首页 > 最新文献

Molecular Horticulture最新文献

英文 中文
PbrMYB186 activation of PbrF3H increased flavonol biosynthesis and promoted pollen tube growth in Pyrus. PbrMYB186 对 PbrF3H 的激活增加了黄酮醇的生物合成,促进了黄刺玫花粉管的生长。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-08-20 DOI: 10.1186/s43897-024-00110-6
Xueying Liu, Hao Zhang, Zhuqin Liu, Chao Tang, Shouzheng Lv, Ming Qian, Ningyi Zhang, Shaoling Zhang, Juyou Wu, Peng Wang
{"title":"PbrMYB186 activation of PbrF3H increased flavonol biosynthesis and promoted pollen tube growth in Pyrus.","authors":"Xueying Liu, Hao Zhang, Zhuqin Liu, Chao Tang, Shouzheng Lv, Ming Qian, Ningyi Zhang, Shaoling Zhang, Juyou Wu, Peng Wang","doi":"10.1186/s43897-024-00110-6","DOIUrl":"10.1186/s43897-024-00110-6","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"30"},"PeriodicalIF":10.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potato: from functional genomics to genetic improvement. 马铃薯:从功能基因组学到遗传改良。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-08-19 DOI: 10.1186/s43897-024-00105-3
Li Qu, Xueqing Huang, Xin Su, Guoqing Zhu, Lingli Zheng, Jing Lin, Jiawen Wang, Hongwei Xue

Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.

马铃薯是种植面积最广的非谷类作物,是继水稻和小麦之后全球第三大粮食作物。尽管马铃薯在广大地区的种植历史悠久,但育种进展缓慢和环境压力导致高产马铃薯品种稀缺。提高马铃薯块茎的质量和产量仍然是马铃薯育种的最终目标。然而,由于四体遗传、高基因组杂合度和近亲繁殖抑制,传统育种面临着挑战。马铃薯分子生物学和功能基因组研究的最新进展为了解生理过程的调控网络提供了宝贵的见解,并促进了性状的改良。在本综述中,我们概述了已确定的调控马铃薯生长和发育的因子和基因,以及马铃薯基因组学的进展和采用新育种技术进行改良的情况。此外,我们还探讨了马铃薯改良的机遇和挑战,为马铃薯研究的未来途径提供了见解。
{"title":"Potato: from functional genomics to genetic improvement.","authors":"Li Qu, Xueqing Huang, Xin Su, Guoqing Zhu, Lingli Zheng, Jing Lin, Jiawen Wang, Hongwei Xue","doi":"10.1186/s43897-024-00105-3","DOIUrl":"10.1186/s43897-024-00105-3","url":null,"abstract":"<p><p>Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"34"},"PeriodicalIF":10.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi. LcMPK3和LcMPK6对荔枝小果脱落有正向调节作用。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-08-06 DOI: 10.1186/s43897-024-00109-z
Fei Wang, Zhijian Liang, Xingshuai Ma, Zidi He, Jianguo Li, Minglei Zhao

Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.

人们发现,丝裂原活化蛋白激酶(MAPK)级联在调节器官脱落过程中发挥着重要作用。然而,MAPK 级联所靶向的蛋白底物的身份,以及 MAPK 蛋白级联在脱落过程中的作用在不同植物物种中是否一致,仍然是未知的。本文研究了荔枝 MPK3 和 MPK6 的同源物在调控果实脱落过程中的作用。在拟南芥mpk3 mpk6突变体中异位表达LcMPK3或LcMPK6可挽救花器官脱落的缺陷,而在荔枝中沉默LcMPK3或LcMPK6可显著降低小果脱落。重要的是,通过酵母双杂交筛选,共发现了49个与LcMPK3相互作用的蛋白质,包括MAPK信号级联的两个组分、五个转录因子和两个水蒸气蛋白。此外,通过体外和体内试验证实了 LcMPK3/6 与 LcBZR1/2 之间的相互作用,LcBZR1/2 是抑制荔枝小果脱落的黄铜类固醇信号转导的核心成分。此外,phos-tag 分析表明 LcMPK3/6 可以磷酸化 LcBZR1/2,并确定了几个磷酸化残基。总之,我们的研究结果表明,LcMPK3 和 LcMPK6 在荔枝小果脱落过程中发挥着积极的调控作用,并为研究 MPK3/6 介导的植物器官脱落机制提供了重要信息。
{"title":"LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi.","authors":"Fei Wang, Zhijian Liang, Xingshuai Ma, Zidi He, Jianguo Li, Minglei Zhao","doi":"10.1186/s43897-024-00109-z","DOIUrl":"10.1186/s43897-024-00109-z","url":null,"abstract":"<p><p>Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"29"},"PeriodicalIF":10.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species. PEBP 家族中 FT 类基因的多样化有助于无患子科物种开花性状的变异。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-07-16 DOI: 10.1186/s43897-024-00104-4
Xing Huang, Hongsen Liu, Fengqi Wu, Wanchun Wei, Zaohai Zeng, Jing Xu, Chengjie Chen, Yanwei Hao, Rui Xia, Yuanlong Liu

Many species of Sapindaceae, such as lychee, longan, and rambutan, provide nutritious and delicious fruit. Understanding the molecular genetic mechanisms that underlie the regulation of flowering is essential for securing flower and fruit productivity. Most endogenous and exogenous flowering cues are integrated into the florigen encoded by FLOWERING LOCUS T. However, the regulatory mechanisms of flowering remain poorly understood in Sapindaceae. Here, we identified 60 phosphatidylethanolamine-binding protein-coding genes from six Sapindaceae plants. Gene duplication events led to the emergence of two or more paralogs of the FT gene that have evolved antagonistic functions in Sapindaceae. Among them, the FT1-like genes are functionally conserved and promote flowering, while the FT2-like genes likely serve as repressors that delay flowering. Importantly, we show here that the natural variation at nucleotide position - 1437 of the lychee FT1 promoter determined the binding affinity of the SVP protein (LcSVP9), which was a negative regulator of flowering, resulting in the differential expression of LcFT1, which in turn affected flowering time in lychee. This finding provides a potential molecular marker for breeding lychee. Taken together, our results reveal some crucial aspects of FT gene family genetics that underlie the regulation of flowering in Sapindaceae.

无患子科的许多物种,如荔枝、龙眼和红毛丹,都能提供营养丰富的美味水果。了解开花调控的分子遗传机制对于确保花和果实的产量至关重要。大多数内源和外源的开花线索都被整合到了由开花位点 T 编码的花原中。然而,人们对无患子科植物开花的调控机制仍然知之甚少。在此,我们从六种无患子科植物中鉴定了 60 个磷脂酰乙醇胺结合蛋白编码基因。基因复制事件导致无患子科植物中出现了两个或多个具有拮抗功能的 FT 基因旁系。其中,类似 FT1 的基因在功能上是保守的,能促进开花,而类似 FT2 的基因则可能是延迟开花的抑制因子。重要的是,我们在本文中发现,荔枝 FT1 启动子核苷酸位置 - 1437 的自然变异决定了作为开花负调控因子的 SVP 蛋白(LcSVP9)的结合亲和力,从而导致 LcFT1 的差异表达,进而影响荔枝的开花时间。这一发现为荔枝育种提供了潜在的分子标记。综上所述,我们的研究结果揭示了无患子科植物花期调控的 FT 基因家族遗传学的一些重要方面。
{"title":"Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species.","authors":"Xing Huang, Hongsen Liu, Fengqi Wu, Wanchun Wei, Zaohai Zeng, Jing Xu, Chengjie Chen, Yanwei Hao, Rui Xia, Yuanlong Liu","doi":"10.1186/s43897-024-00104-4","DOIUrl":"10.1186/s43897-024-00104-4","url":null,"abstract":"<p><p>Many species of Sapindaceae, such as lychee, longan, and rambutan, provide nutritious and delicious fruit. Understanding the molecular genetic mechanisms that underlie the regulation of flowering is essential for securing flower and fruit productivity. Most endogenous and exogenous flowering cues are integrated into the florigen encoded by FLOWERING LOCUS T. However, the regulatory mechanisms of flowering remain poorly understood in Sapindaceae. Here, we identified 60 phosphatidylethanolamine-binding protein-coding genes from six Sapindaceae plants. Gene duplication events led to the emergence of two or more paralogs of the FT gene that have evolved antagonistic functions in Sapindaceae. Among them, the FT1-like genes are functionally conserved and promote flowering, while the FT2-like genes likely serve as repressors that delay flowering. Importantly, we show here that the natural variation at nucleotide position - 1437 of the lychee FT1 promoter determined the binding affinity of the SVP protein (LcSVP9), which was a negative regulator of flowering, resulting in the differential expression of LcFT1, which in turn affected flowering time in lychee. This finding provides a potential molecular marker for breeding lychee. Taken together, our results reveal some crucial aspects of FT gene family genetics that underlie the regulation of flowering in Sapindaceae.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"28"},"PeriodicalIF":10.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor NOR and CNR synergistically regulate tomato fruit ripening and carotenoid biosynthesis. 转录因子 NOR 和 CNR 协同调控番茄果实成熟和类胡萝卜素的生物合成。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-07-08 DOI: 10.1186/s43897-024-00103-5
Mengting Liu, Jing Zeng, Ting Li, Ying Li, Yueming Jiang, Xuewu Duan, Guoxiang Jiang
{"title":"Transcription factor NOR and CNR synergistically regulate tomato fruit ripening and carotenoid biosynthesis.","authors":"Mengting Liu, Jing Zeng, Ting Li, Ying Li, Yueming Jiang, Xuewu Duan, Guoxiang Jiang","doi":"10.1186/s43897-024-00103-5","DOIUrl":"10.1186/s43897-024-00103-5","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"27"},"PeriodicalIF":10.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear. 一个 "激活器-抑制器 "环路控制着红皮梨的花青素生物合成。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-07-01 DOI: 10.1186/s43897-024-00102-6
Guangyan Yang, Zhaolong Xue, Kui Lin-Wang, Guosong Chen, Yongqi Zhao, Yaojun Chang, Shaozhuo Xu, Manyi Sun, Cheng Xue, Jiaming Li, Andrew C Allan, Richard V Espley, Jun Wu

The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.

红皮梨(Pyrus spp.)的颜色主要归因于花青素的积累,花青素为人类健康提供营养,并与水果的商业价值密切相关。在这里,我们报告了 R2R3-MYB 抑制因子 PyMYB107 的功能特征,它形成了一个 "激活-抑制 "环路,控制红皮梨中花青素的积累。PyMYB107 的过表达抑制了梨胼胝体和果实中花青素的生物合成,而病毒诱导的 PyMYB107 基因沉默则增加了梨果实中花青素的积累。此外,异位表达 PyMYB107 会减少番茄、草莓和烟草中花青素的积累。PyMYB107 能与 PyMYB10/MYB114 竞争性地与 PybHLH3 结合,从而抑制关键花青素生物合成基因 PyANS 和 PyUFGT 的转录激活。定点突变显示,PyMYB107 的 R3 结构域和 EAR 基因突变消除了其抑制活性。此外,PyMYB107 表现出与 PyMYB10/MYB114 相似的表达模式,并被它们激活转录。我们的发现加深了对花青素积累的抑制机制的理解,为提高梨果质量提供了宝贵的分子见解。
{"title":"An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear.","authors":"Guangyan Yang, Zhaolong Xue, Kui Lin-Wang, Guosong Chen, Yongqi Zhao, Yaojun Chang, Shaozhuo Xu, Manyi Sun, Cheng Xue, Jiaming Li, Andrew C Allan, Richard V Espley, Jun Wu","doi":"10.1186/s43897-024-00102-6","DOIUrl":"10.1186/s43897-024-00102-6","url":null,"abstract":"<p><p>The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"26"},"PeriodicalIF":10.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae. 染色体水平的基因组组装为了解康氏李的遗传多样性、进化和花的发育提供了线索。
IF 10.6 Q1 HORTICULTURE Pub Date : 2024-06-19 DOI: 10.1186/s43897-024-00101-7
Songtao Jiu, Muhammad Aamir Manzoor, Baozheng Chen, Yan Xu, Muhammad Abdullah, Xinyu Zhang, Zhengxin Lv, Jijun Zhu, Jun Cao, Xunju Liu, Jiyuan Wang, Ruie Liu, Shiping Wang, Yang Dong, Caixi Zhang

Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.

樱桃(Prunus conradinae)属于蔷薇科樱桃亚属,是中国特有的名贵樱花,具有很高的经济价值和观赏价值。然而,目前尚无高质量的康樱桃基因组,这阻碍了我们对其遗传关系和系统发育的了解,最终也阻碍了挖掘其重要性状关键基因的可能性。在本文中,我们成功地组装了一个染色体级的康氏虫基因组,鉴定出 31 134 个蛋白编码基因,其中 98.22% 的基因有功能注释。此外,我们还确定重复序列占基因组的 46.23%。结构变异检测发现了一些同源区、倒位、易位和重复,凸显了 Cerasus 的遗传多样性和复杂性。系统发育分析表明,P. conradinae 与 P. campanulata 的亲缘关系最密切,P. conradinae 与 P. campanulata 在大约 1910 万年前(Mya)分化。P. avium 的分化早于 P. cerasus 和 P. conradinae。与其他李属物种相似,P. conradinae 在约 138.60 Mya 时经历了一次共同的全基因组复制事件。此外,在康拉丁李中还发现了 79 个 MADS-box,并伴随着短胚期亚家族的扩展。我们的发现揭示了 P. conradinae 复杂的遗传关系和基因组进化,将有助于研究与 Cerasus 亚属重要园艺和经济特征相关的关键基因的分子育种和功能。
{"title":"Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae.","authors":"Songtao Jiu, Muhammad Aamir Manzoor, Baozheng Chen, Yan Xu, Muhammad Abdullah, Xinyu Zhang, Zhengxin Lv, Jijun Zhu, Jun Cao, Xunju Liu, Jiyuan Wang, Ruie Liu, Shiping Wang, Yang Dong, Caixi Zhang","doi":"10.1186/s43897-024-00101-7","DOIUrl":"10.1186/s43897-024-00101-7","url":null,"abstract":"<p><p>Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"25"},"PeriodicalIF":10.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. 从酸度到甜度:葡萄浆果中碳积累的全面回顾。
Q1 HORTICULTURE Pub Date : 2024-06-05 DOI: 10.1186/s43897-024-00100-8
Lizhen Lu, Serge Delrot, Zhenchang Liang

Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.

收获时,果实中的大部分碳都是由韧皮部输入的。输入的碳除了提供合成细胞壁所需的物质外,还为糖、有机酸和次生化合物的积累提供了所需的物质。果实发育过程中糖分的积累不仅影响甜度,还影响控制果实成分(果实 "质量")的各种参数。有机酸和糖在葡萄浆果果肉细胞中的积累是浆果发育和成熟的关键过程。本综述介绍了有关葡萄浆果发育、解剖结构、糖和酸代谢、糖转运体以及调节因子的最新研究成果。
{"title":"From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries.","authors":"Lizhen Lu, Serge Delrot, Zhenchang Liang","doi":"10.1186/s43897-024-00100-8","DOIUrl":"10.1186/s43897-024-00100-8","url":null,"abstract":"<p><p>Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit \"quality\"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics. Michelia alba DC 的高质量单倍型基因组揭示了甲基化模式和花朵特征的差异。
Q1 HORTICULTURE Pub Date : 2024-05-29 DOI: 10.1186/s43897-024-00098-z
Sirong Jiang, Meiling Zou, Chenji Zhang, Wanfeng Ma, Chengcai Xia, Zixuan Li, Long Zhao, Qi Liu, Fen Yu, Dongyi Huang, Zhiqiang Xia

Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.

Michelia alba DC 是木兰科的一种非常珍贵的观赏植物。这种常绿热带树种通常生长在东南亚,因其芳香宜人而深受人们喜爱。我们的研究利用 Nanopore 超长读数、Pacbio Hifi 长读数和亲本二代数据组装了白千层单倍型基因组 MC 和 MM。此外,基于利用 Nanopore 数据获得的甲基化位点数据,构建了木兰科植物的首个甲基化图谱。从三个不同物种的花中生成了代谢组数据集,以评估色素和挥发性化合物积累的变化。最后,我们生成了转录组数据,将基因组、甲基化和形态学模式联系起来,以揭示白玉霓裳花及其亲本品系在花瓣颜色、花形和香味方面存在差异的原因。我们发现,AP1 和 AP2 基因对白千层花瓣的形成至关重要,而 4CL、PAL 和 C4H 基因则控制着花瓣的颜色。本研究获得的数据为今后白千层花的生理生化研究奠定了基础,有助于白千层花品种的定向改良,并为白千层花的分子研究提供了理论依据。
{"title":"A high-quality haplotype genome of Michelia alba DC reveals differences in methylation patterns and flower characteristics.","authors":"Sirong Jiang, Meiling Zou, Chenji Zhang, Wanfeng Ma, Chengcai Xia, Zixuan Li, Long Zhao, Qi Liu, Fen Yu, Dongyi Huang, Zhiqiang Xia","doi":"10.1186/s43897-024-00098-z","DOIUrl":"10.1186/s43897-024-00098-z","url":null,"abstract":"<p><p>Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"23"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: DNA methylation-mediated ROS production contributes to seed abortion in litchi. 更正:DNA 甲基化介导的 ROS 产生导致荔枝种子流产。
Q1 HORTICULTURE Pub Date : 2024-05-27 DOI: 10.1186/s43897-024-00099-y
Hanhan Xie, Yedan Zheng, Mengyue Xue, Yulian Huang, Dawei Qian, Minglei Zhao, Jianguo Li
{"title":"Correction: DNA methylation-mediated ROS production contributes to seed abortion in litchi.","authors":"Hanhan Xie, Yedan Zheng, Mengyue Xue, Yulian Huang, Dawei Qian, Minglei Zhao, Jianguo Li","doi":"10.1186/s43897-024-00099-y","DOIUrl":"10.1186/s43897-024-00099-y","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"4 1","pages":"24"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Horticulture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1