首页 > 最新文献

Electrochimica Acta最新文献

英文 中文
An open source electrochemical channel flow cell setup for kinetics studies. Application to investigations on oxygen electrocatalysis. 用于动力学研究的开源电化学通道流动池装置。应用于氧气电催化研究。
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-17 DOI: 10.1016/j.electacta.2024.145365
Alessandro Brega, Sylvain Brimaud
Herein, an electrochemical channel flow cell setup that allows for conducting electrochemical investigations up to 80°C and pressurized gases up to 3 bar is presented in details, including technical drawings and list of parts, in an attempt to facilitate the adoption of such setup by the community for electrochemical/electrocatalytic kinetic studies. The oxygen reduction reaction (ORR) on a commercial Pt/C catalyst, chosen as a model reaction, was investigated to demonstrate the reliability of the experimental setup, including the hydrodynamic properties, to provide hands on practical guidelines to carry out experiments, and, on the other hand, to illustrate the capabilities of this electrochemical setup for an assessment of basic quantities. Among the various quantities that have be determined experimentally for the ORR, a monotonic decay of the activation enthalpy and bell-shaped variation of the entropy of activation were resolved as the overpotential for the ORR increases. These fundamental thermodynamic/kinetic data are briefly discussed within the frame of the established reaction mechanism and can serve as a feed for the benchmarking of the outputs from theoretical/computational models. Furthermore, a remarkable agreement was obtained between the change in the activation free Gibbs energy determined for the ORR with the flow cell setup and the kinetic region of fuel cell polarization curve obtained with the same Pt/C catalyst embedded in the cathode of an a hydrogen proton exchange membrane fuel cell. This enables potentially a bridge of the environmental gap existing between model experiments conducted at active material level in contact with liquid electrolyte and experiments with porous gas diffusion electrode embedding the same active material that are employed in practical device.
本文详细介绍了一种电化学通道流动池装置,该装置可在最高温度 80°C 和最高压力 3 bar 的气体环境下进行电化学研究,包括技术图纸和零件清单,以方便社会各界采用这种装置进行电化学/电催化动力学研究。氧还原反应(ORR)在商用铂/铂催化剂上的反应被选为模型反应进行研究,以证明实验装置的可靠性,包括流体动力学特性,为开展实验提供实用指南,另一方面也说明该电化学装置在评估基本量方面的能力。在通过实验确定的 ORR 的各种量中,随着 ORR 过电位的增加,活化焓呈单调衰减,活化熵呈钟形变化。这些基本热力学/动力学数据是在已建立的反应机理框架内进行简要讨论的,可作为理论/计算模型输出结果的基准。此外,通过流动池设置确定的 ORR 激活自由吉布斯能的变化,与在氢质子交换膜燃料电池阴极中嵌入相同 Pt/C 催化剂所获得的燃料电池极化曲线动力学区域之间,也取得了显著的一致。这有可能弥补在与液态电解质接触的活性材料层面进行的模型实验与在实际设备中使用的嵌入相同活性材料的多孔气体扩散电极实验之间存在的环境差距。
{"title":"An open source electrochemical channel flow cell setup for kinetics studies. Application to investigations on oxygen electrocatalysis.","authors":"Alessandro Brega, Sylvain Brimaud","doi":"10.1016/j.electacta.2024.145365","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145365","url":null,"abstract":"Herein, an electrochemical channel flow cell setup that allows for conducting electrochemical investigations up to 80°C and pressurized gases up to 3 bar is presented in details, including technical drawings and list of parts, in an attempt to facilitate the adoption of such setup by the community for electrochemical/electrocatalytic kinetic studies. The oxygen reduction reaction (ORR) on a commercial Pt/C catalyst, chosen as a model reaction, was investigated to demonstrate the reliability of the experimental setup, including the hydrodynamic properties, to provide hands on practical guidelines to carry out experiments, and, on the other hand, to illustrate the capabilities of this electrochemical setup for an assessment of basic quantities. Among the various quantities that have be determined experimentally for the ORR, a monotonic decay of the activation enthalpy and bell-shaped variation of the entropy of activation were resolved as the overpotential for the ORR increases. These fundamental thermodynamic/kinetic data are briefly discussed within the frame of the established reaction mechanism and can serve as a feed for the benchmarking of the outputs from theoretical/computational models. Furthermore, a remarkable agreement was obtained between the change in the activation free Gibbs energy determined for the ORR with the flow cell setup and the kinetic region of fuel cell polarization curve obtained with the same Pt/C catalyst embedded in the cathode of an a hydrogen proton exchange membrane fuel cell. This enables potentially a bridge of the environmental gap existing between model experiments conducted at active material level in contact with liquid electrolyte and experiments with porous gas diffusion electrode embedding the same active material that are employed in practical device.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"32 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the semi-infinite distributed resistor-constant phase element transmission line 关于半无限分布电阻器-恒定相位元件传输线
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-17 DOI: 10.1016/j.electacta.2024.145344
Anis Allagui, Enrique H. Balaguera
Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by <span><span><math><mrow is="true"><msub is="true"><mrow is="true"><mi is="true">Z</mi></mrow><mrow is="true"><mi is="true">c</mi></mrow></msub><mrow is="true"><mo is="true">(</mo><mi is="true">s</mi><mo is="true">)</mo></mrow><mo is="true" linebreak="goodbreak" linebreakstyle="after">=</mo><mn is="true">1</mn><mo is="true">/</mo><mrow is="true"><mo is="true">(</mo><msub is="true"><mrow is="true"><mi is="true">C</mi></mrow><mrow is="true"><mi is="true">α</mi></mrow></msub><msup is="true"><mrow is="true"><mi is="true">s</mi></mrow><mrow is="true"><mi is="true">α</mi></mrow></msup><mo is="true">)</mo></mrow></mrow></math></span><script type="math/mml"><math><mrow is="true"><msub is="true"><mrow is="true"><mi is="true">Z</mi></mrow><mrow is="true"><mi is="true">c</mi></mrow></msub><mrow is="true"><mo is="true">(</mo><mi is="true">s</mi><mo is="true">)</mo></mrow><mo linebreak="goodbreak" linebreakstyle="after" is="true">=</mo><mn is="true">1</mn><mo is="true">/</mo><mrow is="true"><mo is="true">(</mo><msub is="true"><mrow is="true"><mi is="true">C</mi></mrow><mrow is="true"><mi is="true">α</mi></mrow></msub><msup is="true"><mrow is="true"><mi is="true">s</mi></mrow><mrow is="true"><mi is="true">α</mi></mrow></msup><mo is="true">)</mo></mrow></mrow></math></script></span>, where <span><span><math><mrow is="true"><msub is="true"><mrow is="true"><mi is="true">C</mi></mrow><mrow is="true"><mi is="true">α</mi></mrow></msub><mo is="true" linebreak="goodbreak" linebreakstyle="after">></mo><mn is="true">0</mn></mrow></math></span><script type="math/mml"><math><mrow is="true"><msub is="true"><mrow is="true"><mi is="true">C</mi></mrow><mrow is="true"><mi is="true">α</mi></mrow></msub><mo linebreak="goodbreak" linebreakstyle="after" is="true">></mo><mn is="true">0</mn></mrow></math></script></span> and <span><span><math><mrow is="true"><mn is="true">0</mn><mo is="true" linebreak="goodbreak" linebreakstyle="after"><</mo><mi is="true">α</mi><mo is="true" linebreak="goodbreak" linebreakstyle="after">⩽</mo><mn is="true">1</mn></mrow></math></span><script type="math/mml"><math><mrow is="true"><mn is="true">0</mn><mo linebreak="goodbreak" linebreakstyle="after" is="true"><</mo><mi is="true">α</mi><mo linebreak="goodbreak" linebreakstyle="after" is="true">⩽</mo><mn is="true">1</mn></mrow></math></script></span>, and offers an extra degree of freedom compared to the ideal capacitor of impedance <span><span><math><mrow is="true"><mi is="true">Z</mi><mo is="true" linebreak="goodbrea
在为输电线路建模而对电阻器和电容器类型的阻抗进行特定几何排列的情况下,已知线路上的电压和电流遵循标准的扩散偏微分方程。在这项工作中,我们提出了对这一电路网络的概括,将非理想分数电容元件(也称为恒定相位元件 (CPE))视为储能元件。CPE 的阻抗由 Zc(s)=1/(Cαsα)Zc(s)=1/(Cαsα) 给出,其中 Cα>0Cα>0 和 0<α⩽10<α⩽1,与阻抗 Z=1/(Cs)Z=1/(Cs) 的理想电容器相比,CPE 提供了额外的自由度。在 x=0x=0 处恒定电压激励下,我们根据卡普托分数导数定义求解了一维半无限传播情况下的反常时间分数扩散方程。我们讨论了 CPE 的色散性质对传输线系统时域响应以及频域输入阻抗的影响。
{"title":"On the semi-infinite distributed resistor-constant phase element transmission line","authors":"Anis Allagui, Enrique H. Balaguera","doi":"10.1016/j.electacta.2024.145344","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145344","url":null,"abstract":"Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by &lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mo is=\"true\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\"&gt;=&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;/&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo is=\"true\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;mo is=\"true\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;=&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;/&lt;/mo&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo is=\"true\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;, where &lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\"&gt;&gt;&lt;/mo&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;&gt;&lt;/mo&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt; and &lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\"&gt;&lt;&lt;/mo&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\"&gt;⩽&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;script type=\"math/mml\"&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;&lt;&lt;/mo&gt;&lt;mi is=\"true\"&gt;α&lt;/mi&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;⩽&lt;/mo&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/script&gt;&lt;/span&gt;, and offers an extra degree of freedom compared to the ideal capacitor of impedance &lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;Z&lt;/mi&gt;&lt;mo is=\"true\" linebreak=\"goodbrea","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"8 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pitfall on the interpretation of double layer capacitance increase after accelerated stress test of hydrogen evolution reaction on NiMo catalysts 解读镍钼催化剂氢进化反应加速应力测试后双层电容增加的误区
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-17 DOI: 10.1016/j.electacta.2024.145358
Abdul Majeed, Nicholas Hemmerling, Bastian J.M. Etzold
Critical investigation of methods used to screen the catalytic activity of different electrocatalysts is crucial for the development of water electrolysis technology. One of such protocols to justify the catalytic activity trend among different catalysts involves determining their electrochemically active surface area (ECSA) which is usually estimated from non-Faradic double layered capacitance (Cdl) of the catalyst material. Furthermore, catalytic current normalized with ECSA is frequently used to gain insight into the intrinsic activity of a catalyst. Since not all the metallic catalysts are highly stable under the electrolysis conditions, it is highly important, though rarely explored, to investigate whether or not the adsorption/desorption of leached/dissolved multivalent metal ions influences the measurement of non-Faradic Cdl. Here, we explore the possible influence of Mo leached from NiMo alloy on the measured Cdl of NiMo. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), Cdl of NiMo alloy was measured before and after carrying out long term (chronopotentiometric and CV cycling) hydrogen evolution reaction (HER) in alkaline conditions. After extended HER testing, we observe a notable rise (∼22% averaging all our experiments) in the Cdl of NiMo alloy when measured with traditional methods. Interestingly, only 8% of this increase can be attributed to an expansion in surface area. We hypothesize that the majority of the increase in Cdl stems from the higher amount of charges stored through leached multivalent ions, which accumulate within surface cavities.
对用于筛选不同电催化剂催化活性的方法进行批判性研究对于水电解技术的发展至关重要。其中一种证明不同催化剂催化活性趋势的方法是确定其电化学活性表面积(ECSA),该表面积通常根据催化剂材料的非法拉第双层电容(Cdl)估算得出。此外,催化电流与 ECSA 的归一化通常用于深入了解催化剂的内在活性。由于并非所有金属催化剂在电解条件下都具有高度稳定性,因此研究浸出/溶解的多价金属离子的吸附/解吸是否会影响非法拉第双电容的测量非常重要,尽管这种研究很少。 在此,我们探讨了从镍钼合金中浸出的钼对镍钼双电容测量的可能影响。使用循环伏安法(CV)和电化学阻抗谱法(EIS),在碱性条件下进行长期(计时电位计和 CV 循环)氢演化反应(HER)前后测量了镍钼合金的 Cdl。经过长期氢演化反应测试后,我们观察到镍钼合金的 Cdl 在使用传统方法测量时显著上升(所有实验的平均值为 22%)。有趣的是,只有 8% 的升高可归因于表面积的扩大。我们推测,Cdl 增加的大部分原因是浸出的多价离子储存了更多电荷,这些电荷积聚在表面空腔中。
{"title":"Pitfall on the interpretation of double layer capacitance increase after accelerated stress test of hydrogen evolution reaction on NiMo catalysts","authors":"Abdul Majeed, Nicholas Hemmerling, Bastian J.M. Etzold","doi":"10.1016/j.electacta.2024.145358","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145358","url":null,"abstract":"Critical investigation of methods used to screen the catalytic activity of different electrocatalysts is crucial for the development of water electrolysis technology. One of such protocols to justify the catalytic activity trend among different catalysts involves determining their electrochemically active surface area (ECSA) which is usually estimated from non-Faradic double layered capacitance (C<sub>dl</sub>) of the catalyst material. Furthermore, catalytic current normalized with ECSA is frequently used to gain insight into the intrinsic activity of a catalyst. Since not all the metallic catalysts are highly stable under the electrolysis conditions, it is highly important, though rarely explored, to investigate whether or not the adsorption/desorption of leached/dissolved multivalent metal ions influences the measurement of non-Faradic C<sub>dl</sub>. Here, we explore the possible influence of Mo leached from NiMo alloy on the measured C<sub>dl</sub> of NiMo. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), C<sub>dl</sub> of NiMo alloy was measured before and after carrying out long term (chronopotentiometric and CV cycling) hydrogen evolution reaction (HER) in alkaline conditions. After extended HER testing, we observe a notable rise (∼22% averaging all our experiments) in the C<sub>dl</sub> of NiMo alloy when measured with traditional methods. Interestingly, only 8% of this increase can be attributed to an expansion in surface area. We hypothesize that the majority of the increase in C<sub>dl</sub> stems from the higher amount of charges stored through leached multivalent ions, which accumulate within surface cavities.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"1 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose electrooxidation on carbon supported NiAu electrocatalysts 碳支撑 NiAu 电催化剂上的葡萄糖电氧化作用
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-17 DOI: 10.1016/j.electacta.2024.145367
Weliton Silva Fonseca, Thibault Rafaïdeen, Hamza Kahri, Têko W. Napporn, Christophe Coutanceau
NiAu/C nanomaterials are synthesised using a wet chemistry method with targeted Au atomic ratios of 10%, 20% and 30%. Physicochemical characterisations indicate that the materials have mean compositions close to the nominal ones but ca. 20 at% Au richer in average than expected (Au ratios of 13.6 at%, 23.1 at% and 35.9 at%, respectively). The NiAu/C materials are composed of Au-rich spherical-like Janus particles of several tenths nm and of a phase of very small Ni-rich nanoparticles and Ni(OH2) clusters. The electrochemical measurements in a 0.1 M NaOH/0.1 M glucose electrolyte indicate that the NiAu20/C catalyst is the most active for the glucose oxidation reaction, leading to a mass activity at +0.6 V vs RHE more than 1.5 times higher than that with a pure Au/C catalyst, although the Au content is almost 5 times lower. The chronoamperometry measurements for 900 s at +0.6 V vs RHE confirm the activity gain with the NiAu20/C catalyst. The electrolysis measurement at a cell voltage of +Z+0.6 V for 6 hours shows that the NiAu20/C catalyst is selective towards the production of gluconic acid, with a faradaic efficiency higher than 100%, indicating the occurrence of a 1-electron reaction with anodic hydrogen coproduction. At +0.8 V, the faradaic efficiency is lower than 100 %, indicating the formation of other products than gluconic acid, but at a very low extent (not detectable by HPLC) guarantying a very high selectivity towards gluconic acid.
采用湿化学方法合成了 NiAu/C 纳米材料,目标金原子比分别为 10%、20% 和 30%。理化特性表明,这些材料的平均成分接近标称成分,但平均金含量比预期高出约 20 个百分点(金比率分别为 13.6 个百分点、23.1 个百分点和 35.9 个百分点)。NiAu/C 材料由万分之几纳米的富金球状 Janus 颗粒和极小的富镍纳米颗粒及 Ni(OH2)团簇组成。在 0.1 M NaOH/0.1 M 葡萄糖电解液中进行的电化学测量表明,NiAu20/C 催化剂在葡萄糖氧化反应中最为活跃,在 +0.6 V 对比 RHE 时的质量活性比纯 Au/C 催化剂高出 1.5 倍以上,尽管 Au 的含量几乎低了 5 倍。在 +0.6 V 对 RHE 条件下进行的 900 秒计时器测量证实了 NiAu20/C 催化剂的活性提高。在 +Z+0.6 V 的电池电压下进行 6 小时的电解测量表明,NiAu20/C 催化剂对葡萄糖酸的生产具有选择性,其远红外效率高于 100%,这表明发生了阳极氢气共生的 1 电子反应。在 +0.8 V 电压下,法拉第效率低于 100%,这表明除葡萄糖酸外,还生成了其他产物,但生成量极低(HPLC 检测不到),保证了对葡萄糖酸的极高选择性。
{"title":"Glucose electrooxidation on carbon supported NiAu electrocatalysts","authors":"Weliton Silva Fonseca, Thibault Rafaïdeen, Hamza Kahri, Têko W. Napporn, Christophe Coutanceau","doi":"10.1016/j.electacta.2024.145367","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145367","url":null,"abstract":"NiAu/C nanomaterials are synthesised using a wet chemistry method with targeted Au atomic ratios of 10%, 20% and 30%. Physicochemical characterisations indicate that the materials have mean compositions close to the nominal ones but ca. 20 at% Au richer in average than expected (Au ratios of 13.6 at%, 23.1 at% and 35.9 at%, respectively). The NiAu/C materials are composed of Au-rich spherical-like Janus particles of several tenths nm and of a phase of very small Ni-rich nanoparticles and Ni(OH<sub>2</sub>) clusters. The electrochemical measurements in a 0.1 M NaOH/0.1 M glucose electrolyte indicate that the NiAu20/C catalyst is the most active for the glucose oxidation reaction, leading to a mass activity at +0.6 V vs RHE more than 1.5 times higher than that with a pure Au/C catalyst, although the Au content is almost 5 times lower. The chronoamperometry measurements for 900 s at +0.6 V vs RHE confirm the activity gain with the NiAu20/C catalyst. The electrolysis measurement at a cell voltage of +Z+0.6 V for 6 hours shows that the NiAu20/C catalyst is selective towards the production of gluconic acid, with a faradaic efficiency higher than 100%, indicating the occurrence of a 1-electron reaction with anodic hydrogen coproduction. At +0.8 V, the faradaic efficiency is lower than 100 %, indicating the formation of other products than gluconic acid, but at a very low extent (not detectable by HPLC) guarantying a very high selectivity towards gluconic acid.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"50 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voltammetric detection with a comprehensive electrochemistry study of minoxidil using nuclear magnetic resonance and infrared analyses: Applications in the forensic and pharmaceutical fields. 利用核磁共振和红外分析对米诺地尔进行伏安检测和综合电化学研究:在法医和制药领域的应用。
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-16 DOI: 10.1016/j.electacta.2024.145362
Anne A. Macedo, Dilton M. Pimentel, Amanda N. de Souza, Higor M. Mundim, Luciano M. Lião, Lívia M.F. Costa, Rodrigo Moreira Verly, Wallans T.P. dos Santos
Minoxidil (MN) is a vasodilator used to treat hair loss and severe hypertension. However, its illegal use in cosmetics and pharmaceutical formulations has been reported in several countries. An efficient method for MN detection is of great interest for forensic and pharmaceutical applications. Electrochemical sensors have been reported as an interesting alternative for MN detection in various samples. However, a more in-depth study of the redox processes and a more selective electrochemical detection for MN are still required. In this context, we present, for the first time, the use of nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses for understanding the electrochemical behaviour of MN after electrolysis procedures on a boron-doped diamond electrode (BDDE). Using these combined techniques, we have proposed and confirmed an electrochemical mechanism for all redox processes of MN on a BDDE, where in phosphate buffer (pH 6.0) two oxidation processes at +0.72 V and +0.97 V vs (Ag/AgCl/ sat. KCl) are presented. The last generated product by MN oxidation is reduced on the BDDE surface at -0.01 V with a quasi-reversible redox process. The use of this redox process is the strategy for a selective and sensitive detection of MN on the BDDE. This innovative approach was successfully applied to determine MN in adulterated cosmetics and pharmaceutical formulations, showing a low limit of detection (5.7 µmol. L-1) and high stability of electrochemical responses (RSD < 1.5 %, n = 6) using the same BDDE. Therefore, the proposed method provides a simple, fast and selective method for the identification and quantification of MN in pharmaceutical and forensic samples.
米诺地尔(MN)是一种血管扩张剂,用于治疗脱发和严重高血压。然而,在多个国家都有将其非法用于化妆品和药物制剂的报道。一种高效的米诺地尔检测方法对法医和制药应用具有重大意义。据报道,电化学传感器是检测各种样品中 MN 的一种有趣的替代方法。然而,我们仍需要对氧化还原过程进行更深入的研究,并对 MN 进行更具选择性的电化学检测。在此背景下,我们首次利用核磁共振和傅立叶变换红外光谱分析来了解 MN 在掺硼金刚石电极 (BDDE) 上进行电解后的电化学行为。利用这些综合技术,我们提出并证实了 MN 在掺硼金刚石电极上所有氧化还原过程的电化学机制,其中在磷酸盐缓冲液(pH 值为 6.0)中,出现了 +0.72 V 和 +0.97 V 对(Ag/AgCl/饱和氯化钾)的两个氧化过程。MN 氧化作用产生的最后一种产物在 BDDE 表面以准可逆的氧化还原过程还原为 -0.01 V。利用这一氧化还原过程是在 BDDE 上对 MN 进行选择性和灵敏检测的策略。这种创新方法被成功应用于检测掺假化妆品和药物制剂中的 MN,结果表明,使用相同的 BDDE,检测限低(5.7 µmol.L-1),电化学反应稳定性高(RSD < 1.5 %,n = 6)。因此,所提出的方法为药物和法医样品中 MN 的鉴定和定量提供了一种简单、快速和选择性强的方法。
{"title":"Voltammetric detection with a comprehensive electrochemistry study of minoxidil using nuclear magnetic resonance and infrared analyses: Applications in the forensic and pharmaceutical fields.","authors":"Anne A. Macedo, Dilton M. Pimentel, Amanda N. de Souza, Higor M. Mundim, Luciano M. Lião, Lívia M.F. Costa, Rodrigo Moreira Verly, Wallans T.P. dos Santos","doi":"10.1016/j.electacta.2024.145362","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145362","url":null,"abstract":"Minoxidil (MN) is a vasodilator used to treat hair loss and severe hypertension. However, its illegal use in cosmetics and pharmaceutical formulations has been reported in several countries. An efficient method for MN detection is of great interest for forensic and pharmaceutical applications. Electrochemical sensors have been reported as an interesting alternative for MN detection in various samples. However, a more in-depth study of the redox processes and a more selective electrochemical detection for MN are still required. In this context, we present, for the first time, the use of nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses for understanding the electrochemical behaviour of MN after electrolysis procedures on a boron-doped diamond electrode (BDDE). Using these combined techniques, we have proposed and confirmed an electrochemical mechanism for all redox processes of MN on a BDDE, where in phosphate buffer (pH 6.0) two oxidation processes at +0.72 V and +0.97 V vs (Ag/AgCl/ sat. KCl) are presented. The last generated product by MN oxidation is reduced on the BDDE surface at -0.01 V with a quasi-reversible redox process. The use of this redox process is the strategy for a selective and sensitive detection of MN on the BDDE. This innovative approach was successfully applied to determine MN in adulterated cosmetics and pharmaceutical formulations, showing a low limit of detection (5.7 µmol. L<sup>-1</sup>) and high stability of electrochemical responses (RSD &lt; 1.5 %, n = 6) using the same BDDE. Therefore, the proposed method provides a simple, fast and selective method for the identification and quantification of MN in pharmaceutical and forensic samples.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"1 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AN EXPERIMENTALLY VALIDATED NUMERICAL MODEL OF PH CHANGES IN SURROGATE TISSUE INDUCED BY ELECTROPORATION PULSES 经实验验证的电穿孔脉冲诱导代用组织 ph 值变化的数值模型
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-16 DOI: 10.1016/j.electacta.2024.145363
Rok Šmerc, Damijan Miklavčič, Samo Mahnič-Kalamiza
Electroporation often leads to electrochemical reactions at the electrode-electrolytic solution interface, particularly when using monophasic pulses of considerable duration (typically on the order of several microseconds or longer) that cause not only capacitive charging of the double-layer, but also faradaic charge transfer between the electrodes and the solution. Applications, where the electrochemical changes are to be either avoided or actively exploited to benefit the treatment, range from gene electrotransfer to electrolytic ablation of tissue. Through numerical modelling and experimental validation, our study explores the extent of pH changes induced by faradaic currents in a surrogate tissue. A mechanistic multiphysics model of pH changes was developed based on first principles, incorporating hydrolysis reactions at the anode and cathode, and the Nernst-Planck model of ion transport. The model was validated using agarose gel tissue phantoms designed to simulate unbuffered and buffered (mimicking in vivo tissue buffering capacity) conditions. An imaging system with pH-sensitive dyes was developed and used to visualise and quantify pH front formation and migration. The model predictions qualitatively aligned well with experimental data, differentiating pH front behaviour between unbuffered and buffered media. However, the quantitative accuracy in predicting the temporal and spatial evolution of the pH fronts can be further improved. Experimental observations emphasise the need for more advanced models. Nevertheless, the developed model provides a sound theoretical foundation for predicting pH changes due to high-voltage electric pulse delivery, such as encountered in electroporation-based treatments and therapies.
电穿孔通常会导致电极-电解溶液界面发生电化学反应,特别是在使用持续时间较长(通常为几微秒或更长)的单相脉冲时,不仅会导致双层电容充电,还会导致电极和溶液之间的法拉第电荷转移。从基因电转移到组织的电解消融,这些应用都需要避免或积极利用电化学变化来促进治疗。通过数值建模和实验验证,我们的研究探讨了远动电流在代用组织中引起的 pH 值变化程度。根据第一原理,结合阳极和阴极的水解反应以及离子传输的 Nernst-Planck 模型,建立了 pH 值变化的机理多物理场模型。该模型利用琼脂糖凝胶组织模型进行了验证,设计用于模拟无缓冲和缓冲(模拟体内组织缓冲能力)条件。开发了一种带有 pH 值敏感染料的成像系统,用于可视化和量化 pH 值前沿的形成和迁移。模型预测的定性结果与实验数据十分吻合,能够区分未缓冲介质和缓冲介质的 pH 值前沿行为。不过,在预测 pH 前沿的时间和空间演变方面,定量的准确性还有待进一步提高。实验观察结果表明,需要建立更先进的模型。尽管如此,所开发的模型为预测高压电脉冲传输引起的 pH 值变化提供了坚实的理论基础,例如在基于电穿孔的治疗和疗法中遇到的情况。
{"title":"AN EXPERIMENTALLY VALIDATED NUMERICAL MODEL OF PH CHANGES IN SURROGATE TISSUE INDUCED BY ELECTROPORATION PULSES","authors":"Rok Šmerc, Damijan Miklavčič, Samo Mahnič-Kalamiza","doi":"10.1016/j.electacta.2024.145363","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145363","url":null,"abstract":"Electroporation often leads to electrochemical reactions at the electrode-electrolytic solution interface, particularly when using monophasic pulses of considerable duration (typically on the order of several microseconds or longer) that cause not only capacitive charging of the double-layer, but also faradaic charge transfer between the electrodes and the solution. Applications, where the electrochemical changes are to be either avoided or actively exploited to benefit the treatment, range from gene electrotransfer to electrolytic ablation of tissue. Through numerical modelling and experimental validation, our study explores the extent of pH changes induced by faradaic currents in a surrogate tissue. A mechanistic multiphysics model of pH changes was developed based on first principles, incorporating hydrolysis reactions at the anode and cathode, and the Nernst-Planck model of ion transport. The model was validated using agarose gel tissue phantoms designed to simulate unbuffered and buffered (mimicking <em>in vivo</em> tissue buffering capacity) conditions. An imaging system with pH-sensitive dyes was developed and used to visualise and quantify pH front formation and migration. The model predictions qualitatively aligned well with experimental data, differentiating pH front behaviour between unbuffered and buffered media. However, the quantitative accuracy in predicting the temporal and spatial evolution of the pH fronts can be further improved. Experimental observations emphasise the need for more advanced models. Nevertheless, the developed model provides a sound theoretical foundation for predicting pH changes due to high-voltage electric pulse delivery, such as encountered in electroporation-based treatments and therapies.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"247 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the influence of multi-component blends and their electronic band structure on the performance of All-Solid-State Batteries 解读多组分混合物及其电子能带结构对全固态电池性能的影响
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-16 DOI: 10.1016/j.electacta.2024.145340
Fiyanshu Kaka, Kalyan Sundar Krishna Chivukula
The emergence of all-solid-state batteries (ASSBs) introduces a paradigm shift in energy storage technology, offering enhanced safety compared to conventional liquid-based metal-ion batteries. Significant effort is directed toward optimizing the solid-electrolyte blend composition to enhance the battery’s electrochemical performance. Despite some promising results, a lack of guidelines persists, particularly for optimizing multicomponent solid electrolytes given their large parameter window. This study aims to address this challenge by implementing a unified diffuse-interface approach to model and simulate the solid electrolyte morphologies and their corresponding electrochemical performance when incorporated in a battery. The electrolyte microstructures are simulated using the Cahn-Hilliard formulation while a diffuse-interface framework formulated in terms of electrochemical potential is utilized for exploring Li-ion transport across the battery. It is found that, while the variegated microstructures arising from various solid electrolyte blend compositions influence the power density of the battery, the electronic band structure of the blend phases is an important consideration. The proposed model is versatile and can be adapted for various battery technologies beyond ASSBs. This expands its potential impact and could lead to innovations in energy storage technology.
全固态电池(ASSB)的出现带来了储能技术的范式转变,与传统的液态金属离子电池相比,它具有更高的安全性。为了提高电池的电化学性能,人们在优化固态电解质混合成分方面做出了巨大努力。尽管取得了一些很有前景的成果,但由于多组分固体电解质的参数窗口很大,因此仍然缺乏指导原则,尤其是在优化多组分固体电解质方面。本研究旨在通过采用统一的扩散界面方法来建模和模拟固态电解质形态及其在电池中的相应电化学性能,从而应对这一挑战。电解质微结构采用 Cahn-Hilliard 公式进行模拟,而以电化学势为基础的扩散界面框架则用于探索锂离子在电池中的传输。研究发现,各种固体电解质混合成分所产生的不同微结构会影响电池的功率密度,而混合相的电子带结构也是一个重要的考虑因素。所提出的模型用途广泛,可适用于 ASSB 之外的各种电池技术。这扩大了它的潜在影响,并可能带来储能技术的创新。
{"title":"Deciphering the influence of multi-component blends and their electronic band structure on the performance of All-Solid-State Batteries","authors":"Fiyanshu Kaka, Kalyan Sundar Krishna Chivukula","doi":"10.1016/j.electacta.2024.145340","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145340","url":null,"abstract":"The emergence of all-solid-state batteries (ASSBs) introduces a paradigm shift in energy storage technology, offering enhanced safety compared to conventional liquid-based metal-ion batteries. Significant effort is directed toward optimizing the solid-electrolyte blend composition to enhance the battery’s electrochemical performance. Despite some promising results, a lack of guidelines persists, particularly for optimizing multicomponent solid electrolytes given their large parameter window. This study aims to address this challenge by implementing a unified diffuse-interface approach to model and simulate the solid electrolyte morphologies and their corresponding electrochemical performance when incorporated in a battery. The electrolyte microstructures are simulated using the Cahn-Hilliard formulation while a diffuse-interface framework formulated in terms of electrochemical potential is utilized for exploring Li-ion transport across the battery. It is found that, while the variegated microstructures arising from various solid electrolyte blend compositions influence the power density of the battery, the electronic band structure of the blend phases is an important consideration. The proposed model is versatile and can be adapted for various battery technologies beyond ASSBs. This expands its potential impact and could lead to innovations in energy storage technology.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"64 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Loaded Catalyst Layers For Proton Exchange Membrane Fuel Cell Dynamic Operation Part 1: Experimental Study 用于质子交换膜燃料电池动态运行的低负载催化剂层 第 1 部分:实验研究
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-16 DOI: 10.1016/j.electacta.2024.145364
Florent Vandenberghe, Fabrice Micoud, Pascal Schott, Arnaud Morin, Clémence Lafforgue, Marian Chatenet
In the past decades, the proton exchange membrane fuel cell (PEMFC) components, cell/stack designs and system architecture have been significantly improved. However, despite great initial performance, PEMFC systems still suffer technological limitations, such as their initial cost, partly due to the use of expensive Pt-based electrocatalyst, which prevents widespread industrial deployment. Lowering the cathode catalyst loading while keeping high (and durable) catalytic activity has been intensively studied. In this work, low-loaded catalyst layers (20 and 100 µgPt cmgeo−2) are tested in PEMFC differential single-cell (DC) under high reactant stoichiometry to characterize their intrinsic electrochemical properties under various ideal and well-controlled operating conditions of cell temperature (T) and relative humidity (RH). Particularly, the change of the membrane hydration state, via the ohmic resistance measurement, and the Pt-oxides surface coverage are investigated to gather information on the physico-chemical and electrochemical mechanisms involved in the cathode active layer, and the typical performance hysteresis observed during dynamic operation such as polarization curves. These specific electrochemical measurements further enable to build a dataset, that can be used to improve PEMFC models taking into account the complex ORR mechanism, and the role of the Pt oxides in catalyst layer transient operation and degradation.
在过去的几十年里,质子交换膜燃料电池(PEMFC)的组件、电池/电池组设计和系统结构都得到了显著改善。然而,尽管质子交换膜燃料电池系统的初始性能很好,但它仍然受到技术限制,例如其初始成本,部分原因是使用了昂贵的铂基电催化剂,这阻碍了其在工业领域的广泛应用。降低阴极催化剂负载量,同时保持高(持久)催化活性已成为一项深入研究的课题。在这项工作中,在高反应物化学计量学条件下,对 PEMFC 差分单电池(DC)中的低负载催化剂层(20 和 100 µgPt cmgeo-2)进行了测试,以表征其在各种理想且控制良好的电池温度(T)和相对湿度(RH)操作条件下的内在电化学特性。特别是,通过欧姆电阻测量对膜水合状态的变化和铂氧化物表面覆盖率进行了研究,以收集阴极活性层中涉及的物理化学和电化学机制的信息,以及在极化曲线等动态操作过程中观察到的典型性能滞后。这些特定的电化学测量进一步建立了一个数据集,可用于改进 PEMFC 模型,同时考虑到复杂的 ORR 机制以及铂氧化物在催化剂层瞬态运行和降解中的作用。
{"title":"Low-Loaded Catalyst Layers For Proton Exchange Membrane Fuel Cell Dynamic Operation Part 1: Experimental Study","authors":"Florent Vandenberghe, Fabrice Micoud, Pascal Schott, Arnaud Morin, Clémence Lafforgue, Marian Chatenet","doi":"10.1016/j.electacta.2024.145364","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145364","url":null,"abstract":"In the past decades, the proton exchange membrane fuel cell (PEMFC) components, cell/stack designs and system architecture have been significantly improved. However, despite great initial performance, PEMFC systems still suffer technological limitations, such as their initial cost, partly due to the use of expensive Pt-based electrocatalyst, which prevents widespread industrial deployment. Lowering the cathode catalyst loading while keeping high (and durable) catalytic activity has been intensively studied. In this work, low-loaded catalyst layers (20 and 100 µg<sub>Pt</sub> cm<sub>geo</sub><sup>−2</sup>) are tested in PEMFC differential single-cell (DC) under high reactant stoichiometry to characterize their intrinsic electrochemical properties under various ideal and well-controlled operating conditions of cell temperature (<em>T</em>) and relative humidity (<em>RH</em>). Particularly, the change of the membrane hydration state, via the ohmic resistance measurement, and the Pt-oxides surface coverage are investigated to gather information on the physico-chemical and electrochemical mechanisms involved in the cathode active layer, and the typical performance hysteresis observed during dynamic operation such as polarization curves. These specific electrochemical measurements further enable to build a dataset, that can be used to improve PEMFC models taking into account the complex ORR mechanism, and the role of the Pt oxides in catalyst layer transient operation and degradation.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"1 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Long-Term Stability of Zinc-Air Batteries Using a Quaternized PVA-Chitosan Composite Separator with Thin-Layered MoS2 使用带有薄层 MoS2 的季铵化 PVA-壳聚糖复合分离器增强锌-空气电池的长期稳定性
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145361
Nuttapon Suppanucroa, Warunyoo Yoopensuk, Jirapha Pimoei, Wacharapisuth Thanapong-a-morn, Wathanyu Kao-Ian, Phakkhananan Pakawanit, Falko Mahlendorf, Soorathep Kheawhom, Anongnat Somwangthanaroj
Due to their high energy density and cost-effectiveness, rechargeable zinc-air batteries (ZABs) are increasingly recognized for their potential as long-duration energy storage solutions. A crucial component for maximizing their efficiency is the membrane separator, which must exhibit high hydroxide-ion conductivity and long-term stability. This study introduces an innovative hybrid composite separator, created by embedding thin-layered molybdenum disulfide (MoS2), known for its intrinsic negative charge, into a polycationic quaternized PVA-chitosan (CS) matrix. Polyvinyl alcohol (PVA) is functionalized with quaternary ammonium (QA) groups before being combined with CS and MoS2, using a solvent blending technique. The separator's three-dimensional structure and morphology is analyzed via synchrotron radiation X-ray tomographic microscopy (SR-XTM). Results demonstrate that the ZAB equipped with a quaternized PVA/CS/0.5 wt.% MoS2 composite separator achieved a high conductivity of 87.3 mS cm-1 and exceptional stability, enduring over 465 cycles. This performance is attributed to the synergistic interaction between the quaternized PVA-CS matrix and the MoS2 surface, forming robust polymer complexes through electrostatic interactions. These findings suggest that the developed separators hold significant promise for advanced ZAB applications.
可充电锌-空气电池(ZAB)具有高能量密度和成本效益,因此越来越多的人认识到其作为长时间能量存储解决方案的潜力。要最大限度地提高其效率,膜分离器是一个关键部件,它必须具有高氢氧离子传导性和长期稳定性。本研究介绍了一种创新的混合复合分离器,它是通过将薄层二硫化钼(MoS2)嵌入聚阳离子季铵化 PVA-壳聚糖(CS)基质而制成的,MoS2 以其固有的负电荷而著称。聚乙烯醇(PVA)在与 CS 和 MoS2 结合之前,先用季铵(QA)基团进行官能化,然后使用溶剂混合技术进行混合。分离器的三维结构和形态通过同步辐射 X 射线断层显微镜(SR-XTM)进行分析。结果表明,配备了季铵化 PVA/CS/0.5 wt.% MoS2 复合分离器的 ZAB 实现了 87.3 mS cm-1 的高电导率和卓越的稳定性,可经受 465 次循环。这一性能归功于季铵化 PVA-CS 基质与 MoS2 表面之间的协同作用,通过静电作用形成了稳健的聚合物复合物。这些研究结果表明,所开发的分离器在先进的 ZAB 应用中大有可为。
{"title":"Enhanced Long-Term Stability of Zinc-Air Batteries Using a Quaternized PVA-Chitosan Composite Separator with Thin-Layered MoS2","authors":"Nuttapon Suppanucroa, Warunyoo Yoopensuk, Jirapha Pimoei, Wacharapisuth Thanapong-a-morn, Wathanyu Kao-Ian, Phakkhananan Pakawanit, Falko Mahlendorf, Soorathep Kheawhom, Anongnat Somwangthanaroj","doi":"10.1016/j.electacta.2024.145361","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145361","url":null,"abstract":"Due to their high energy density and cost-effectiveness, rechargeable zinc-air batteries (ZABs) are increasingly recognized for their potential as long-duration energy storage solutions. A crucial component for maximizing their efficiency is the membrane separator, which must exhibit high hydroxide-ion conductivity and long-term stability. This study introduces an innovative hybrid composite separator, created by embedding thin-layered molybdenum disulfide (MoS<sub>2</sub>), known for its intrinsic negative charge, into a polycationic quaternized PVA-chitosan (CS) matrix. Polyvinyl alcohol (PVA) is functionalized with quaternary ammonium (QA) groups before being combined with CS and MoS<sub>2</sub>, using a solvent blending technique. The separator's three-dimensional structure and morphology is analyzed via synchrotron radiation X-ray tomographic microscopy (SR-XTM). Results demonstrate that the ZAB equipped with a quaternized PVA/CS/0.5 wt.% MoS<sub>2</sub> composite separator achieved a high conductivity of 87.3 mS cm<sup>-1</sup> and exceptional stability, enduring over 465 cycles. This performance is attributed to the synergistic interaction between the quaternized PVA-CS matrix and the MoS<sub>2</sub> surface, forming robust polymer complexes through electrostatic interactions. These findings suggest that the developed separators hold significant promise for advanced ZAB applications.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"13 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to the author information of “Solvent-derived inorganic F and N-rich solid electrolyte interface for stable lithium metal batteries” [Electrochimica Acta, Volume 503, 2024, 144909] 用于稳定锂金属电池的溶剂型无机 F 和富含 N 的固体电解质界面"[《Electrochimica Acta》,第 503 卷,2024 期,144909] 作者信息更正
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145333
Lei Zhang, Bing Sun, Qinghua Liu, Lin Song, Teibang Zhang, Xiaobo Duan
It has come to our attention that we misspelled the name of the corresponding author,
我们注意到,我们拼错了通讯作者的名字、
{"title":"Corrigendum to the author information of “Solvent-derived inorganic F and N-rich solid electrolyte interface for stable lithium metal batteries” [Electrochimica Acta, Volume 503, 2024, 144909]","authors":"Lei Zhang, Bing Sun, Qinghua Liu, Lin Song, Teibang Zhang, Xiaobo Duan","doi":"10.1016/j.electacta.2024.145333","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145333","url":null,"abstract":"It has come to our attention that we misspelled the name of the corresponding author,","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"18 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electrochimica Acta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1