首页 > 最新文献

Energy Storage Materials最新文献

英文 中文
Flash joule heating Driven In-Situ Dispersoid Synthesis: Mechanical-Interfacial-Conductive Coupling Mechanisms in Silicon-Based Anodes 闪蒸焦耳加热驱动原位分散体合成:硅基阳极的机械-界面-导电耦合机制
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-01 DOI: 10.1016/j.ensm.2026.104956
D.R. Lan, P.Y. Ou, S.Q. Pei, K.J. Liu, C.C. Li, M.C. Zhang, Y.X. Liu, S.N. He, L.N. She, Y.X. Yang, W.B. Du, H.G. Pan
Silicon (Si)-based anode materials are considered the most promising next-generation anodes for lithium-ion batteries (LIBs). Nonetheless, in practical applications, Si anodes have encountered numerous challenges. A homogeneous silicon carbide (SiC) dispersoid was synthesized within the Si-based alloy using vacuum melting, sand milling, and Flash joule heating procedures. The integration of SiC facilitates the simultaneous resolution of key issues: low intrinsic conductivity, unstable solid electrolyte interphase (SEI), and significant volume expansion, which is accomplished by creating a swift and uniform charge-transport network, enhancing interfacial kinetics, and bolstering the mechanical integrity of the electrode, which is attributed to the synergistic effect of a highly conductive network formed by the in-situ generated defective SiC and the metallic phases (Sn/Bi), SiC's advantageous interfacial characteristics, exceptional mechanical strength, and dispersion strengthening effect. The half-cell exhibits an impressive capacity of 1881.69 mAh g−1 and maintains steady cycling for 400 cycles at a current density of 1.5 A g−1. The full cell utilizing Li1.2Ni0.13Co0.13Mn0.54O2, demonstrates a capacity of 251.71 mAh g−1 following 80 cycles at 0.33 A g−1. Meanwhile, excellent cycling stability is attained in all-solid-state batteries, delivering a capacity retention of 81.1% over 150 cycles. This work introduces an innovative triple synergistic mechanism that significantly enhances the electrochemical performance of Si-based anodes, facilitating their efficient manufacture and offering important insights for future investigations.
硅基负极材料被认为是最有前途的下一代锂离子电池负极材料。然而,在实际应用中,硅阳极遇到了许多挑战。采用真空熔炼、砂磨和闪速焦耳加热工艺,在硅基合金中合成了均匀的碳化硅分散体。SiC的集成有助于同时解决关键问题:低固有电导率,不稳定的固体电解质界面相(SEI),以及显著的体积膨胀,这是通过创建快速均匀的电荷传输网络来实现的,增强了界面动力学,增强了电极的机械完整性,这是由于原位生成的缺陷SiC和金属相(Sn/Bi)形成的高导电性网络的协同作用,SiC的有利界面特性。优异的机械强度和分散强化效果。该半电池的容量为1881.69 mAh g−1,在电流密度为1.5 a g−1的情况下可稳定循环400次。使用Li1.2Ni0.13Co0.13Mn0.54O2的完整电池在0.33 a g - 1下循环80次后的容量为251.71 mAh g - 1。同时,在全固态电池中获得了出色的循环稳定性,在150次循环中提供81.1%的容量保持率。这项工作引入了一种创新的三重协同机制,显著提高了硅基阳极的电化学性能,促进了它们的高效制造,并为未来的研究提供了重要的见解。
{"title":"Flash joule heating Driven In-Situ Dispersoid Synthesis: Mechanical-Interfacial-Conductive Coupling Mechanisms in Silicon-Based Anodes","authors":"D.R. Lan, P.Y. Ou, S.Q. Pei, K.J. Liu, C.C. Li, M.C. Zhang, Y.X. Liu, S.N. He, L.N. She, Y.X. Yang, W.B. Du, H.G. Pan","doi":"10.1016/j.ensm.2026.104956","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104956","url":null,"abstract":"Silicon (Si)-based anode materials are considered the most promising next-generation anodes for lithium-ion batteries (LIBs). Nonetheless, in practical applications, Si anodes have encountered numerous challenges. A homogeneous silicon carbide (SiC) dispersoid was synthesized within the Si-based alloy using vacuum melting, sand milling, and Flash joule heating procedures. The integration of SiC facilitates the simultaneous resolution of key issues: low intrinsic conductivity, unstable solid electrolyte interphase (SEI), and significant volume expansion, which is accomplished by creating a swift and uniform charge-transport network, enhancing interfacial kinetics, and bolstering the mechanical integrity of the electrode, which is attributed to the synergistic effect of a highly conductive network formed by the in-situ generated defective SiC and the metallic phases (Sn/Bi), SiC's advantageous interfacial characteristics, exceptional mechanical strength, and dispersion strengthening effect. The half-cell exhibits an impressive capacity of 1881.69 mAh g<sup>−1</sup> and maintains steady cycling for 400 cycles at a current density of 1.5 A g<sup>−1</sup>. The full cell utilizing Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>, demonstrates a capacity of 251.71 mAh g<sup>−1</sup> following 80 cycles at 0.33 A g<sup>−1</sup>. Meanwhile, excellent cycling stability is attained in all-solid-state batteries, delivering a capacity retention of 81.1% over 150 cycles. This work introduces an innovative triple synergistic mechanism that significantly enhances the electrochemical performance of Si-based anodes, facilitating their efficient manufacture and offering important insights for future investigations.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"95 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146101523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-Delocalized π-Network Enables Low-Reactive Polyacrylonitrile-based Solid-State Electrolytes for Lithium Metal Batteries 电子离域π网络制备低反应性聚丙烯腈基锂金属电池固态电解质
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-01 DOI: 10.1016/j.ensm.2026.104953
Jiayi Yang, Yangqian Zhang, Han Liu, Yaqi Liao, Chihon Leung, Rongfeng Chen, Ying Wei, Le Hu, Mengyuan Zhou, Gang Sun, Ziping Wu, Henghui Xu, Zhenbo Wang, Shaoming Huang, Yang Ren
As one of the most promising solid-state polymer electrolytes (SPEs), Polyacrylonitrile (PAN)-based SPEs suffer from unstable interfaces due to their highly reactivity with lithium metal anode. Here, the molecular chain of the PAN polymer is tailored through surface-basicity-guided reactions of Li7La3Zr1.4Ta0.6O12 (LLZTO) and an electrostatic shielding effect of 1-Ethyl-3-methylimidazolium cation (EMIM⁺), effectively mitigating its reactivity with Li. The alkalinity of LLZTO catalyze PAN dehydrocyanation, transforming –Ctriple bondN groups to π-conjugated –C=N/–C=C– bonds, thus decreasing its inherent reactivity with the Li metal. Then, the positive EMIM⁺ with an electron-delocalized π-network electrostatically connect with polarized –C=N sites, shielding the direct contact of –Ctriple bondN groups with Li, further alleviating parasitic reactions. As a result, the Li//Li symmetric cells deliver high critical current density of 3.0 mA cm−2 and maintain stable Li plating/stripping over 2000 h. The Li//LFP cell delivers a high capacity retention of 87.53% after 1200 cycles at 2C, and the pouch battery presents excellent cycling and safety performance. This work provides a promising approach to enable the stable operation of solid-state lithium metal batteries via incorporating the electron-delocalized π-network.
聚丙烯腈(PAN)基固态聚合物电解质是最有前途的固态聚合物电解质之一,但由于其与锂金属阳极的高反应性,导致其界面不稳定。在这里,PAN聚合物的分子链是通过Li7La3Zr1.4Ta0.6O12 (LLZTO)的表面碱度引导反应和1-乙基-3-甲基咪唑阳离子(EMIM +)的静电屏蔽效应来定制的,有效地减轻了它与Li的反应性。LLZTO的碱度催化PAN脱氢氰化,将- cn基团转化为π共轭的- C=N/ - C=C -键,从而降低了其与Li金属的固有反应活性。然后,带电子离域π网络的EMIM +与极化的c =N位静电连接,屏蔽了-CN基团与Li的直接接触,进一步缓解了寄生反应。结果表明,Li//Li对称电池可提供3.0 mA cm−2的临界电流密度,并在2000 h内保持稳定的镀/剥离锂。Li//LFP电池在2C下1200次循环后的容量保持率高达87.53%,袋状电池具有良好的循环和安全性能。本研究为引入电子离域π网络实现固态锂金属电池的稳定运行提供了一种有前景的方法。
{"title":"Electron-Delocalized π-Network Enables Low-Reactive Polyacrylonitrile-based Solid-State Electrolytes for Lithium Metal Batteries","authors":"Jiayi Yang, Yangqian Zhang, Han Liu, Yaqi Liao, Chihon Leung, Rongfeng Chen, Ying Wei, Le Hu, Mengyuan Zhou, Gang Sun, Ziping Wu, Henghui Xu, Zhenbo Wang, Shaoming Huang, Yang Ren","doi":"10.1016/j.ensm.2026.104953","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104953","url":null,"abstract":"As one of the most promising solid-state polymer electrolytes (SPEs), Polyacrylonitrile (PAN)-based SPEs suffer from unstable interfaces due to their highly reactivity with lithium metal anode. Here, the molecular chain of the PAN polymer is tailored through surface-basicity-guided reactions of Li<sub>7</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) and an electrostatic shielding effect of 1-Ethyl-3-methylimidazolium cation (EMIM⁺), effectively mitigating its reactivity with Li. The alkalinity of LLZTO catalyze PAN dehydrocyanation, transforming –C<img alt=\"triple bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/tbnd.gif\" style=\"vertical-align:middle\"/>N groups to π-conjugated –C=N/–C=C– bonds, thus decreasing its inherent reactivity with the Li metal. Then, the positive EMIM⁺ with an electron-delocalized π-network electrostatically connect with polarized –C=N sites, shielding the direct contact of –C<img alt=\"triple bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/tbnd.gif\" style=\"vertical-align:middle\"/>N groups with Li, further alleviating parasitic reactions. As a result, the Li//Li symmetric cells deliver high critical current density of 3.0 mA cm<sup>−2</sup> and maintain stable Li plating/stripping over 2000 h. The Li//LFP cell delivers a high capacity retention of 87.53% after 1200 cycles at 2C, and the pouch battery presents excellent cycling and safety performance. This work provides a promising approach to enable the stable operation of solid-state lithium metal batteries via incorporating the electron-delocalized π-network.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"42 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Polysulfide Redox via Cobalt Spin-State Manipulation in Lithium-Sulfur Batteries 锂硫电池中钴自旋态操纵促进多硫化物氧化还原
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-01 DOI: 10.1016/j.ensm.2026.104954
Chunze Zhou, Lei Chen, Weifeng Shen, Xiaoliang Zhang, Xiaojie Lu, Meltem Yanilmaz, Yong Liu
{"title":"Boosting Polysulfide Redox via Cobalt Spin-State Manipulation in Lithium-Sulfur Batteries","authors":"Chunze Zhou, Lei Chen, Weifeng Shen, Xiaoliang Zhang, Xiaojie Lu, Meltem Yanilmaz, Yong Liu","doi":"10.1016/j.ensm.2026.104954","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104954","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"4 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Upcycling asphaltene via graphite-assisted air pre-oxidation for high-performance sodium-ion battery anodes” [Energy storage materials volume 84 (2026) 104881] 应改正的错误,
IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-01 DOI: 10.1016/j.ensm.2026.104906
Yuhan Liu , Xueyan Kang , Qianxun Li , Jiannan Pei , Wanran Lin , Zhouguang Lu , Feng Jiang , Zhenghe Xu
{"title":"Corrigendum to “Upcycling asphaltene via graphite-assisted air pre-oxidation for high-performance sodium-ion battery anodes” [Energy storage materials volume 84 (2026) 104881]","authors":"Yuhan Liu ,&nbsp;Xueyan Kang ,&nbsp;Qianxun Li ,&nbsp;Jiannan Pei ,&nbsp;Wanran Lin ,&nbsp;Zhouguang Lu ,&nbsp;Feng Jiang ,&nbsp;Zhenghe Xu","doi":"10.1016/j.ensm.2026.104906","DOIUrl":"10.1016/j.ensm.2026.104906","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"85 ","pages":"Article 104906"},"PeriodicalIF":20.2,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145993095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating rate performance of P2 layered oxide cathodes by transition metal ordering and phase transition 用过渡金属有序和相变调节P2层状氧化物阴极的速率性能
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-01 DOI: 10.1016/j.ensm.2026.104955
Haikong Jin, Mingfang Ma, Limou Zhang, Haifeng Chen, Hefang Fan, Wenke Shi, Hao Ji, Rong Peng, Zhe Liu, De Yan
{"title":"Regulating rate performance of P2 layered oxide cathodes by transition metal ordering and phase transition","authors":"Haikong Jin, Mingfang Ma, Limou Zhang, Haifeng Chen, Hefang Fan, Wenke Shi, Hao Ji, Rong Peng, Zhe Liu, De Yan","doi":"10.1016/j.ensm.2026.104955","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104955","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"158 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biphasic Synergistic Functional Electrolyte Enhances High-Temperature Performance of 4.85V LiNi0.5Mn1.5O4||Graphite Pouch Cells 双相协同功能电解质提高4.85V LiNi0.5Mn1.5O4||石墨袋电池的高温性能
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ensm.2026.104950
Jinlong Sun, Shinuo Kang, Xiang Wu, Xiaobing Lou, Ming Shen, Bingwen Hu
{"title":"Biphasic Synergistic Functional Electrolyte Enhances High-Temperature Performance of 4.85V LiNi0.5Mn1.5O4||Graphite Pouch Cells","authors":"Jinlong Sun, Shinuo Kang, Xiang Wu, Xiaobing Lou, Ming Shen, Bingwen Hu","doi":"10.1016/j.ensm.2026.104950","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104950","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"8 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MOF-Reinforced Hybrid Crosslinked Quasi-Solid Electrolytes via In Situ Polymerization for Stable Lithium Metal Batteries 原位聚合制备mof增强杂化交联准固体电解质用于稳定锂金属电池
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ensm.2026.104944
Shen Liu, Yiyuan Yan, Shichao Zhang, Dezhi Yan, Chao Jin, Shuai Yin, Qiang Lu, Wangwei Ren, Qianfan Zhang, Yalan Xing
{"title":"A MOF-Reinforced Hybrid Crosslinked Quasi-Solid Electrolytes via In Situ Polymerization for Stable Lithium Metal Batteries","authors":"Shen Liu, Yiyuan Yan, Shichao Zhang, Dezhi Yan, Chao Jin, Shuai Yin, Qiang Lu, Wangwei Ren, Qianfan Zhang, Yalan Xing","doi":"10.1016/j.ensm.2026.104944","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104944","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"210 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Ion–Dipole Interaction Regulation of Desolvation Kinetics and Interfacial Stability for Stable and Fast-Charging Sodium-Ion Batteries 离子-偶极相互作用对稳定和快速充电钠离子电池脱溶动力学和界面稳定性的影响
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ensm.2026.104943
Dong-Sheng Bai, Shuai-Wei Wu, Na Wu, An-min Liu, Yang Yan
{"title":"An Ion–Dipole Interaction Regulation of Desolvation Kinetics and Interfacial Stability for Stable and Fast-Charging Sodium-Ion Batteries","authors":"Dong-Sheng Bai, Shuai-Wei Wu, Na Wu, An-min Liu, Yang Yan","doi":"10.1016/j.ensm.2026.104943","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104943","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"284 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146089597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Seed Gradient Hosts Orchestrating Spatiotemporal Li-ion Deposition for Lean Li-Metal Anodes 双种子梯度寄主协调时空锂离子沉积的精益锂金属阳极
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ensm.2026.104949
Xuri Wang, Jiali Wang, Haocheng Xu, Ximing Wang, Xiangcun Li, Miao Yu, Gaohong He
Lithium (Li) metal is considered the ultimate anode for next-generation high-energy-density batteries, but its practical deployment is limited by uncontrolled dendrite growth and severe active Li loss under lean-lithium conditions. Although 3D hosts can mitigate these issues, conventional designs fail to precisely regulate ion transport and deposition kinetics. Herein, we design a synergistic thermodynamic-kinetic gradient membrane host that enables spatio-temporal modulation of Li deposition by hot-pressing three NIPS-derived membranes: ZnO-doped bottom layer, Fe2O3-doped intermediate layer, and pristine CNT@PVDF top layer. The intrinsic binding-energy difference (ΔEb) between layers establishes lithiophilic gradient to provide spatial control, thermodynamically drives top-down Li-ion migration. Meanwhile, the distinct lithiation potentials of ZnO and Fe2O3 establish a broadened, multi-step reaction window that provides multiple pathways for Li-ion diffusion and facilitates time-dependent interfacial evolution via conversion/alloying. In situ TEM reveals the formation of multi-functional LiZn/Li2O and Fe/Li2O interfaces, enhancing ion/electron transport and providing durable kinetic regulation for subsequent plating. Consequently, the Li||ZFCP half-cell delivers an average Coulombic efficiency of 97% over 700 cycles with minimal polarization, and the full cell paired with LiFePO4 sustains 750 cycles at a low N/P ratio of 1.6. This study establishes a theory-guided paradigm for designing highly stable and practical Li metal anodes.
锂(Li)金属被认为是下一代高能量密度电池的终极阳极,但其实际部署受到不受控制的枝晶生长和贫锂条件下严重的活性锂损失的限制。虽然3D宿主可以缓解这些问题,但传统设计无法精确调节离子运输和沉积动力学。在此,我们设计了一个协同的热力学-动力学梯度膜主体,通过热压三种nips衍生膜:掺杂zno的底层,掺杂fe2o3的中间层和原始CNT@PVDF顶层,实现了锂沉积的时空调制。层间固有的结合能差(ΔEb)建立了亲锂梯度,提供空间控制,热力学驱动自上而下的锂离子迁移。同时,ZnO和Fe2O3不同的锂化电位建立了一个宽的、多步骤的反应窗口,为锂离子的扩散提供了多种途径,并促进了通过转换/合金化的时间依赖性界面演化。原位透射电镜显示,形成了多功能LiZn/Li2O和Fe/Li2O界面,增强了离子/电子传递,并为后续电镀提供了持久的动力学调节。因此,Li||ZFCP半电池在700次循环中平均库仑效率为97%,极化最小,而与LiFePO4配对的全电池在低N/P比为1.6的情况下可维持750次循环。本研究为设计高稳定和实用的锂金属阳极建立了理论指导范式。
{"title":"Dual-Seed Gradient Hosts Orchestrating Spatiotemporal Li-ion Deposition for Lean Li-Metal Anodes","authors":"Xuri Wang, Jiali Wang, Haocheng Xu, Ximing Wang, Xiangcun Li, Miao Yu, Gaohong He","doi":"10.1016/j.ensm.2026.104949","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104949","url":null,"abstract":"Lithium (Li) metal is considered the ultimate anode for next-generation high-energy-density batteries, but its practical deployment is limited by uncontrolled dendrite growth and severe active Li loss under lean-lithium conditions. Although 3D hosts can mitigate these issues, conventional designs fail to precisely regulate ion transport and deposition kinetics. Herein, we design a synergistic thermodynamic-kinetic gradient membrane host that enables spatio-temporal modulation of Li deposition by hot-pressing three NIPS-derived membranes: ZnO-doped bottom layer, Fe<sub>2</sub>O<sub>3</sub>-doped intermediate layer, and pristine CNT@PVDF top layer. The intrinsic binding-energy difference (ΔE<sub>b</sub>) between layers establishes lithiophilic gradient to provide spatial control, thermodynamically drives top-down Li-ion migration. Meanwhile, the distinct lithiation potentials of ZnO and Fe<sub>2</sub>O<sub>3</sub> establish a broadened, multi-step reaction window that provides multiple pathways for Li-ion diffusion and facilitates time-dependent interfacial evolution via conversion/alloying. In situ TEM reveals the formation of multi-functional LiZn/Li<sub>2</sub>O and Fe/Li<sub>2</sub>O interfaces, enhancing ion/electron transport and providing durable kinetic regulation for subsequent plating. Consequently, the Li||ZFCP half-cell delivers an average Coulombic efficiency of 97% over 700 cycles with minimal polarization, and the full cell paired with LiFePO<sub>4</sub> sustains 750 cycles at a low N/P ratio of 1.6. This study establishes a theory-guided paradigm for designing highly stable and practical Li metal anodes.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"33 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Polymerization and Interfacial Chemistry for In-situ Polymerized Solid-State Lithium Metal Batteries 原位聚合固态锂金属电池的聚合调控和界面化学
IF 20.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-31 DOI: 10.1016/j.ensm.2026.104951
Shuaiyi Yang, Ruogu Xu, Siqi Guan, Zhenhua Sun, Feng Li
{"title":"Regulation of Polymerization and Interfacial Chemistry for In-situ Polymerized Solid-State Lithium Metal Batteries","authors":"Shuaiyi Yang, Ruogu Xu, Siqi Guan, Zhenhua Sun, Feng Li","doi":"10.1016/j.ensm.2026.104951","DOIUrl":"https://doi.org/10.1016/j.ensm.2026.104951","url":null,"abstract":"","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"40 1","pages":""},"PeriodicalIF":20.4,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energy Storage Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1