With millions of new cancer diagnoses annually, there is a pressing need for effective treatments. This review discusses innovative strategies in cancer therapy, aiming primarily at photothermal therapy (PTT) and its synergistic integration with various therapeutic modalities. PTT uses heat produced from light absorption to destroy tumor cells, and recent advancements in nanomaterials significantly enhance its efficacy, stability, and biocompatibility. Key innovations include the development of hybrid polymeric nanoparticles, quantum dots, gold nanorods, silica nanoparticles, and organic and inorganic dyes. These materials improve photothermal conversion efficiency (PCE) through strong near-infrared (NIR) absorption properties, optimizing light absorption and thermal response. Advanced dye-based nanomaterials such as cyanine dyes and porphyrins bear an important role in this enhancement. The review emphasizes the importance of the tumor microenvironment in enabling targeted therapies and the development of conjugated polymers for localized treatment applications. Various approaches to augment PCE are discussed, including surface modification, using plasmonic materials, and incorporating photothermal agents into targeted delivery systems. By elucidating the synergistic interactions between PTT and complementary therapies, this article highlights the potential of nanomaterial-based strategies to revolutionize cancer treatment. The review advocates for multimodal approaches to overcome the drawbacks of current therapies, aiming to enhance treatment efficacy, improve patient quality of life, and minimize side effects.