry Service (WMTS) band (1427\u0000<inline-formula><tex-math>$-$</tex-math></inline-formula>\u00001432 MHz), and the Industrial, Scientific, and Medical (ISM) band (2.4\u0000<inline-formula><tex-math>$-$</tex-math></inline-formula>\u00002.4835 GHz). The on-body receiving antennas have a planar spiral structure with a size of 20 × 6.8 × 27 mm\u0000<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\u0000 and a planar meandered structure with a size of 42 × 10 × 1.6 mm\u0000<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\u0000, respectively, which are suitable for wearable terminals. The performance of the proposed antenna system is analyzed and validated using a muscle-equivalent model, a multi-layer tissue model, a numerical human model in simulations, and a liquid phantom in experiments. Simulation and experimental results show the good potential of the antenna system for intra-body communication scenarios such as wireless electronic capsules.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"332-343"},"PeriodicalIF":3.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wireless Power Transmission Efficiency Improved by Conformal Phase Gradient Metasurface for Implanted Devices 利用共形相位梯度超表面提高植入式设备无线电力传输效率
IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-27 DOI: 10.1109/JERM.2024.3401582
Guoliang Ren;Mengjun Wang;Hongxing Zheng;Erping Li
To enhance the efficiency of wireless power transmission for the implanted medical system, a human body surface conformal phase gradient metasurface (PGMS) has been designed in this letter. Based on geometric phase modulation, the PGMS can convert the spherical wave from the transmitting antenna into a plane wave, ensuring the electromagnetic wave perpendicular to human skin. Thereby the power transmission efficiency of the implanted system can be increased obviously. A three-layered cylindrical human tissue model, including skin, fat, and muscle layers, is used to analyze the performance of the PGMS. Simulation results show that the transmission coefficient amplitude of the metasurface element at 1.4 GHz exceeds 0.8. Then the spherical wave of the antenna converted into a plane wave is verified by a 3 × 3 PGMS array when the transmitting antenna is located 50 mm away. Finally, the measurement results have been obtained, which exhibit very good agreement with the simulation. The distinctive advantage of the designed PGMS lies in its flexibility, allowing it to be easily bent and conform to the contoured surfaces of the human body. Additionally, the PGMS offers seamless integration into various medical devices and implants, further enhancing its practicality. This research showcases the potential of the proposed PGMS in significantly enhancing wireless power transmission efficiency for implanted medical systems.
为了提高植入式医疗系统无线电力传输的效率,本文设计了一种人体表面共形相位梯度超表面(PGMS)。基于几何相位调制,PGMS可以将发射天线发出的球面波转换成平面波,保证电磁波垂直于人体皮肤。从而可以明显提高植入系统的功率传输效率。一个三层的圆柱形人体组织模型,包括皮肤、脂肪和肌肉层,被用来分析PGMS的性能。仿真结果表明,超表面元件在1.4 GHz时的透射系数幅值超过0.8。然后在发射天线位于50mm外时,用3 × 3 PGMS阵列对天线的球面波转换成平面波进行验证。最后给出了测量结果,与仿真结果吻合较好。设计的PGMS的独特优势在于它的灵活性,允许它很容易弯曲,符合人体的轮廓表面。此外,PGMS提供无缝集成到各种医疗设备和植入物,进一步提高其实用性。这项研究展示了所提出的PGMS在显著提高植入式医疗系统无线电力传输效率方面的潜力。
{"title":"Wireless Power Transmission Efficiency Improved by Conformal Phase Gradient Metasurface for Implanted Devices","authors":"Guoliang Ren;Mengjun Wang;Hongxing Zheng;Erping Li","doi":"10.1109/JERM.2024.3401582","DOIUrl":"https://doi.org/10.1109/JERM.2024.3401582","url":null,"abstract":"To enhance the efficiency of wireless power transmission for the implanted medical system, a human body surface conformal phase gradient metasurface (PGMS) has been designed in this letter. Based on geometric phase modulation, the PGMS can convert the spherical wave from the transmitting antenna into a plane wave, ensuring the electromagnetic wave perpendicular to human skin. Thereby the power transmission efficiency of the implanted system can be increased obviously. A three-layered cylindrical human tissue model, including skin, fat, and muscle layers, is used to analyze the performance of the PGMS. Simulation results show that the transmission coefficient amplitude of the metasurface element at 1.4 GHz exceeds 0.8. Then the spherical wave of the antenna converted into a plane wave is verified by a 3 × 3 PGMS array when the transmitting antenna is located 50 mm away. Finally, the measurement results have been obtained, which exhibit very good agreement with the simulation. The distinctive advantage of the designed PGMS lies in its flexibility, allowing it to be easily bent and conform to the contoured surfaces of the human body. Additionally, the PGMS offers seamless integration into various medical devices and implants, further enhancing its practicality. This research showcases the potential of the proposed PGMS in significantly enhancing wireless power transmission efficiency for implanted medical systems.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"325-331"},"PeriodicalIF":3.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Weighted Vector Means Optimization for Healthy and Malignant Skin Modeling at Microwave Frequencies Using Clinical Data 利用临床数据对微波频率下健康和恶性皮肤模型进行自适应加权矢量均值优化
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-25 DOI: 10.1109/JERM.2024.3374090
Md. Abdul Awal;Syed Akbar Raza Naqvi;Damien Foong;Amin Abbosh
The dielectric properties of normal and cancerous skin vary with frequency due to changes in water content and tissue composition. Developing a reliable microwave system for skin cancer detection requires accurate characterization of that change in the dielectric properties. A possible choice is the Cole-Cole model, which can accurately fit the measured dielectric data for tissues. However, fitting the non-linear Cole-Cole model parameters with the measured data requires a sophisticated optimization algorithm. This study proposes an adaptive weighted vector means optimization algorithm, which employs adaptive initialization, logarithmic spaces, and enhanced local search mechanism, resulting in improved accuracy with fewer iterations. The algorithm is evaluated using dielectric data from healthy skin, basal cell carcinoma, squamous cell carcinoma, and melanoma and is found to outperform other relevant algorithms. One of the salient features of this study is that a set of clinical melanoma dielectric data is acquired, analyzed, and physically interpreted in terms of relaxation frequency and dispersion across 0.3 GHz to 14 GHz. It is found that melanoma closely follows the second-order Debye model, which is a special case for the second-order Cole-Cole model with a zero-valued dispersion broadening parameter. Although melanoma data is obtained from one lesion because of the low incidence rate, the research findings will contribute to a better understanding skin cancer at microwave frequencies. A triangular plot, which shows model fitness accuracy and the number of iterations, is presented to summarize the advantages of the algorithm.
由于含水量和组织成分的变化,正常皮肤和癌症皮肤的介电特性会随频率变化。要开发可靠的皮肤癌检测微波系统,就必须准确描述介电特性的这种变化。一种可能的选择是科尔-科尔模型,它能准确拟合组织的测量介电数据。然而,将非线性 Cole-Cole 模型参数与测量数据拟合需要复杂的优化算法。本研究提出了一种自适应加权向量手段优化算法,该算法采用了自适应初始化、对数空间和增强的局部搜索机制,从而以较少的迭代次数提高了精度。利用健康皮肤、基底细胞癌、鳞状细胞癌和黑色素瘤的介电数据对该算法进行了评估,发现其性能优于其他相关算法。本研究的一个显著特点是获取、分析了一组临床黑色素瘤介电数据,并根据 0.3 GHz 至 14 GHz 的弛豫频率和色散进行了物理解释。研究发现,黑色素瘤密切遵循二阶 Debye 模型,该模型是二阶 Cole-Cole 模型的特例,其色散展宽参数为零值。虽然由于发病率低,黑色素瘤的数据是从一个病变中获得的,但研究结果将有助于更好地理解微波频率下的皮肤癌。三角形图显示了模型拟合精度和迭代次数,总结了该算法的优势。
{"title":"Adaptive Weighted Vector Means Optimization for Healthy and Malignant Skin Modeling at Microwave Frequencies Using Clinical Data","authors":"Md. Abdul Awal;Syed Akbar Raza Naqvi;Damien Foong;Amin Abbosh","doi":"10.1109/JERM.2024.3374090","DOIUrl":"https://doi.org/10.1109/JERM.2024.3374090","url":null,"abstract":"The dielectric properties of normal and cancerous skin vary with frequency due to changes in water content and tissue composition. Developing a reliable microwave system for skin cancer detection requires accurate characterization of that change in the dielectric properties. A possible choice is the Cole-Cole model, which can accurately fit the measured dielectric data for tissues. However, fitting the non-linear Cole-Cole model parameters with the measured data requires a sophisticated optimization algorithm. This study proposes an adaptive weighted vector means optimization algorithm, which employs adaptive initialization, logarithmic spaces, and enhanced local search mechanism, resulting in improved accuracy with fewer iterations. The algorithm is evaluated using dielectric data from healthy skin, basal cell carcinoma, squamous cell carcinoma, and melanoma and is found to outperform other relevant algorithms. One of the salient features of this study is that a set of clinical melanoma dielectric data is acquired, analyzed, and physically interpreted in terms of relaxation frequency and dispersion across 0.3 GHz to 14 GHz. It is found that melanoma closely follows the second-order Debye model, which is a special case for the second-order Cole-Cole model with a zero-valued dispersion broadening parameter. Although melanoma data is obtained from one lesion because of the low incidence rate, the research findings will contribute to a better understanding skin cancer at microwave frequencies. A triangular plot, which shows model fitness accuracy and the number of iterations, is presented to summarize the advantages of the algorithm.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"170-181"},"PeriodicalIF":3.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 出版信息
IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-22 DOI: 10.1109/JERM.2024.3400471
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2024.3400471","DOIUrl":"https://doi.org/10.1109/JERM.2024.3400471","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 2","pages":"C2-C2"},"PeriodicalIF":3.2,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10536633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1