Pub Date : 2024-09-01DOI: 10.1016/j.flatc.2024.100733
Madasu Sreenivasulu , Ranjan S. Shetti , Mohammed Ali Alshehri , Nagaraj P. Shetti
The electrochemical energy conversion process must develop effective, long-lasting, and reasonably priced bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, we present a simple, sustainable, economical, and scalable method for the preparation of stable and useful nickel nanoparticles on highly porous graphitic carbon doped with nitrogen. Direct pyrolysis followed by carbonization was used to create robust catalysts at different temperatures in an environment containing nitrogen (N2). The carbon material generated at 600 °C (Ni@NPC-600) shows greater electrochemical efficiency when compared to other catalysts. The synthesized electroactive catalyst Ni@NPC-600 requires a less overpotential 280 mV (114 mV dec−1) for OER and 151 mV (98 mV dec−1) to conduct a HER at 10 mA cm−2 in 1 M KOH. The active catalyst Ni@NPC-600 shows long-lasting robustness over 90 h with a current loss of <3.33 % and <4.9 % for OER and HER respectively. In addition, the overall water disintegration of Ni@NPC-600/NF//Ni@NPC-600/NF was achieved at 1.51 V with a continuous evolution of H2 and O2 at the cathode and anode respectively for approximately 150 h of prolonged robustness with a current reduction of < 4.6 %.
电化学能量转换过程必须为氢进化反应(HER)和氧进化反应(OER)开发有效、持久、价格合理的双功能电催化剂。在这项工作中,我们提出了一种简单、可持续、经济、可扩展的方法,用于在掺氮的高多孔石墨碳上制备稳定、有用的镍纳米粒子。在含有氮气(N2)的环境中,在不同温度下采用直接热解然后碳化的方法制备稳定的催化剂。与其他催化剂相比,在 600 °C 下生成的碳材料(Ni@NPC-600)具有更高的电化学效率。合成的电活性催化剂 Ni@NPC-600 在 1 M KOH 中以 10 mA cm-2 的电流进行 OER 所需的过电位为 280 mV(114 mV dec-1),进行 HER 所需的过电位为 151 mV(98 mV dec-1)。活性催化剂 Ni@NPC-600 在 90 小时内表现出持久的稳定性,OER 和 HER 的电流损耗分别为 3.33% 和 4.9%。此外,Ni@NPC-600/NF//Ni@NPC-600/NF 在 1.51 V 电压下实现了整体水分解,阴极和阳极分别持续进化出 H2 和 O2,持续时间约为 150 小时,电流降低了 4.6%。
{"title":"Ni-incorporated N-doped graphitic carbon derived from pomegranate peel biowaste as an efficient OER and HER electrocatalyst for sustainable water splitting","authors":"Madasu Sreenivasulu , Ranjan S. Shetti , Mohammed Ali Alshehri , Nagaraj P. Shetti","doi":"10.1016/j.flatc.2024.100733","DOIUrl":"10.1016/j.flatc.2024.100733","url":null,"abstract":"<div><p>The electrochemical energy conversion process must develop effective, long-lasting, and reasonably priced bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, we present a simple, sustainable, economical, and scalable method for the preparation of stable and useful nickel nanoparticles on highly porous graphitic carbon doped with nitrogen. Direct pyrolysis followed by carbonization was used to create robust catalysts at different temperatures in an environment containing nitrogen (N<sub>2</sub>). The carbon material generated at 600 °C (Ni@NPC-600) shows greater electrochemical efficiency when compared to other catalysts. The synthesized electroactive catalyst Ni@NPC-600 requires a less overpotential 280 mV (114 mV dec<sup>−1</sup>) for OER and 151 mV (98 mV dec<sup>−1</sup>) to conduct a HER at 10 mA cm<sup>−2</sup> in 1 M KOH. The active catalyst Ni@NPC-600 shows long-lasting robustness over 90 h with a current loss of <3.33 % and <4.9 % for OER and HER respectively. In addition, the overall water disintegration of Ni@NPC-600/NF//Ni@NPC-600/NF was achieved at 1.51 V with a continuous evolution of H<sub>2</sub> and O<sub>2</sub> at the cathode and anode respectively for approximately 150 h of prolonged robustness with a current reduction of < 4.6 %.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100733"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.flatc.2024.100737
Jana Kofroňová , Adéla Jiříčková , Ondřej Jankovský , Jan Luxa , Abir Melliti , Radek Vurm
Incorporating iron nanoparticles into graphene oxide (GO) may enhance its potential for use in various applications. However, alterations to the GO structure could pose a risk to environmental organisms and should therefore be fully understood before their further use. In this paper, we prepared iron-doped graphene oxide from pure graphene oxide and two different iron sources with iron in two different oxidation states. Prepared samples were characterized in detail by SEM, EDS, XRF, Raman spectroscopy, XPS, and TEM. In the next step, these samples were subjected to ecotoxicological evaluation in three model organisms: mustard Sinapis alba, freshwater algae Desmodesmus subspicatus, and saltwater crustaceans Artemia salina. Our results showed a stimulatory effect of iron-doped GO on S. alba seeds and a modest degree of growth inhibition for D. subspicatus when compared to pure GO at a concentration of 100 mg/L. In the case of A. salina, mortality was observed at a concentration of 10 mg/L for all tested nanoparticles. However, the iron-doped nanoparticles exhibited a more than twofold decrease in mortality. Our findings suggest that iron-doped GO have a reduced toxicity compared to pure GO, but further research is necessary to enhance the understanding of their behaviour in the environment.
在氧化石墨烯(GO)中加入铁纳米粒子可提高其在各种应用中的使用潜力。然而,GO 结构的改变可能会对环境生物造成危害,因此在进一步使用前应充分了解其结构。在本文中,我们利用纯氧化石墨烯和两种不同氧化态的铁源制备了掺铁氧化石墨烯。制备的样品通过 SEM、EDS、XRF、拉曼光谱、XPS 和 TEM 进行了详细表征。下一步,这些样品在三种模式生物(芥菜、淡水藻类和盐水甲壳动物)中进行了生态毒理学评估:芥菜、淡水藻类和盐水甲壳动物。结果表明,在 100 毫克/升的浓度下,与纯 GO 相比,掺铁 GO 对芥菜种子有刺激作用,而对亚表皮藻的生长有一定程度的抑制作用。对于 A. salina,在 10 毫克/升的浓度下,所有测试的纳米粒子都会导致其死亡。然而,掺铁纳米粒子的死亡率下降了两倍多。我们的研究结果表明,与纯 GO 相比,掺铁 GO 的毒性有所降低,但仍有必要开展进一步的研究,以加深对其在环境中的行为的了解。
{"title":"Toxicity of iron-doped graphene Oxide: Towards eco-friendly carbon-based nanomaterials","authors":"Jana Kofroňová , Adéla Jiříčková , Ondřej Jankovský , Jan Luxa , Abir Melliti , Radek Vurm","doi":"10.1016/j.flatc.2024.100737","DOIUrl":"10.1016/j.flatc.2024.100737","url":null,"abstract":"<div><p>Incorporating iron nanoparticles into graphene oxide (GO) may enhance its potential for use in various applications. However, alterations to the GO structure could pose a risk to environmental organisms and should therefore be fully understood before their further use. In this paper, we prepared iron-doped graphene oxide from pure graphene oxide and two different iron sources with iron in two different oxidation states. Prepared samples were characterized in detail by SEM, EDS, XRF, Raman spectroscopy, XPS, and TEM. In the next step, these samples were subjected to ecotoxicological evaluation in three model organisms: mustard <em>Sinapis alba</em>, freshwater algae <em>Desmodesmus subspicatus,</em> and saltwater crustaceans <em>Artemia salina</em>. Our results showed a stimulatory effect of iron-doped GO on <em>S. alba</em> seeds and a modest degree of growth inhibition for <em>D. subspicatus</em> when compared to pure GO at a concentration of 100 mg/L. In the case of <em>A. salina</em>, mortality was observed at a concentration of 10 mg/L for all tested nanoparticles. However, the iron-doped nanoparticles exhibited a more than twofold decrease in mortality. Our findings suggest that iron-doped GO have a reduced toxicity compared to pure GO, but further research is necessary to enhance the understanding of their behaviour in the environment.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100737"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Ti3C2Tx MXene has ignited a wave of excitement in the world of materials science due to its immense potential for diverse applications. However, a deeper understanding of the synthesis processes involved is crucial to unlock their potential. Here we review the various techniques for producing Ti3C2Tx MXene, covering everything from precursor selection to etching-exfoliation and intercalation-delamination steps. Furthermore, we also explore the oxidation stability of Ti3C2Tx and propose a reaction mechanism to help shed light on this critical aspect of Ti3C2Tx MXene. This review begins with the bibliography studies on Ti3C2Tx and then delves into the principle behind the chemical etching process. Followed by various etching strategies used for Ti3C2Tx synthesis and the impact of individual etching parameters on successful synthesis protocols. Finally, we address the challenges that still need to be overcome to fully realize the potential of Ti3C2Tx and highlight the exciting possibilities for its future development. We aim to inspire further research into this cutting-edge material and encourage the synthesis of Ti3C2Tx MXene with even more outstanding performance and a more comprehensive range of applications.
{"title":"The Rise of Ti3C2Tx MXene synthesis strategies over the decades: A review","authors":"Mohammed Askkar Deen, Harish Kumar Rajendran, Ragavan Chandrasekar, Debanjana Ghosh, Selvaraju Narayanasamy","doi":"10.1016/j.flatc.2024.100734","DOIUrl":"10.1016/j.flatc.2024.100734","url":null,"abstract":"<div><p>The Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene has ignited a wave of excitement in the world of materials science due to its immense potential for diverse applications. However, a deeper understanding of the synthesis processes involved is crucial to unlock their potential. Here we review the various techniques for producing Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, covering everything from precursor selection to etching-exfoliation and intercalation-delamination steps. Furthermore, we also explore the oxidation stability of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and propose a reaction mechanism to help shed light on this critical aspect of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene. This review begins with the bibliography studies on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and then delves into the principle behind the chemical etching process. Followed by various etching strategies used for Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> synthesis and the impact of individual etching parameters on successful synthesis protocols. Finally, we address the challenges that still need to be overcome to fully realize the potential of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and highlight the exciting possibilities for its future development. We aim to inspire further research into this cutting-edge material and encourage the synthesis of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene with even more outstanding performance and a more comprehensive range of applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100734"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.flatc.2024.100735
Jingjing Wang , Ruonan Liu , Yuxin Qiao, Shuxin Liu, Chuanguang Qin
Graphene quantum dots (GQDs) are nanometer-sized fragments of graphene with unique characters, which make them as new interesting application candidates in the fields of chemical, environmental and energy engineering. In this paper, the four nitropyrenes with different nitration degree, such as mononitropyrene, dinitropyrene, trinitropyrene and tetranitropyrene, were successfully synthesized and used to rationally construct corresponding graphite phase quantum dots named GQD(1), GQD(2), GQD(3) and GQD(4) in turn. Subsequently, the relationship between the structure and photocatalytic activity of different intermediates for the preparation of GQD were systematically studied. Degree of polymerization and lateral size of GQDs prepared with different intermediates significantly affected their photocatalytic performance. Through comparision of the photocatalytic water splitting reaction of four GQDs, it was found that GQD(4) had the best photocatalytic efficiency among four GQDs.
{"title":"Photocatalytic activities of graphene quantum dots constructed from four different nitropyrenes on water redox reaction and organic pollutant degradation","authors":"Jingjing Wang , Ruonan Liu , Yuxin Qiao, Shuxin Liu, Chuanguang Qin","doi":"10.1016/j.flatc.2024.100735","DOIUrl":"10.1016/j.flatc.2024.100735","url":null,"abstract":"<div><p>Graphene quantum dots (GQDs) are nanometer-sized fragments of graphene with unique characters, which make them as new interesting application candidates in the fields of chemical, environmental and energy engineering. In this paper, the four nitropyrenes with different nitration degree, such as mononitropyrene, dinitropyrene, trinitropyrene and tetranitropyrene, were successfully synthesized and used to rationally construct corresponding graphite phase quantum dots named GQD(1), GQD(2), GQD(3) and GQD(4) in turn. Subsequently, the relationship between the structure and photocatalytic activity of different intermediates for the preparation of GQD were systematically studied. Degree of polymerization and lateral size of GQDs prepared with different intermediates significantly affected their photocatalytic performance. Through comparision of the photocatalytic water splitting reaction of four GQDs, it was found that GQD(4) had the best photocatalytic efficiency among four GQDs.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100735"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.flatc.2024.100731
Jiaying Wang , Zhe Shi , Jiani Gong, Xianglin Zhou, Jiaming Li, Zhiyang Lyu
Aerogels, as extraordinarily lightweight and porous functional nanomaterials, have garnered significant interest in both academia and industry over the past few decades. Graphene-based aerogels, in particular, stand out due to their excellent conductivity properties, high specific surface area, and efficient adsorption efficiency. Despite these advantageous properties, aerogels face challenges in mechanical durability, complicating their processing, especially in applications requiring complex structures. 3D printing technology holds promise for overcoming these limitations through its capabilities in microscale manufacturing, rapid prototyping, and arbitrary shaping. This review summarizes the advantages of graphene-based aerogels and compares various 3D printing techniques used for aerogel fabrication. Furthermore, it also highlights the energy and environmental applications of 3D-printed graphene and graphene-based composite aerogels, including batteries, supercapacitors, electromagnetic shielding, sensors, etc. The review concludes with an exploration of current challenges and provides an outlook on future developments in the 3D printing of graphene-based aerogels.
{"title":"3D printing of graphene-based aerogels and their applications","authors":"Jiaying Wang , Zhe Shi , Jiani Gong, Xianglin Zhou, Jiaming Li, Zhiyang Lyu","doi":"10.1016/j.flatc.2024.100731","DOIUrl":"10.1016/j.flatc.2024.100731","url":null,"abstract":"<div><p>Aerogels, as extraordinarily lightweight and porous functional nanomaterials, have garnered significant interest in both academia and industry over the past few decades. Graphene-based aerogels, in particular, stand out due to their excellent conductivity properties, high specific surface area, and efficient adsorption efficiency. Despite these advantageous properties, aerogels face challenges in mechanical durability, complicating their processing, especially in applications requiring complex structures. 3D printing technology holds promise for overcoming these limitations through its capabilities in microscale manufacturing, rapid prototyping, and arbitrary shaping. This review summarizes the advantages of graphene-based aerogels and compares various 3D printing techniques used for aerogel fabrication. Furthermore, it also highlights the energy and environmental applications of 3D-printed graphene and graphene-based composite aerogels, including batteries, supercapacitors, electromagnetic shielding, sensors, etc. The review concludes with an exploration of current challenges and provides an outlook on future developments in the 3D printing of graphene-based aerogels.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100731"},"PeriodicalIF":5.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.flatc.2024.100726
David Nugroho , Young Jun Joo , Kwang Youn Cho , Rachadaporn Benchawattananon , Saksit Chanthai , Lei Zhu , Won-Chun Oh
A straightforward and precise method was employed to generate Ti3C2 MXene/ZnO/CdSe photocatalysts by a simple synthesis process involving calcination at a temperature of 400 °C. Optical, structural, morphology, microstructure, and compositional properties of these catalysts were characterized. Results demonstrated that the presence of ZnO and CdSe doping sustained their existence inside the Ti3C2 MXene structure. Effects of catalyst powder, pollutant powder, and different degrading methods such as sonophotocatalytic, sonocatalytic, and photocatalytic methods on various antibiotic pollutants were then compared. The degradation efficiencies of sonophotocatalytic method were found to be highly efficient, resulting of 99.99, 99.98, and 99.90 % for ciprofloxacin, amoxicillin, and ofloxacin, respectively. Analysis of scavenger effect also illustrated the deterioration of ciprofloxacin and amoxicillin, suggesting that superoxide radicals (O2−) had a substantial role in the sonophotocatalytic degradation process. Based on data obtained for ofloxacin, it was clear that the existence of holes (h+ quencher) affected the deterioration of ofloxacin in the system. Ti3C2 MXene/ZnO/CdSe had a performance in electrochemical sensing. Limits of detection (LODs) for ciprofloxacin, amoxicillin, and ofloxacin were 39.29, 4.49, and 13.04 ppm, respectively. Limits of quantification (LOQs) for ciprofloxacin, amoxicillin, and ofloxacin were 119, 13.61, and 39.52 ppm, respectively. Efficient degradation of pollutants using visible light can be achieved by employing straightforwardly manufactured Ti3C2 MXene/ZnO/CdSe photocatalysts, making them a practical and promising option.
{"title":"Novel synthesis of Ti3C2 MXene/ZnO/CdSe for sonoelectron and photoelectron triggered synergetic sonophotocatalytic degradation with various antibiotics","authors":"David Nugroho , Young Jun Joo , Kwang Youn Cho , Rachadaporn Benchawattananon , Saksit Chanthai , Lei Zhu , Won-Chun Oh","doi":"10.1016/j.flatc.2024.100726","DOIUrl":"10.1016/j.flatc.2024.100726","url":null,"abstract":"<div><p>A straightforward and precise method was employed to generate Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe photocatalysts by a simple synthesis process involving calcination at a temperature of 400 °C. Optical, structural, morphology, microstructure, and compositional properties of these catalysts were characterized. Results demonstrated that the presence of ZnO and CdSe doping sustained their existence inside the Ti<sub>3</sub>C<sub>2</sub> MXene structure. Effects of catalyst powder, pollutant powder, and different degrading methods such as sonophotocatalytic, sonocatalytic, and photocatalytic methods on various antibiotic pollutants were then compared. The degradation efficiencies of sonophotocatalytic method were found to be highly efficient, resulting of 99.99, 99.98, and 99.90 % for ciprofloxacin, amoxicillin, and ofloxacin, respectively. Analysis of scavenger effect also illustrated the deterioration of ciprofloxacin and amoxicillin, suggesting that superoxide radicals (<sup><img></sup>O<sub>2</sub><sup>−</sup>) had a substantial role in the sonophotocatalytic degradation process. Based on data obtained for ofloxacin, it was clear that the existence of holes (h<sup>+</sup> quencher) affected the deterioration of ofloxacin in the system. Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe had a performance in electrochemical sensing. Limits of detection (LODs) for ciprofloxacin, amoxicillin, and ofloxacin were 39.29, 4.49, and 13.04 ppm, respectively. Limits of quantification (LOQs) for ciprofloxacin, amoxicillin, and ofloxacin were 119, 13.61, and 39.52 ppm, respectively. Efficient degradation of pollutants using visible light can be achieved by employing straightforwardly manufactured Ti<sub>3</sub>C<sub>2</sub> MXene/ZnO/CdSe photocatalysts, making them a practical and promising option.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100726"},"PeriodicalIF":5.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.flatc.2024.100727
Heera T. Nair , Prafulla K. Jha , Brahmananda Chakraborty
Using Density Functional Theory, a newly synthesised 2-dimensional polyaramid (2dpa) system decorated with Li is explored for its hydrogen storage capability, and interesting results are obtained. Various sites on 2dpa are studied to ascertain the finest location for Li-decoration. The optimum configuration for hydrogen storage is then achieved by successively adding H2 molecules, till it satisfies the adsorption energy window as prescribed by DoE (0.2–0.7 eV/H2). Li has a good binding energy of −2.78 eV on 2dpa, higher than the cohesive energy for Li and thus prevents any possibilities of clustering. Yet the clustering has been checked by calculating the diffusion energy barrier for the Li atom which came to be around 1.92 eV. The average binding energy for H2 on 2dpa + Li came to be −0.25 eV and the gravimetric weight percent with 3Li on 2dpa and 6H2 molecules attached to each Li comes to be 10.62. Both values meet the conditions set by the US DoE for solid-state hydrogen storage systems. The thermal and dynamic stability of the system has been investigated using Ab initio Molecular Dynamics simulations and computing phonon spectra. Our theoretical results on newly synthesized 2D material may inspire the experimentalist to design a 2dpa-based high-capacity hydrogen storage device.
利用密度泛函理论,对新合成的锂装饰二维聚芳纶(2dpa)系统的储氢能力进行了探索,并获得了有趣的结果。研究了 2dpa 上的不同位置,以确定锂装饰的最佳位置。然后通过连续添加 H2 分子来实现最佳的储氢配置,直至满足 DoE 规定的吸附能量窗口(0.2-0.7 eV/H2)。锂在 2dpa 上的结合能为 -2.78 eV,高于锂的内聚能,因此不会产生任何聚类。然而,通过计算锂原子的扩散能障,我们发现锂原子的扩散能障约为 1.92 eV。2dpa + Li 上 H2 的平均结合能为-0.25 eV,2dpa 上有 3 个 Li,每个 Li 上附有 6 个 H2 分子的重量百分比为 10.62。这两个值都符合美国能源部为固态储氢系统设定的条件。我们利用 Ab initio 分子动力学模拟和声子光谱计算研究了该系统的热稳定性和动态稳定性。我们对新合成的二维材料的理论研究结果可能会对实验人员设计基于 2dpa 的高容量储氢装置有所启发。
{"title":"High-capacity hydrogen storage in Li-decorated newly synthesized 2D polyaramid: Insights from density functional theory","authors":"Heera T. Nair , Prafulla K. Jha , Brahmananda Chakraborty","doi":"10.1016/j.flatc.2024.100727","DOIUrl":"10.1016/j.flatc.2024.100727","url":null,"abstract":"<div><p>Using Density Functional Theory, a newly synthesised 2-dimensional polyaramid (2dpa) system decorated with Li is explored for its hydrogen storage capability, and interesting results are obtained. Various sites on 2dpa are studied to ascertain the finest location for Li-decoration. The optimum configuration for hydrogen storage is then achieved by successively adding H<sub>2</sub> molecules, till it satisfies the adsorption energy window as prescribed by DoE (0.2–0.7 eV/H<sub>2</sub>). Li has a good binding energy of −2.78 eV on 2dpa, higher than the cohesive energy for Li and thus prevents any possibilities of clustering. Yet the clustering has been checked by calculating the diffusion energy barrier for the Li atom which came to be around 1.92 eV. The average binding energy for H<sub>2</sub> on 2dpa + Li came to be −0.25 eV and the gravimetric weight percent with 3Li on 2dpa and 6H<sub>2</sub> molecules attached to each Li comes to be 10.62. Both values meet the conditions set by the US DoE for solid-state hydrogen storage systems. The thermal and dynamic stability of the system has been investigated using Ab initio Molecular Dynamics simulations and computing phonon spectra. Our theoretical results on newly synthesized 2D material may inspire the experimentalist to design a 2dpa-based high-capacity hydrogen storage device.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100727"},"PeriodicalIF":5.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1016/j.flatc.2024.100730
Norulsamani Abdullah , Nurul Atiqah Izzati Md Ishak , K.H. Tan , M.A. Zaed , R. Saidur , A.K. Pandey
MXenes represent a revolutionary class of two-dimensional (2D) materials that have garnered significant attention due to their unique properties, including excellent electrical conductivity, and remarkable mechanical strength. This study investigates the influence of different etching agents on the synthesis of MXenes for electrochemical energy conversion applications, particularly in methanol oxidation reactions (MOR). Morphological characterization, particle distribution and sizing, elemental analysis, and surface chemistry assessments were conducted using field emission scanning electron microscopy (FESEM), elemental mapping, transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). Electrochemical techniques such as cyclic voltammetry (CV), electrochemical active surface area (ECSA), Tafel analysis, electrochemical impedance spectroscopy (EIS), and long-term stability assessment were employed. The study reveals that PtRu/MXene synthesized with the FeF3/HCl etching route exhibits the highest ECSA value and peak current density, being 12.3 times and 3.63 times higher than those achieved via the LiF/HCl etching route. The kinetic rate, tolerance to catalyst poisoning and long-term stability also show the better results for this etching route. These findings suggest promising potential for PtRu/MXene_FeF3/HCl as an effective anodic electrocatalyst in direct methanol fuel cell (DMFC) applications.
{"title":"Investigating the impact of various etching agents on Ti3C2Tx MXene synthesis for electrochemical energy conversion","authors":"Norulsamani Abdullah , Nurul Atiqah Izzati Md Ishak , K.H. Tan , M.A. Zaed , R. Saidur , A.K. Pandey","doi":"10.1016/j.flatc.2024.100730","DOIUrl":"10.1016/j.flatc.2024.100730","url":null,"abstract":"<div><p>MXenes represent a revolutionary class of two-dimensional (2D) materials that have garnered significant attention due to their unique properties, including excellent electrical conductivity, and remarkable mechanical strength. This study investigates the influence of different etching agents on the synthesis of MXenes for electrochemical energy conversion applications, particularly in methanol oxidation reactions (MOR). Morphological characterization, particle distribution and sizing, elemental analysis, and surface chemistry assessments were conducted using field emission scanning electron microscopy (FESEM), elemental mapping, transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). Electrochemical techniques such as cyclic voltammetry (CV), electrochemical active surface area (ECSA), Tafel analysis, electrochemical impedance spectroscopy (EIS), and long-term stability assessment were employed. The study reveals that PtRu/MXene synthesized with the FeF<sub>3</sub>/HCl etching route exhibits the highest ECSA value and peak current density, being 12.3 times and 3.63 times higher than those achieved via the LiF/HCl etching route. The kinetic rate, tolerance to catalyst poisoning and long-term stability also show the better results for this etching route. These findings suggest promising potential for PtRu/MXene_FeF<sub>3</sub>/HCl as an effective anodic electrocatalyst in direct methanol fuel cell (DMFC) applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100730"},"PeriodicalIF":5.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-18DOI: 10.1016/j.flatc.2024.100729
Nura Ibrahim , Lawal Mohammed , Sadiq Umar , Davide Ceresoli , Qinfang Zhang
We constructed SiC/borophene heterostructure based on the method of commensurate lattice with supercell approach and studied the structural, electronic and electrochemical properties using density functional theory (DFT). The interfacial binding energy of SiC/borophene is as high as −26.07 meV/Å2. Significant amounts of charge were found to drift from SiC to borophene, resulting in interfacial charge redistribution and increased Li binding affinity on the surfaces. The electronic properties of SiC/borophene showed pronounced metallic conductivity, a trait conducive to anodic applications in electrochemical cells. The calculated Li adsorption energy at the interface of SiC/borophene is −2.23 eV. Multiple layer adsorption is also observed, with the heterostructure retaining much of its structural integrity after adatom adsorption, indicating possible good cycling stability. At the maximum concentration, the Li storage capacity for SiC/borophene is 1980.63 mAh/g, surpassing a large variety of other reported 2D complexes. Also, an overall average operating voltage of 1.06 V is maintained in the structure, which is in proximity of the optimal 1.5 V threshold requisite for anodic operations. The diffusion energy barriers associated with lithium ion migration across the three distinct adsorption sites of the heterostructure all reveal a nominal magnitude with the lowest barrier energy of 0.54 eV at the top of borophene adsorption layer and site. These findings show that SiC/borophene could be used as an anode in very high-capacity lithium-ion batteries.
{"title":"2d van der Waal SiC/borophene heterostructure as a promising anode for high-capacity Li ion battery: First principles study","authors":"Nura Ibrahim , Lawal Mohammed , Sadiq Umar , Davide Ceresoli , Qinfang Zhang","doi":"10.1016/j.flatc.2024.100729","DOIUrl":"10.1016/j.flatc.2024.100729","url":null,"abstract":"<div><p>We constructed SiC/borophene heterostructure based on the method of commensurate lattice with supercell approach and studied the structural, electronic and electrochemical properties using density functional theory (DFT). The interfacial binding energy of SiC/borophene is as high as −26.07 meV/Å<sup>2</sup>. Significant amounts of charge were found to drift from SiC to borophene, resulting in interfacial charge redistribution and increased Li binding affinity on the surfaces. The electronic properties of SiC/borophene showed pronounced metallic conductivity, a trait conducive to anodic applications in electrochemical cells. The calculated Li adsorption energy at the interface of SiC/borophene is −2.23 eV. Multiple layer adsorption is also observed, with the heterostructure retaining much of its structural integrity after adatom adsorption, indicating possible good cycling stability. At the maximum concentration, the Li storage capacity for SiC/borophene is 1980.63 mAh/g, surpassing a large variety of other reported 2D complexes. Also, an overall average operating voltage of 1.06 V is maintained in the structure, which is in proximity of the optimal 1.5 V threshold requisite for anodic operations. The diffusion energy barriers associated with lithium ion migration across the three distinct adsorption sites of the heterostructure all reveal a nominal magnitude with the lowest barrier energy of 0.54 eV at the top of borophene adsorption layer and site. These findings show that SiC/borophene could be used as an anode in very high-capacity lithium-ion batteries.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100729"},"PeriodicalIF":5.9,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1016/j.flatc.2024.100728
Ying Liu , Junhao Luo , Hongwei Zeng , Jing Xu , Yao Wang , Yuming Dong , Jiawei Zhang
The 2-electron electrocatalytic oxygen reduction reaction (2e− ORR) to hydrogen peroxide (H2O2) represents a promising strategy to resolve the high energy consumption and increasing environmental concerns inherent in the traditional anthraquinone process. The acidic 2e− ORR has emerged as an exciting alternative for industrial-level H2O2 production, whereas is hampered by the inferior H2O2 selectivity due to the uncontrollable proton-coupled electron transfer processes in an acidic environment. Herein, an ultrathin 2D metal–organic frameworks (MOFs) nanosheet based on cobalt tetra(4-carboxyphenyl) porphine (Co-TCPP NSs) is designed to promote H2O2 selectivity up to 96.5 %, accompanied with a remarkable H2O2 generation rate of 4677.42 mg·L−1·h−1. Of note, the Co-TCPP NSs also demonstrate its potential for the electro-Fenton process with a cumulative H2O2 concentration of 1.21 wt%, highlighting its practical potential in portable H2O2 generation electrochemical devices for distributed applications. Our findings demonstrated that the efficient H2O2 electrosynthesis could be attributed to the attenuated *OOH adsorption over Co-N4 moiety on the Co-TCPP NSs, which consequently suppresses its further reduction to form H2O. This work highlights the potential of 2D MOF architecture for the 2e− ORR and provides an atomic-level insight into the enhanced H2O2 selectivity.
{"title":"Boosting acidic hydrogen peroxide electrosynthesis on 2D metal-organic framework nanosheets based on cobalt porphyrins","authors":"Ying Liu , Junhao Luo , Hongwei Zeng , Jing Xu , Yao Wang , Yuming Dong , Jiawei Zhang","doi":"10.1016/j.flatc.2024.100728","DOIUrl":"10.1016/j.flatc.2024.100728","url":null,"abstract":"<div><p>The 2-electron electrocatalytic oxygen reduction reaction (2e<sup>−</sup> ORR) to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) represents a promising strategy to resolve the high energy consumption and increasing environmental concerns inherent in the traditional anthraquinone process. The acidic 2e<sup>−</sup> ORR has emerged as an exciting alternative for industrial-level H<sub>2</sub>O<sub>2</sub> production, whereas is hampered by the inferior H<sub>2</sub>O<sub>2</sub> selectivity due to the uncontrollable proton-coupled electron transfer processes in an acidic environment. Herein, an ultrathin 2D metal–organic frameworks (MOFs) nanosheet based on cobalt tetra(4-carboxyphenyl) porphine (Co-TCPP NSs) is designed to promote H<sub>2</sub>O<sub>2</sub> selectivity up to 96.5 %, accompanied with a remarkable H<sub>2</sub>O<sub>2</sub> generation rate of 4677.42 mg·L<sup>−1</sup>·h<sup>−1</sup>. Of note, the Co-TCPP NSs also demonstrate its potential for the electro-Fenton process with a cumulative H<sub>2</sub>O<sub>2</sub> concentration of 1.21 wt%, highlighting its practical potential in portable H<sub>2</sub>O<sub>2</sub> generation electrochemical devices for distributed applications. Our findings demonstrated that the efficient H<sub>2</sub>O<sub>2</sub> electrosynthesis could be attributed to the attenuated *OOH adsorption over Co-N<sub>4</sub> moiety on the Co-TCPP NSs, which consequently suppresses its further reduction to form H<sub>2</sub>O. This work highlights the potential of 2D MOF architecture for the 2e<sup>−</sup> ORR and provides an atomic-level insight into the enhanced H<sub>2</sub>O<sub>2</sub> selectivity.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100728"},"PeriodicalIF":5.9,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}