Pub Date : 2024-11-01DOI: 10.1016/j.flatc.2024.100775
Yiqun Chen , Yan Zhang , Xue Bai , Jie Zhao, Lijun Yang, Xizhang Wang, Qiang Wu, Zheng Hu
Layered double hydroxides (LDHs) are very attractive functional materials either for energy storage due to the high theoretical capacities or for energy conversion due to the abundant and tunable active sites. Many strategies have been developed to improve the energy storage and conversion performance such as morphology and composition regulation, defect engineering and interlayer engineering. We focus on the interlayer engineering of LDHs for advanced energy applications. Anion intercalation into the galleries of brucite-like layers can expand the interlayer distance to enhance mass/charge transfer and active sites exposure; exfoliation-reassembly with conductive materials can increase the electron transfer capability and the ratio of active sites, thus efficiently boosting their performances in energy applications. In this Review, the progress on interlayer engineering of LDHs via anion intercalation and exfoliation-reassembly as well as the improved energy storage and conversion performances are summarized. We also outline how interlayer engineering tunes the performances of LDHs, and discuss the key challenges and future directions. This Review sheds light on the exploration of advanced LDHs materials for energy storage and conversion, especially in supercapacitors and oxygen evolution electrocatalysis.
{"title":"Interlayer engineering of layered double hydroxides for advanced energy storage and conversion","authors":"Yiqun Chen , Yan Zhang , Xue Bai , Jie Zhao, Lijun Yang, Xizhang Wang, Qiang Wu, Zheng Hu","doi":"10.1016/j.flatc.2024.100775","DOIUrl":"10.1016/j.flatc.2024.100775","url":null,"abstract":"<div><div>Layered double hydroxides (LDHs) are very attractive functional materials either for energy storage due to the high theoretical capacities or for energy conversion due to the abundant and tunable active sites. Many strategies have been developed to improve the energy storage and conversion performance such as morphology and composition regulation, defect engineering and interlayer engineering. We focus on the interlayer engineering of LDHs for advanced energy applications. Anion intercalation into the galleries of brucite-like layers can expand the interlayer distance to enhance mass/charge transfer and active sites exposure; exfoliation-reassembly with conductive materials can increase the electron transfer capability and the ratio of active sites, thus efficiently boosting their performances in energy applications. In this Review, the progress on interlayer engineering of LDHs via anion intercalation and exfoliation-reassembly as well as the improved energy storage and conversion performances are summarized. We also outline how interlayer engineering tunes the performances of LDHs, and discuss the key challenges and future directions. This Review sheds light on the exploration of advanced LDHs materials for energy storage and conversion, especially in supercapacitors and oxygen evolution electrocatalysis.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100775"},"PeriodicalIF":5.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.flatc.2024.100776
Vineet Kumar, Md Najib Alam, Siraj Azam, Sang-Shin Park
The most recent literature (2019–2024) on the multifunctionality of elastomeric matrix-based composites is reviewed in this paper. The main multifunctionality focus of this review lies in summarizing the sensing for monitoring terrestrial or aquatic living species. The review started with a brief overview of the key points like an introduction to elastomeric composites. Then, the use of these sensors for monitoring terrestrial and aquatic living species is covered followed by the key subjects covered in this review paper. After the introduction, the fabrication process of these elastomeric composites was reported with a special focus on sensor fabrication for monitoring the living species. After fabrication, a special focus on the mechanical, electrical, and thermal properties of these sensors-based elastomeric composites was presented. A special focus on electrical properties including linearity, gauge factors, response time, and finally recovery time was presented. After properties, the paper’s final part summarizes the industrial usefulness of the work reported in the literature. These include insight into insect motion, adhesion performance in jellyfish, and monitoring various human motions assisted by artificial intelligence. Finally, this review underscores the critical role of the use of these sensors for our technical future for terrestrial and aquatic living species.
{"title":"Review on multifunctional elastomeric composites-based sensing for monitoring of aquatic and terrestrial living species","authors":"Vineet Kumar, Md Najib Alam, Siraj Azam, Sang-Shin Park","doi":"10.1016/j.flatc.2024.100776","DOIUrl":"10.1016/j.flatc.2024.100776","url":null,"abstract":"<div><div>The most recent literature (<strong>2019</strong>–<strong>2024</strong>) on the multifunctionality of elastomeric matrix-based composites is reviewed in this paper. The main multifunctionality focus of this review lies in summarizing the sensing for monitoring terrestrial or aquatic living species. The review started with a brief overview of the key points like an introduction to elastomeric composites. Then, the use of these sensors for monitoring terrestrial and aquatic living species is covered followed by the key subjects covered in this review paper. After the introduction, the fabrication process of these elastomeric composites was reported with a special focus on sensor fabrication for monitoring the living species. After fabrication, a special focus on the mechanical, electrical, and thermal properties of these sensors-based elastomeric composites was presented. A special focus on electrical properties including linearity, gauge factors, response time, and finally recovery time was presented. After properties, the paper’s final part summarizes the industrial usefulness of the work reported in the literature. These include insight into insect motion, adhesion performance in jellyfish, and monitoring various human motions assisted by artificial intelligence. Finally, this review underscores the critical role of the use of these sensors for our technical future for terrestrial and aquatic living species.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100776"},"PeriodicalIF":5.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.flatc.2024.100772
Siqi Gong , Jing Li , Fan Zhao , Mengdie Yan , Chenghao Huang , Guanzhong Huo , Chunli Li , Bing Wu , Jiapeng Liu
The emerging energy-saving and environmentally friendly capacitive deionization (CDI) technology has attracted more and more attention. However, it remains a great challenge to develop CDI electrode materials with excellent comprehensive properties. Herein, the porous N, P co-doping Ti3C2Tx MXene (N, P-Ti3C2Tx) was prepared successfully by combining simple flocculation with an annealing process. Benefitting from the synergistic effect of the combination of porous structure and co-doping of N and P heteroatoms, the N, P-Ti3C2Tx exhibits substantial specific surface area, which provides more surface bounding active sites for electrochemical reactions, thus assisting to boost the CDI performance. As a result, the N, P-Ti3C2Tx exhibited an admirable salt (Na+) adsorption capacity of 53.3 mg g−1 and exceptional recycling property. Impressively, the N, P-Ti3C2Tx also exhibited superior desalination performance of Pb2+, characterized by an exceptionally high desalination capacity of up to 168.2 mg g−1 at 1.2 V, and the corresponding desalination rate reached 0.047 mg g−1 s−1. Additionally, the deionization mechanism involved was elucidated through a series of characterizations. This work will furnish an effective avenue for the innovative design of MXene-based electrode materials toward high-performance CDI.
{"title":"Porous N, P co-doping Ti3C2Tx MXene for high-performance capacitive deionization","authors":"Siqi Gong , Jing Li , Fan Zhao , Mengdie Yan , Chenghao Huang , Guanzhong Huo , Chunli Li , Bing Wu , Jiapeng Liu","doi":"10.1016/j.flatc.2024.100772","DOIUrl":"10.1016/j.flatc.2024.100772","url":null,"abstract":"<div><div>The emerging energy-saving and environmentally friendly capacitive deionization (CDI) technology has attracted more and more attention. However, it remains a great challenge to develop CDI electrode materials with excellent comprehensive properties. Herein, the porous N, P co-doping Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (N, P-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) was prepared successfully by combining simple flocculation with an annealing process. Benefitting from the synergistic effect of the combination of porous structure and co-doping of N and P heteroatoms, the N, P-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> exhibits substantial specific surface area, which provides more surface bounding active sites for electrochemical reactions, thus assisting to boost the CDI performance. As a result, the N, P-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> exhibited an admirable salt (Na<sup>+</sup>) adsorption capacity of 53.3 mg g<sup>−1</sup> and exceptional recycling property. Impressively, the N, P-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> also exhibited superior desalination performance of Pb<sup>2+</sup>, characterized by an exceptionally high desalination capacity of up to 168.2 mg g<sup>−1</sup> at 1.2 V, and the corresponding desalination rate reached 0.047 mg g<sup>−1</sup> s<sup>−1</sup>. Additionally, the deionization mechanism involved was elucidated through a series of characterizations. This work will furnish an effective avenue for the innovative design of MXene-based electrode materials toward high-performance CDI.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100772"},"PeriodicalIF":5.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.flatc.2024.100773
Sai Iswarya Bakavaty T, Gurunathan Karuppasamy
Graphene – one of the most regarded materials in the world of Flatland has a substantial role in sensing applications due to its exceptional properties. Combining graphene with MOF can effectively mitigate the limitations of MOF while synergistically enhancing their unique properties. In this research work, we present a new hybrid composite of Zeolite Imidazolate Framework-L made composite with reduced graphene oxide, ZIF-L(Zn/Co)/rGO (ZLG) and applied its electrocatalytic performance in the sensitive detection of acetaminophen (AP). The mixture was prepared via a simple in-situ solvothermal method whose physico-chemical nature was investigated in detail. The ZIF-L phase identification, morphological change of ZIF, confirmation of rGO incorporation, and chemical composition analysis were established using the XRD, SEM, Raman and XPS respectively. Additionally, the kinetics of electron transfer was studied by EIS. Thereafter, proper optimization of various sensor parameters such as pH, scan rate and analytical performance were executed. Preliminary sensing studies carried out by cyclic voltammetry revealed an enhancement in peak current from 0.48µA to 1.05µA upon incorporation of rGO into the ZIF-L(Zn/Co) hybrid. Compared with reported studies along a similar vein, from the differential voltammetric analysis the ZLG-modified GCE displays a high selectivity towards AP with a broad linear range of 1 µM – 2060 µM exhibiting a sensitivity and LOD of 8.145 µA/mM and 162 nM respectively. The real-time validation of the sensor in paracetamol tablets and biological samples of human blood and urine exhibited recovery values in the range of ∼ 94 % − 102 %. Hence, this suggests a reliable practical applicability of the sensor owing to the high catalytic, large surface area and increased conductivity of the nanocomposite.
{"title":"In-situ grown hexagonal rod-like ZIF-L(Zn/Co) variant on reduced graphene oxide (rGO) for the enhanced electrochemical sensing of acetaminophen","authors":"Sai Iswarya Bakavaty T, Gurunathan Karuppasamy","doi":"10.1016/j.flatc.2024.100773","DOIUrl":"10.1016/j.flatc.2024.100773","url":null,"abstract":"<div><div>Graphene – one of the most regarded materials in the world of Flatland has a substantial role in sensing applications due to its exceptional properties. Combining graphene with MOF can effectively mitigate the limitations of MOF while synergistically enhancing their unique properties. In this research work, we present a new hybrid composite of Zeolite Imidazolate Framework-L made composite with reduced graphene oxide, ZIF-L(Zn/Co)/rGO (ZLG) and applied its electrocatalytic performance in the sensitive detection of acetaminophen (AP). The mixture was prepared via a simple <em>in-situ</em> solvothermal method whose physico-chemical nature was investigated in detail. The ZIF-L phase identification, morphological change of ZIF, confirmation of rGO incorporation, and chemical composition analysis were established using the XRD, SEM, Raman and XPS respectively. Additionally, the kinetics of electron transfer was studied by EIS. Thereafter, proper optimization of various sensor parameters such as pH, scan rate and analytical performance were executed. Preliminary sensing studies carried out by cyclic voltammetry revealed an enhancement in peak current from 0.48µA to 1.05µA upon incorporation of rGO into the ZIF-L(Zn/Co) hybrid. Compared with reported studies along a similar vein, from the differential voltammetric analysis the ZLG-modified GCE displays a high selectivity towards AP with a broad linear range of 1 µM – 2060 µM exhibiting a sensitivity and LOD of 8.145 µA/mM and 162 nM respectively. The real-time validation of the sensor in paracetamol tablets and biological samples of human blood and urine exhibited recovery values in the range of ∼ 94 % − 102 %. Hence, this suggests a reliable practical applicability of the sensor owing to the high catalytic, large surface area and increased conductivity of the nanocomposite.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100773"},"PeriodicalIF":5.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.flatc.2024.100766
M.A. Salguero Salas , V.C. Fuertes , D.M. Arciniegas Jaimes , N. Bajales , O.E. Linarez Pérez
Carbon-based composite materials are employed in diverse electrochemical applications, such as in catalysis, (bio)molecular sensing, and energy storage. In practice, electrode material needs to be highly conductive to allow high-speed electron transference to electrolyte species and possess high-surface area to obtain greater measured signals and power capabilities, as well as long useful life and stability. In this sense, graphene derivatives emerge as interesting candidates, even more so if they constitute part of practical, economical and versatile paste electrodes.
This work presents a detailed analysis of the electrochemical performance of paste electrodes fabricated with multilayer partially reduced graphene oxide (rGO). The rGO was strategically produced via thermal treatment as a key factor that minimizes both mass loss and energy consumption. The results obtained through diffraction, microscopy and spectroscopy techniques show an effective partial reduction in the range of 100 to 400 °C. Furthermore, the enhanced electrochemical performance of rGO was determined by exploring the specific capacitance from cyclic voltammetry (CV) and galvanostatic charge–discharge measurements (GCD) as well as charge transfer resistance via electrochemical impedance spectroscopy (EIS). Our results evidence how an integral performance with suitable chemical, structural and morphological properties achieved for GO heat-treated at 200 °C leads to an improved electronic conductivity when a small part is combined with graphite in paste electrodes. This latter combination provides higher versatility compared to other alternatives since it arises as an economical and effective carbonaceous matrix for (bio)electrochemical sensors, hybrid supercapacitors or other desired nanotechnological applications.
碳基复合材料被广泛应用于催化、(生物)分子传感和能量存储等电化学领域。在实践中,电极材料需要具有高导电性,以实现电子与电解质的高速传输,并拥有高表面积,以获得更大的测量信号和功率能力,以及更长的使用寿命和稳定性。从这个意义上说,石墨烯衍生物是一种有趣的候选材料,如果它们能成为实用、经济和多功能浆状电极的一部分,那就更加有趣了。本研究详细分析了用多层部分还原氧化石墨烯(rGO)制造的浆状电极的电化学性能。rGO 是通过热处理制成的,这是减少质量损失和能源消耗的关键因素。通过衍射、显微镜和光谱技术获得的结果表明,在 100 至 400 °C 的范围内,部分还原效果显著。此外,通过循环伏安法(CV)和电静态充放电测量(GCD)以及电化学阻抗光谱法(EIS)检测比电容,确定了 rGO 的增强电化学性能。我们的研究结果证明了在 200 °C 下热处理的 GO 具有合适的化学、结构和形态特性,当一小部分 GO 与石墨结合制成浆状电极时,其整体性能可提高电子传导性。与其他替代品相比,后一种组合具有更高的通用性,因为它是一种经济、有效的碳质基质,可用于(生物)电化学传感器、混合超级电容器或其他所需的纳米技术应用。
{"title":"Electrochemical boost via thermally reduced graphene oxide for tailoring composite paste electrodes","authors":"M.A. Salguero Salas , V.C. Fuertes , D.M. Arciniegas Jaimes , N. Bajales , O.E. Linarez Pérez","doi":"10.1016/j.flatc.2024.100766","DOIUrl":"10.1016/j.flatc.2024.100766","url":null,"abstract":"<div><div>Carbon-based composite materials are employed in diverse electrochemical applications, such as in catalysis, (bio)molecular sensing, and energy storage. In practice, electrode material needs to be highly conductive to allow high-speed electron transference to electrolyte species and possess high-surface area to obtain greater measured signals and power capabilities, as well as long useful life and stability. In this sense, graphene derivatives emerge as interesting candidates, even more so if they constitute part of practical, economical and versatile paste electrodes.</div><div>This work presents a detailed analysis of the electrochemical performance of paste electrodes fabricated with multilayer partially reduced graphene oxide (rGO). The rGO was strategically produced via thermal treatment as a key factor that minimizes both mass loss and energy consumption. The results obtained through diffraction, microscopy and spectroscopy techniques show an effective partial reduction in the range of 100 to 400 °C. Furthermore, the enhanced electrochemical performance of rGO was determined by exploring the specific capacitance from cyclic voltammetry (CV) and galvanostatic charge–discharge measurements (GCD) as well as charge transfer resistance via electrochemical impedance spectroscopy (EIS). Our results evidence how an integral performance with suitable chemical, structural and morphological properties achieved for GO heat-treated at 200 °C leads to an improved electronic conductivity when a small part is combined with graphite in paste electrodes. This latter combination provides higher versatility compared to other alternatives since it arises as an economical and effective carbonaceous matrix for (bio)electrochemical sensors, hybrid supercapacitors or other desired nanotechnological applications.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100766"},"PeriodicalIF":5.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.flatc.2024.100761
Sheetal Gulia , Md Moniruzzaman , Atanu Panda
Graphene holds unusual mechanical, electrical, and optical properties that researchers have used for developing new electrical materials like super-capacitor devices, lithium-ion batteries, solar cells, and biosensors. The functionalization and dispersion of graphene sheets are vital for most applications. Upon chemical functionalization, graphene can be treated by solvent-assisted techniques such layer-by-layer assembly, filtration, and spin coating. Furthermore, it preserves graphene’s unique characteristics by stopping single-layer graphene from aggregating during reduction. The synthesis of graphene has also been discussed in this article. It is feasible to functionalize graphene by covalent and noncovalent modification approaches. To produce functionalized graphene in both instances, graphene oxide’s surface has been modified and then reduced. It has been discovered that the derivatives of graphene may be prepared with outstanding efficiency using both covalent and noncovalent modification processes. We also mention current research into the binding of carbon nanotubes and metals to graphene surfaces. We concentrate on the various methods used to synthesize graphene and its derivatives and also discuss about their different applications, such as polymer nanocomposites, super-capacitor devices, drug delivery systems, solar cells, memory devices, transistor devices, biosensors, and other devices can all be generated through functionalized graphene oxide.
{"title":"Approaches in graphene-based nanocomposites: Synthesis, modification, and multifaceted applications","authors":"Sheetal Gulia , Md Moniruzzaman , Atanu Panda","doi":"10.1016/j.flatc.2024.100761","DOIUrl":"10.1016/j.flatc.2024.100761","url":null,"abstract":"<div><div>Graphene holds unusual mechanical, electrical, and optical properties that researchers have used for developing new electrical materials like super-capacitor devices, lithium-ion batteries, solar cells, and biosensors. The functionalization and dispersion of graphene sheets are vital for most applications. Upon chemical functionalization, graphene can be treated by solvent-assisted techniques such layer-by-layer assembly, filtration, and spin coating. Furthermore, it preserves graphene’s unique characteristics by stopping single-layer graphene from aggregating during reduction. The synthesis of graphene has also been discussed in this article. It is feasible to functionalize graphene by covalent and noncovalent modification approaches. To produce functionalized graphene in both instances, graphene oxide’s surface has been modified and then reduced. It has been discovered that the derivatives of graphene may be prepared with outstanding efficiency using both covalent and noncovalent modification processes. We also mention current research into the binding of carbon nanotubes and metals to graphene surfaces. We concentrate on the various methods used to synthesize graphene and its derivatives and also discuss about their different applications, such as polymer nanocomposites, super-capacitor devices, drug delivery systems, solar cells, memory devices, transistor devices, biosensors, and other devices can all be generated through functionalized graphene oxide.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100761"},"PeriodicalIF":5.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.flatc.2024.100767
Sohan Bir Singh, Priyanka Hajare, Ruhit Jyoti Konwar, Mahuya De
Carbon materials have great potential for hydrogen adsorption due to their remarkable specific surface area, unique pore size characteristics and ability to functionalize with metal or non-metal. In this work, zeolite templated carbons were physically and chemically modified by varying preparation conditions to study their impact on structure and hydrogen adsorption capacity. The resultant templated carbons showed surface area in the range of 608–1665 m2/g and pore volume between 0.63 to 1.00 cc/g, with 28–48 % microporosity depending on synthesis conditions. The surface area and pore volume increased with increasing carbon deposition temperature from 650 to 750 °C and both decreased at higher carbon deposition temperature of 850 °C. At heat treatment temperature of 900 °C, the surface area and pore volume of templated carbons were observed to be higher. Incorporation of nitrogen heteroatom in carbon matrix during carbon deposition might have facilitated porosity. Use of argon as carrier gas resulted in the highest surface area (1665 m2/g), micropore area (597 m2/g) and pore volume (1.0 cc/g). The same templated carbon showed maximum hydrogen adsorption capacity of 0.20 and 2.81 wt% at 25 and –196 °C, respectively at 15 bar. On addition of platinum to templated carbon, the hydrogen adsorption capacity was significantly improved from 0.20 to 0.28 wt% at 25 °C and from 2.81 to 3.24 wt% at –196 °C. The strong affinity of Pt for hydrogen might have enhanced hydrogen adsorption.
{"title":"Physically and chemically modified zeolite templated nitrogenous carbons for enhanced hydrogen adsorption","authors":"Sohan Bir Singh, Priyanka Hajare, Ruhit Jyoti Konwar, Mahuya De","doi":"10.1016/j.flatc.2024.100767","DOIUrl":"10.1016/j.flatc.2024.100767","url":null,"abstract":"<div><div>Carbon materials have great potential for hydrogen adsorption due to their remarkable specific surface area, unique pore size characteristics and ability to functionalize with metal or non-metal. In this work, zeolite templated carbons were physically and chemically modified by varying preparation conditions to study their impact on structure and hydrogen adsorption capacity. The resultant templated carbons showed surface area in the range of 608–1665 m<sup>2</sup>/g and pore volume between 0.63 to 1.00 cc/g, with 28–48 % microporosity depending on synthesis conditions. The surface area and pore volume increased with increasing carbon deposition temperature from 650 to 750 °C and both decreased at higher carbon deposition temperature of 850 °C. At heat treatment temperature of 900 °C, the surface area and pore volume of templated carbons were observed to be higher. Incorporation of nitrogen heteroatom in carbon matrix during carbon deposition might have facilitated porosity. Use of argon as carrier gas resulted in the highest surface area (1665 m<sup>2</sup>/g), micropore area (597 m<sup>2</sup>/g) and pore volume (1.0 cc/g). The same templated carbon showed maximum hydrogen adsorption capacity of 0.20 and 2.81 wt% at 25 and –196 °C, respectively at 15 bar. On addition of platinum to templated carbon, the hydrogen adsorption capacity was significantly improved from 0.20 to 0.28 wt% at 25 °C and from 2.81 to 3.24 wt% at –196 °C. The strong affinity of Pt for hydrogen might have enhanced hydrogen adsorption.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100767"},"PeriodicalIF":5.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.flatc.2024.100760
Iuegyun Hong , Hyeonhu Bae , Jeonghwan Ahn , Hyeondeok Shin , Hoonkyung Lee , Yongkyung Kwon
The exploration of carbon allotropes has unveiled a series of two-dimensional (2D) materials with unique electronic and mechanical properties, yet the need for stable structures with tailored electronic properties persists. In this study, we introduce a new class of 2D carbon allotropes derived from the biphenylene network (BPN), incorporating acetylenic linkages to tune their structural and electronic characteristics. Through density functional theory calculations, we identified ten novel BPN-derived structures that exhibit both energetic and dynamic stability, confirmed by cohesive energy and phonon spectrum analyses. Among them, BPN-02 and BPN-04 are metallic, featuring critically-tilted type-III Dirac cones under % biaxial strain, while BPN-22 is a semiconductor with a band gap of 0.95 eV and exhibits highly anisotropic carrier mobility. Additionally, these structures demonstrate significant anisotropy in their elastic properties, further distinguishing them from other 2D carbon materials like graphene. Our findings suggest that these novel BPN-based structures have strong potential for next-generation electronic and optoelectronic applications, providing new avenues for the design and synthesis of advanced carbon materials.
对碳同素异形体的探索揭示了一系列具有独特电子和机械特性的二维(2D)材料,但对具有定制电子特性的稳定结构的需求依然存在。在本研究中,我们介绍了一类源自联苯网络(BPN)的新型二维碳同素异形体,它们结合了乙炔连接来调整其结构和电子特性。通过密度泛函理论计算,我们确定了十种新型 BPN 衍生结构,这些结构具有能量稳定性和动态稳定性,并通过内聚能和声子谱分析得到了证实。其中,BPN-02 和 BPN-04 是金属结构,在 5% 的双轴应变下具有临界倾斜的 III 型狄拉克锥,而 BPN-22 则是带隙为 0.95 eV 的半导体,表现出高度各向异性的载流子迁移率。此外,这些结构的弹性特性也表现出显著的各向异性,进一步将它们与石墨烯等其他二维碳材料区分开来。我们的研究结果表明,这些基于 BPN 的新型结构在下一代电子和光电应用中具有巨大潜力,为先进碳材料的设计和合成提供了新途径。
{"title":"Design of biphenylene-derived tunable dirac materials","authors":"Iuegyun Hong , Hyeonhu Bae , Jeonghwan Ahn , Hyeondeok Shin , Hoonkyung Lee , Yongkyung Kwon","doi":"10.1016/j.flatc.2024.100760","DOIUrl":"10.1016/j.flatc.2024.100760","url":null,"abstract":"<div><div>The exploration of carbon allotropes has unveiled a series of two-dimensional (2D) materials with unique electronic and mechanical properties, yet the need for stable structures with tailored electronic properties persists. In this study, we introduce a new class of 2D carbon allotropes derived from the biphenylene network (BPN), incorporating acetylenic linkages to tune their structural and electronic characteristics. Through density functional theory calculations, we identified ten novel BPN-derived structures that exhibit both energetic and dynamic stability, confirmed by cohesive energy and phonon spectrum analyses. Among them, BPN-02 and BPN-04 are metallic, featuring critically-tilted type-III Dirac cones under <span><math><mrow><mo>∼</mo><mn>5</mn></mrow></math></span> % biaxial strain, while BPN-22 is a semiconductor with a band gap of 0.95 eV and exhibits highly anisotropic carrier mobility. Additionally, these structures demonstrate significant anisotropy in their elastic properties, further distinguishing them from other 2D carbon materials like graphene. Our findings suggest that these novel BPN-based structures have strong potential for next-generation electronic and optoelectronic applications, providing new avenues for the design and synthesis of advanced carbon materials.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100760"},"PeriodicalIF":5.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1016/j.flatc.2024.100765
Yaohui Wang , Zhu Ding , Muhammad Ahsan Iqbal , Nayab Arif , Luyan Li , Peng Li , Yu-Jia Zeng
In recent decades, ongoing exploration on material synthesis, coupled with advancements in science and technology, has led to the invention and application of numerous specialized devices. To fulfill the demand for high-performance materials in modern society, flash Joule heating (FJH) has been invented and applied in this context to achieve high efficiency, low cost, and environmental sustainability in material synthesis. This technology offers fast heating and cooling rates, high energy utilization, and promising results in material synthesis. FJH finds its applications in synthesizing two-dimensional materials, recycling battery metals, graphite, cathode, and recovery of precious metals from mines. This review presents an overview of FJH technology and its applications and prospects.
{"title":"Flash Joule heating technology in two-dimensional materials and beyond","authors":"Yaohui Wang , Zhu Ding , Muhammad Ahsan Iqbal , Nayab Arif , Luyan Li , Peng Li , Yu-Jia Zeng","doi":"10.1016/j.flatc.2024.100765","DOIUrl":"10.1016/j.flatc.2024.100765","url":null,"abstract":"<div><div>In recent decades, ongoing exploration on material synthesis, coupled with advancements in science and technology, has led to the invention and application of numerous specialized devices. To fulfill the demand for high-performance materials in modern society, flash Joule heating (FJH) has been invented and applied in this context to achieve high efficiency, low cost, and environmental sustainability in material synthesis. This technology offers fast heating and cooling rates, high energy utilization, and promising results in material synthesis. FJH finds its applications in synthesizing two-dimensional materials, recycling battery metals, graphite, cathode, and recovery of precious metals from mines. This review presents an overview of FJH technology and its applications and prospects.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100765"},"PeriodicalIF":5.9,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.flatc.2024.100764
Muhammad Mushtaq , Iltaf Muhammad , Zheng Chang , Zhang Leilei , Muhammad Abdul Rauf Khan , Neda Rahmani , Alireza Shabani , Hyeonhu Bae , Hoonkyung Lee , Tanveer Hussain
Designing efficient nanosensors based on ultrathin materials for the detection of neurotransmitters is crucial for biosensing applications. In this work, using spin-polarized density functional theory (DFT) calculations, structural, electronic, magnetic, and adsorption of the selected neurotransmitters, such as dopamine (DA) and histamine (HA), were investigated using light transition metals dichalcogenides, vanadium disulfide (VS2) nanosheets. It was revealed that DA and HA adsorbed relatively weakly on pristine (p-VS2) as well as single sulfur (S) Vacancy-induced (SV-VS2). However, the introduction of selected transition metals (TMs) dopants, such as cobalt (Co), iron (Fe), and nickel (Ni), significantly improved the adsorption of DA and HA. Among the studied systems, Ni-doped VS2 (Fe-doped VS2) exhibited the strongest adsorption toward DA (HA) with an adsorption energy of −2.00 (−1.28) eV, which is promising for practical sensing applications. Charge analysis revealed that both DA and HA acted as charge donors to the TMs-doped VS2. Upon DA/HA adsorptions, quantifiable variations were observed in the electronic structures and magnetic properties of TMs-doped VS2, which were studied through band structures, spin-polarized density of states, and work function calculations. Lastly, for the practical detection capabilities at diverse pressure and temperature settings, we employed the Langmuir adsorption model. It was found that TMs-doped VS2 detected DA and HA at concentrations ranging from tens of ppt to ppm levels, respectively. We strongly believe that our findings will contribute towards the development of highly effective nanosensors based on TMs-doped VS2 nanosheets for the detection of DA, and HA.
设计基于超薄材料的高效纳米传感器来检测神经递质对于生物传感应用至关重要。在这项工作中,利用自旋极化密度泛函理论(DFT)计算,使用轻过渡金属二卤化物、二硫化钒(VS2)纳米片研究了所选神经递质(如多巴胺(DA)和组胺(HA))的结构、电子、磁性和吸附。结果表明,DA 和 HA 在原始(p-VS2)和单硫(S)空位诱导(SV-VS2)上的吸附相对较弱。然而,引入选定的过渡金属(TMs)掺杂剂,如钴(Co)、铁(Fe)和镍(Ni),可显著改善 DA 和 HA 的吸附。在所研究的体系中,掺镍的 VS2(掺铁的 VS2)对 DA(HA)的吸附力最强,吸附能为 -2.00 (-1.28) eV,有望用于实际传感应用。电荷分析表明,DA 和 HA 都是掺杂了 TMs 的 VS2 的电荷供体。吸附 DA/HA 后,掺杂 TMs 的 VS2 的电子结构和磁性能发生了可量化的变化,研究人员通过带状结构、自旋极化态密度和功函数计算对这些变化进行了研究。最后,为了在不同压力和温度条件下实现实际检测能力,我们采用了朗缪尔吸附模型。结果发现,掺杂了 TMs 的 VS2 能分别在几十 ppt 到 ppm 的浓度范围内检测到 DA 和 HA。我们坚信,我们的研究结果将有助于开发基于掺杂 TMs 的 VS2 纳米片的高效纳米传感器,用于检测 DA 和 HA。
{"title":"Uncovering efficient sensing properties of vanadium disulfide (VS2) nanosheets towards specific neurotransmitters: A DFT prospective","authors":"Muhammad Mushtaq , Iltaf Muhammad , Zheng Chang , Zhang Leilei , Muhammad Abdul Rauf Khan , Neda Rahmani , Alireza Shabani , Hyeonhu Bae , Hoonkyung Lee , Tanveer Hussain","doi":"10.1016/j.flatc.2024.100764","DOIUrl":"10.1016/j.flatc.2024.100764","url":null,"abstract":"<div><div>Designing efficient nanosensors based on ultrathin materials for the detection of neurotransmitters is crucial for biosensing applications. In this work, using spin-polarized density functional theory (DFT) calculations, structural, electronic, magnetic, and adsorption of the selected neurotransmitters, such as dopamine (DA) and histamine (HA), were investigated using light transition metals dichalcogenides, vanadium disulfide (VS<sub>2</sub>) nanosheets. It was revealed that DA and HA adsorbed relatively weakly on pristine (p-VS<sub>2</sub>) as well as single sulfur (S) Vacancy-induced (SV-VS<sub>2</sub>). However, the introduction of selected transition metals (TMs) dopants, such as cobalt (Co), iron (Fe), and nickel (Ni), significantly improved the adsorption of DA and HA. Among the studied systems, Ni-doped VS<sub>2</sub> (Fe-doped VS<sub>2</sub>) exhibited the strongest adsorption toward DA (HA) with an adsorption energy of −2.00 (−1.28) eV, which is promising for practical sensing applications. Charge analysis revealed that both DA and HA acted as charge donors to the TMs-doped VS<sub>2</sub>. Upon DA/HA adsorptions, quantifiable variations were observed in the electronic structures and magnetic properties of TMs-doped VS<sub>2</sub>, which were studied through band structures, spin-polarized density of states, and work function calculations. Lastly, for the practical detection capabilities at diverse pressure and temperature settings, we employed the Langmuir adsorption model. It was found that TMs-doped VS<sub>2</sub> detected DA and HA at concentrations ranging from tens of ppt to ppm levels, respectively. We strongly believe that our findings will contribute towards the development of highly effective nanosensors based on TMs-doped VS<sub>2</sub> nanosheets for the detection of DA, and HA.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100764"},"PeriodicalIF":5.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}