首页 > 最新文献

Electrochimica Acta最新文献

英文 中文
Segmented pipeline electrode approach for electrochemical measurements in dynamic conditions 动态条件下电化学测量的分段管道电极方法
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-31 DOI: 10.1016/j.electacta.2026.148347
A. Simons, E. De Ketelaere, T. Depover, K. Verbeken
{"title":"Segmented pipeline electrode approach for electrochemical measurements in dynamic conditions","authors":"A. Simons, E. De Ketelaere, T. Depover, K. Verbeken","doi":"10.1016/j.electacta.2026.148347","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148347","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"34 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine-learning Assisted Design of Ultra-Sensitive Chiral Molecularly- Imprinted Sensor for Detection of D-Serine: A Potential Alzheimer Biomarker 超灵敏手性分子印迹传感器d -丝氨酸检测的机器学习辅助设计:一种潜在的阿尔茨海默病生物标志物
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-31 DOI: 10.1016/j.electacta.2026.148344
Salma S. Mansour, Amr M. Mahmoud, Azza A. Moustafa, Nancy W. Nashat
{"title":"Machine-learning Assisted Design of Ultra-Sensitive Chiral Molecularly- Imprinted Sensor for Detection of D-Serine: A Potential Alzheimer Biomarker","authors":"Salma S. Mansour, Amr M. Mahmoud, Azza A. Moustafa, Nancy W. Nashat","doi":"10.1016/j.electacta.2026.148344","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148344","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"92 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bipolar Electrochemistry for Efficient Removal of Methylene Blue from Polluted Water 双极电化学高效去除污染水中的亚甲基蓝
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-31 DOI: 10.1016/j.electacta.2026.148349
Halima Mustafa Hussein, Zahra Ali Fattah, Alexander Kuhn
{"title":"Bipolar Electrochemistry for Efficient Removal of Methylene Blue from Polluted Water","authors":"Halima Mustafa Hussein, Zahra Ali Fattah, Alexander Kuhn","doi":"10.1016/j.electacta.2026.148349","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148349","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"3 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Local Conductance in Quantum Bioelectrochemistry via Landauer–Marcus Kinetics 通过兰道尔-马库斯动力学研究量子生物电化学中的蛋白质局部电导
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-31 DOI: 10.1016/j.electacta.2026.148348
Filipe C.D.A. Lima, Frank N. Crespilho
Electron transport in proteins has traditionally been described within Marcus theory, where localized hopping events between redox centers are modulated by nuclear reorganization. Recent advances in scanning tunneling microscopy (STM) and single-protein junction measurements, however, reveal measurable conductance values and resonant tunneling features that suggest delocalized quantum contributions. In this work, we present a unified theoretical model that combines Landauer transmission with Marcus heterogeneous kinetics to rationalize enzymatic electron transport. Within the Landauer–Büttiker formalism, STM conductance maps provide access to local transmission probabilities and electrode–protein couplings, which can be recast into effective electronic coupling parameters. These couplings, when introduced into Marcus theory, yield spatially resolved heterogeneous rate constants (<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">k</mi><mtext is="true">het</mtext></msub></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.317ex" role="img" style="vertical-align: -0.582ex;" viewbox="0 -747.2 1604.7 997.6" width="3.727ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g is="true"><g is="true"><use xlink:href="#MJMATHI-6B"></use></g><g is="true" transform="translate(521,-150)"><use transform="scale(0.707)" xlink:href="#MJMAIN-68"></use><use transform="scale(0.707)" x="556" xlink:href="#MJMAIN-65" y="0"></use><use transform="scale(0.707)" x="1001" xlink:href="#MJMAIN-74" y="0"></use></g></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">k</mi><mtext is="true">het</mtext></msub></math></span></span><script type="math/mml"><math><msub is="true"><mi is="true">k</mi><mtext is="true">het</mtext></msub></math></script></span>), bridging quantum conductance channels with classical ET kinetics. We illustrate this connection with model calculations, including Breit–Wigner transmission functions, Marcus parabolas across conductance ranges of 1–100 nS, and simulated STM conductance maps for enzymes with multiple hotspots. The results demonstrate that nanoscale conductance variations translate into orders-of-magnitude differences in <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub is="true"><mi is="true">k</mi><mtext is="true">het</mtext></msub></math>' role="presentation" style="font-size: 90%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.317ex" role="img" style="vertical-align: -0.582ex;" viewbox="0 -747.2 1604.7 99
传统上,蛋白质中的电子传递是在马库斯理论中描述的,其中氧化还原中心之间的局部跳跃事件是由核重组调节的。然而,扫描隧道显微镜(STM)和单蛋白结测量的最新进展揭示了可测量的电导值和共振隧道特征,表明了离域量子贡献。在这项工作中,我们提出了一个统一的理论模型,结合兰道尔传输和马库斯非均相动力学来合理化酶的电子传递。在landauer - bttiker形式中,STM电导图提供了对局部传输概率和电极-蛋白质耦合的访问,可以将其重新转换为有效的电子耦合参数。当引入Marcus理论时,这些耦合产生了空间分辨的非均质速率常数(khetkhet),将量子电导通道与经典ET动力学连接起来。我们通过模型计算说明了这种联系,包括Breit-Wigner传输函数,1-100 nS电导范围内的Marcus抛物线,以及具有多个热点的酶的模拟STM电导图。结果表明,纳米尺度的电导变化转化为khetkhet的数量级差异,强调了电子耦合和重组能在塑造酶促ET景观中的双重作用。Landauer-Marcus方法建立了一种严谨的方法,将实验电导测量与动力学预测联系起来,为解释和设计基于酶的电子传递系统提供了一般途径。
{"title":"Protein Local Conductance in Quantum Bioelectrochemistry via Landauer–Marcus Kinetics","authors":"Filipe C.D.A. Lima, Frank N. Crespilho","doi":"10.1016/j.electacta.2026.148348","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148348","url":null,"abstract":"Electron transport in proteins has traditionally been described within Marcus theory, where localized hopping events between redox centers are modulated by nuclear reorganization. Recent advances in scanning tunneling microscopy (STM) and single-protein junction measurements, however, reveal measurable conductance values and resonant tunneling features that suggest delocalized quantum contributions. In this work, we present a unified theoretical model that combines Landauer transmission with Marcus heterogeneous kinetics to rationalize enzymatic electron transport. Within the Landauer–Büttiker formalism, STM conductance maps provide access to local transmission probabilities and electrode–protein couplings, which can be recast into effective electronic coupling parameters. These couplings, when introduced into Marcus theory, yield spatially resolved heterogeneous rate constants (&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;k&lt;/mi&gt;&lt;mtext is=\"true\"&gt;het&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 1604.7 997.6\" width=\"3.727ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g is=\"true\"&gt;&lt;g is=\"true\"&gt;&lt;use xlink:href=\"#MJMATHI-6B\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g is=\"true\" transform=\"translate(521,-150)\"&gt;&lt;use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-68\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"556\" xlink:href=\"#MJMAIN-65\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1001\" xlink:href=\"#MJMAIN-74\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;k&lt;/mi&gt;&lt;mtext is=\"true\"&gt;het&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;k&lt;/mi&gt;&lt;mtext is=\"true\"&gt;het&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;), bridging quantum conductance channels with classical ET kinetics. We illustrate this connection with model calculations, including Breit–Wigner transmission functions, Marcus parabolas across conductance ranges of 1–100 nS, and simulated STM conductance maps for enzymes with multiple hotspots. The results demonstrate that nanoscale conductance variations translate into orders-of-magnitude differences in &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;k&lt;/mi&gt;&lt;mtext is=\"true\"&gt;het&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 1604.7 99","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"58 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic Nitrogen Fixation and Coupling Reactions of Copper Single-Atom Catalysts 铜单原子催化剂的电催化固氮及偶联反应
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1016/j.electacta.2026.148340
Zhiya Han, Shuqi Wang, Miaosen Yang, Hua Shi, Na He, Jiayin Yang, Xiyang Liu, Yue Kang, Yixin Liu, Huiting Ni, Facai Wei, Sheng Han
{"title":"Electrocatalytic Nitrogen Fixation and Coupling Reactions of Copper Single-Atom Catalysts","authors":"Zhiya Han, Shuqi Wang, Miaosen Yang, Hua Shi, Na He, Jiayin Yang, Xiyang Liu, Yue Kang, Yixin Liu, Huiting Ni, Facai Wei, Sheng Han","doi":"10.1016/j.electacta.2026.148340","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148340","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"143 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mg Doping Enhances the Structural Stability and Na⁺ Transport Kinetics of P2-Type Transition-Metal Oxide Cathode Materials Mg掺杂增强了p2型过渡金属氧化物正极材料的结构稳定性和Na +传输动力学
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1016/j.electacta.2026.148343
Weichi Ye, Man Mo, Xiaolong Huang, Yuan Yuan, Haiqing Zhan, Zhipeng Li, Yong Yang, Tianshi Xiong, Panyu Xiong, Gangli Zhao, Liyun Zhang, Chunxia Li, Qingmeng Wei, Qizhi Chen, Xiaolian Zhao, Zhijie Fang, Feng Zhan
{"title":"Mg Doping Enhances the Structural Stability and Na⁺ Transport Kinetics of P2-Type Transition-Metal Oxide Cathode Materials","authors":"Weichi Ye, Man Mo, Xiaolong Huang, Yuan Yuan, Haiqing Zhan, Zhipeng Li, Yong Yang, Tianshi Xiong, Panyu Xiong, Gangli Zhao, Liyun Zhang, Chunxia Li, Qingmeng Wei, Qizhi Chen, Xiaolian Zhao, Zhijie Fang, Feng Zhan","doi":"10.1016/j.electacta.2026.148343","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148343","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"282 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn doping-induced structural and electrochemical optimization of MoS2/N-doped carbon composite anodes for high-performance sodium-ion batteries 高性能钠离子电池中Mn掺杂诱导的MoS2/ n掺杂碳复合阳极结构及电化学优化
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1016/j.electacta.2026.148342
Panpan Zhang, Yongkang Meng, Zihan Xu, Mikaiergu Sulitan, Chunsheng Lu, Yangyang Yang, Xiaowei Li, Yu Zhou, Yunjian Liu
{"title":"Mn doping-induced structural and electrochemical optimization of MoS2/N-doped carbon composite anodes for high-performance sodium-ion batteries","authors":"Panpan Zhang, Yongkang Meng, Zihan Xu, Mikaiergu Sulitan, Chunsheng Lu, Yangyang Yang, Xiaowei Li, Yu Zhou, Yunjian Liu","doi":"10.1016/j.electacta.2026.148342","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148342","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"36 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E. coli Imprinted CdS/ZnO/Ag2CO3 Nanocomposites for Rapid, Sensitive and Selective Electrochemical E. Coli Sensing 大肠杆菌印迹CdS/ZnO/Ag2CO3纳米复合材料的快速、灵敏和选择性电化学检测
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1016/j.electacta.2026.148335
Adane Y. Heram, Ephriem T. Mengesha, Abi T. Mengesha, Zewdu Bezu, Yiheyis Bogale, Endale T. Bedada, Tadele T. Megerssa
{"title":"E. coli Imprinted CdS/ZnO/Ag2CO3 Nanocomposites for Rapid, Sensitive and Selective Electrochemical E. Coli Sensing","authors":"Adane Y. Heram, Ephriem T. Mengesha, Abi T. Mengesha, Zewdu Bezu, Yiheyis Bogale, Endale T. Bedada, Tadele T. Megerssa","doi":"10.1016/j.electacta.2026.148335","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148335","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"8 1","pages":"148335"},"PeriodicalIF":6.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146072737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating physicochemical and electrochemical properties of cryptomelane nanoparticles by vanadium doping to fabricate thermally stable separator free asymmetric electrochemical capacitor 用钒掺杂调制隐黑烷纳米粒子的物理化学和电化学性能,制备热稳定的无隔板不对称电化学电容器
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1016/j.electacta.2026.148338
Milan Kumar Dey
{"title":"Modulating physicochemical and electrochemical properties of cryptomelane nanoparticles by vanadium doping to fabricate thermally stable separator free asymmetric electrochemical capacitor","authors":"Milan Kumar Dey","doi":"10.1016/j.electacta.2026.148338","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148338","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"13 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical oxidation and voltammetric determination of γ-carbolinone-derived synthetic cannabinoid 5F-Cumyl-PEGACLONE 电化学氧化和伏安法测定γ-羰基合成大麻素5F-Cumyl-PEGACLONE
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1016/j.electacta.2026.148341
Dijana Jadreško, Robert Vianello, Ivana Novak Jovanović
{"title":"Electrochemical oxidation and voltammetric determination of γ-carbolinone-derived synthetic cannabinoid 5F-Cumyl-PEGACLONE","authors":"Dijana Jadreško, Robert Vianello, Ivana Novak Jovanović","doi":"10.1016/j.electacta.2026.148341","DOIUrl":"https://doi.org/10.1016/j.electacta.2026.148341","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"7 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electrochimica Acta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1