首页 > 最新文献

International Communications in Heat and Mass Transfer最新文献

英文 中文
Control of double diffusive flow field of nanoenhanced phase change material via small satellite body around square heater in a lid-driven cavity with machine learning integration 基于机器学习集成的盖驱动腔内方形加热器周边小卫星体纳米增强相变材料双扩散流场控制
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-10 DOI: 10.1016/j.icheatmasstransfer.2025.110293
Shafqat Hussain , Hakan F.Öztop , Awatef Abidi , Fatih Ertam
This study presents a comprehensive numerical investigation of double-diffusive natural convection in a lid-driven square cavity filled with a nanoencapsulated phase change material (NEPCM) suspension. The cavity incorporates a central heated and solutally enriched square obstacle alongside a small adiabatic circular satellite obstacle. The present paper also proposes a comprehensive mathematical framework for the application of machine learning algorithms to predict concentration and temperature fields in flows characterized by varying Richardson numbers. The governing equations, formulated under the assumptions of laminar, incompressible, steady-state, Newtonian flow with the Boussinesq approximation, are solved using a Galerkin-based finite element method, enabling accurate treatment of complex geometries and boundary conditions. The study elucidates the effects of the satellite obstacle’s angular position, the Lewis number, the Reynolds number, and the magnetic field strength on the flow structure, temperature and concentration distributions, and overall transport characteristics. Quantitative analyses of dimensionless parameters, including the average Nusselt and Sherwood numbers as well as mean kinetic energy, provide insights into the interplay between convective and diffusive transport phenomena in NEPCM-laden fluids. The findings demonstrate that machine learning algorithms, particularly Random Forest, can attain nearly perfect predictive accuracy (R2 > 0.9996 for both concentration and temperature fields across a range of Richardson number regimes. Furthermore, the location of the satellite obstacle can be used as a control parameter for regulating the calculated values inside the cavity. The results reveal critical interactions between obstacle placement and flow behavior, offering design guidance for enhanced thermal and solutal management in advanced energy and microfluidic applications.
摘要本文对纳米封装相变材料(NEPCM)悬浮液填充的方形腔盖驱动的双扩散自然对流进行了全面的数值研究。该空腔包括一个中央加热且溶质富集的方形障碍物以及一个小的绝热圆形卫星障碍物。本文还提出了一个全面的数学框架,用于应用机器学习算法来预测以不同理查德森数为特征的流动中的浓度和温度场。控制方程是在层流、不可压缩、稳态、牛顿流和Boussinesq近似的假设下制定的,使用基于伽辽金的有限元方法进行求解,从而能够精确处理复杂的几何形状和边界条件。研究了卫星障碍物的角度位置、刘易斯数、雷诺数和磁场强度对流动结构、温度和浓度分布以及整体输运特性的影响。对无量纲参数的定量分析,包括平均努塞尔数和舍伍德数以及平均动能,提供了对nepcm负载流体中对流和扩散输运现象之间相互作用的见解。研究结果表明,机器学习算法,特别是随机森林,可以在一系列理查森数制度的浓度和温度场中获得近乎完美的预测精度(R2 > 0.9996)。此外,卫星障碍物的位置可以作为调节腔内计算值的控制参数。研究结果揭示了障碍物放置和流动行为之间的关键相互作用,为先进能源和微流体应用中增强热管理和溶质管理提供了设计指导。
{"title":"Control of double diffusive flow field of nanoenhanced phase change material via small satellite body around square heater in a lid-driven cavity with machine learning integration","authors":"Shafqat Hussain ,&nbsp;Hakan F.Öztop ,&nbsp;Awatef Abidi ,&nbsp;Fatih Ertam","doi":"10.1016/j.icheatmasstransfer.2025.110293","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110293","url":null,"abstract":"<div><div>This study presents a comprehensive numerical investigation of double-diffusive natural convection in a lid-driven square cavity filled with a nanoencapsulated phase change material (NEPCM) suspension. The cavity incorporates a central heated and solutally enriched square obstacle alongside a small adiabatic circular satellite obstacle. The present paper also proposes a comprehensive mathematical framework for the application of machine learning algorithms to predict concentration and temperature fields in flows characterized by varying Richardson numbers. The governing equations, formulated under the assumptions of laminar, incompressible, steady-state, Newtonian flow with the Boussinesq approximation, are solved using a Galerkin-based finite element method, enabling accurate treatment of complex geometries and boundary conditions. The study elucidates the effects of the satellite obstacle’s angular position, the Lewis number, the Reynolds number, and the magnetic field strength on the flow structure, temperature and concentration distributions, and overall transport characteristics. Quantitative analyses of dimensionless parameters, including the average Nusselt and Sherwood numbers as well as mean kinetic energy, provide insights into the interplay between convective and diffusive transport phenomena in NEPCM-laden fluids. The findings demonstrate that machine learning algorithms, particularly Random Forest, can attain nearly perfect predictive accuracy (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span><math><mo>&gt;</mo></math></span> 0.9996 for both concentration and temperature fields across a range of Richardson number regimes. Furthermore, the location of the satellite obstacle can be used as a control parameter for regulating the calculated values inside the cavity. The results reveal critical interactions between obstacle placement and flow behavior, offering design guidance for enhanced thermal and solutal management in advanced energy and microfluidic applications.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110293"},"PeriodicalIF":6.4,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of evaporation enhancement in solar desalination: Materials, design, integration, and modeling 太阳能海水淡化中蒸发增强的综合综述:材料、设计、集成和建模
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-10 DOI: 10.1016/j.icheatmasstransfer.2025.110228
Farhan Lafta Rashid , Mudhar A. Al-Obaidi , Najah M.L. Al Maimuri , Mushtaq K. Abdalrahem , Saif Ali Kadhim , Ali M. Ashour , Abdallah Bouabidi , Ahmed Kadhim Hussein , Hayder I. Mohammed , Atef Chibani
The current problem of freshwater scarcity on the global scale requires the creation of effective and environmentally friendly technologies in desalination. Solar stills are also positive in terms of providing significant potential solution, especially in the arid and remote areas, however, the adoption of such systems is constrained by low rates of evaporation and productivity. This is a systematic review that examines the latest developments that have been trying to beat these constraints through improving the process of evaporation in solar desalinations systems. The methodological framework divides and analyses innovations on four interdependent pillars, including material-based advances, structural and design advances, systems integration and approaches, and modeling, simulation, and maximization. The review lists material-based improvements in performance, such as carbonized manure evaporators (2.25 kg m−2 h−1) and nano-graphite wicks (30.9 % yield improvement) and structural and hybrid strategies which have increased the yield by as much as 95 %. The synergistic schemes of using improved photothermal material is deduced as effective structural configurations and hybrid energy consumption are the key to getting beyond the conventional performance limits, achieving high evaporation rates (e.g. up to 6.12 kg m−2 h−1 in multi-stage system) and costs of water production could be as low as 0.018 $/L. These breakthroughs would be essential in creating the future generation of the affordable, scalable, and effective solar desalination systems.
目前全球范围内的淡水短缺问题要求在海水淡化方面创造有效和环境友好的技术。太阳能蒸馏器在提供重要的潜在解决办法方面也是积极的,特别是在干旱和偏远地区,然而,这种系统的采用受到低蒸发率和生产力的限制。这是一篇系统的综述,研究了通过改进太阳能脱盐系统中的蒸发过程来突破这些限制的最新进展。方法论框架在四个相互依赖的支柱上划分和分析创新,包括基于材料的进步、结构和设计的进步、系统集成和方法、建模、仿真和最大化。该综述列出了基于材料的性能改进,例如碳化粪肥蒸发器(2.25 kg m−2 h−1)和纳米石墨丝(产量提高30.9%)以及结构和杂交策略,这些策略使产量提高了95%。使用改进光热材料的协同方案被推断为有效的结构配置和混合能源消耗是超越传统性能限制的关键,实现高蒸发速率(例如在多级系统中高达6.12 kg m - 2 h - 1)和产水成本可低至0.018美元/升。这些突破对于创造未来一代经济实惠、可扩展且有效的太阳能脱盐系统至关重要。
{"title":"A comprehensive review of evaporation enhancement in solar desalination: Materials, design, integration, and modeling","authors":"Farhan Lafta Rashid ,&nbsp;Mudhar A. Al-Obaidi ,&nbsp;Najah M.L. Al Maimuri ,&nbsp;Mushtaq K. Abdalrahem ,&nbsp;Saif Ali Kadhim ,&nbsp;Ali M. Ashour ,&nbsp;Abdallah Bouabidi ,&nbsp;Ahmed Kadhim Hussein ,&nbsp;Hayder I. Mohammed ,&nbsp;Atef Chibani","doi":"10.1016/j.icheatmasstransfer.2025.110228","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110228","url":null,"abstract":"<div><div>The current problem of freshwater scarcity on the global scale requires the creation of effective and environmentally friendly technologies in desalination. Solar stills are also positive in terms of providing significant potential solution, especially in the arid and remote areas, however, the adoption of such systems is constrained by low rates of evaporation and productivity. This is a systematic review that examines the latest developments that have been trying to beat these constraints through improving the process of evaporation in solar desalinations systems. The methodological framework divides and analyses innovations on four interdependent pillars, including material-based advances, structural and design advances, systems integration and approaches, and modeling, simulation, and maximization. The review lists material-based improvements in performance, such as carbonized manure evaporators (2.25 kg m<sup>−2</sup> h<sup>−1</sup>) and nano-graphite wicks (30.9 % yield improvement) and structural and hybrid strategies which have increased the yield by as much as 95 %. The synergistic schemes of using improved photothermal material is deduced as effective structural configurations and hybrid energy consumption are the key to getting beyond the conventional performance limits, achieving high evaporation rates (e.g. up to 6.12 kg m<sup>−2</sup> h<sup>−1</sup> in multi-stage system) and costs of water production could be as low as 0.018 $/L. These breakthroughs would be essential in creating the future generation of the affordable, scalable, and effective solar desalination systems.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110228"},"PeriodicalIF":6.4,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D analysis of flexible vortex generators in microchannels: Wing effects on thermal–hydraulic performance 微通道柔性涡发生器的三维分析:机翼对热工性能的影响
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-10 DOI: 10.1016/j.icheatmasstransfer.2025.110281
Mahdi Sheikhizad Saravani, Hamed Mohaddes Deylami, Mohammad Naghashzadegan
This study presents a comprehensive three-dimensional numerical investigation of the thermal–hydraulic performance of flexible vortex generators (FVGs) inside a microchannel. The main objective is to evaluate the influence of novel frontal and symmetric side-wing configurations on heat transfer enhancement and pressure loss reduction, which is driven by the growing demand for high-efficiency microchannel cooling and compact thermal management systems in microelectronic and energy applications. The Arbitrary Lagrangian–Eulerian (ALE) method is employed to simulate fluid–structure interactions (FSI) and capture the dynamic deformation of the FVGs for laminar airflow. Key performance parameters, including the Nusselt number (Nu), friction factor (f), and performance evaluation criterion (PEC), are analyzed to assess the overall thermal–hydraulic characteristics. The results revealed that the symmetric single side-wing configuration achieves the most effective balance between heat transfer enhancement and pressure drop, with the maximum values of Nu = 22.83 and PEC = 1.30. Increasing the number of frontal or side wings enhanced vortex strength and local mixing; however, it also increased pressure losses, leading to a decline in overall efficiency. The findings demonstrate that geometric asymmetry and controlled flexibility play crucial roles in optimizing the FVG performance.
本文对微通道内柔性涡发生器(FVGs)的热工性能进行了全面的三维数值研究。该研究的主要目的是评估新型正面和对称侧翼结构对增强传热和降低压力损失的影响,这是由微电子和能源应用中对高效微通道冷却和紧凑热管理系统日益增长的需求所驱动的。采用任意拉格朗日-欧拉(ALE)方法模拟了层流气流作用下的流固耦合(FSI),并捕捉了FVGs的动态变形。分析关键性能参数,包括努塞尔数(Nu)、摩擦系数(f)和性能评价准则(PEC),以评估整体热工特性。结果表明,对称的单侧翼结构在传热强化和压降之间达到了最有效的平衡,Nu = 22.83, PEC = 1.30。增加前翼或侧翼的数量可以增强旋涡强度和局部混合;然而,它也增加了压力损失,导致整体效率下降。研究结果表明,几何不对称和可控柔性在优化FVG性能中起着至关重要的作用。
{"title":"3D analysis of flexible vortex generators in microchannels: Wing effects on thermal–hydraulic performance","authors":"Mahdi Sheikhizad Saravani,&nbsp;Hamed Mohaddes Deylami,&nbsp;Mohammad Naghashzadegan","doi":"10.1016/j.icheatmasstransfer.2025.110281","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110281","url":null,"abstract":"<div><div>This study presents a comprehensive three-dimensional numerical investigation of the thermal–hydraulic performance of flexible vortex generators (FVGs) inside a microchannel. The main objective is to evaluate the influence of novel frontal and symmetric side-wing configurations on heat transfer enhancement and pressure loss reduction, which is driven by the growing demand for high-efficiency microchannel cooling and compact thermal management systems in microelectronic and energy applications. The Arbitrary Lagrangian–Eulerian (ALE) method is employed to simulate fluid–structure interactions (FSI) and capture the dynamic deformation of the FVGs for laminar airflow. Key performance parameters, including the Nusselt number (<em>Nu</em>), friction factor (f), and performance evaluation criterion (PEC), are analyzed to assess the overall thermal–hydraulic characteristics. The results revealed that the symmetric single side-wing configuration achieves the most effective balance between heat transfer enhancement and pressure drop, with the maximum values of <em>Nu</em> = 22.83 and PEC = 1.30. Increasing the number of frontal or side wings enhanced vortex strength and local mixing; however, it also increased pressure losses, leading to a decline in overall efficiency. The findings demonstrate that geometric asymmetry and controlled flexibility play crucial roles in optimizing the FVG performance.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110281"},"PeriodicalIF":6.4,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review of turbulator effects on shell-and-tube heat exchanger performance based on CFD studies 基于CFD研究的紊流对管壳式换热器性能影响综述
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-10 DOI: 10.1016/j.icheatmasstransfer.2025.110273
Mohammad Saleh Abdollahpour , Mahyar Fazli , Alireza Khademi , Seyed Ali Abtahi Mehrjardi , Karim Mazaheri , Mohammad Behshad Shafii
Shell-and-tube heat exchangers (STHEs) are widely recognized as one of the most reliable and versatile thermal devices in power generation, chemical processing, and energy systems. Their robust design and adaptability explain their extensive use, yet the growing need for higher efficiency, compactness, and reduced operating costs continues to drive efforts for performance improvement. Among various enhancement techniques, passive methods such as turbulators are particularly attractive. By introducing structural modifications that disturb fluid flow, turbulators intensify turbulence, enhance mixing, and reduce stagnant zones, which results in stronger heat transfer without the requirement for external energy. However, these benefits are usually accompanied by increased pressure drops (ΔP), making optimization essential. Computational fluid dynamics (CFD) has become the primary tool for exploring these design trade-offs. Unlike analytical or experimental methods, CFD provides detailed insight into velocity fields, temperature distributions, and flow structures at a fraction of the cost and time. Its flexibility makes it indispensable for studying complex turbulator geometries, such as twisted tubes, dimpled and corrugated surfaces, helical and modified baffles, and hybrid configurations. Nevertheless, the predictive power of CFD depends heavily on turbulence modeling, grid quality, and solver strategies, which require careful selection to ensure accuracy and stability. This review offers the first focused and critical synthesis of CFD-based studies on turbulators in STHEs. It evaluates the ability of different designs to enhance hydrothermal performance, while also highlighting the hydraulic penalties that accompany them. Beyond geometric modifications, it examines how artificial intelligence (AI) is being coupled with CFD to accelerate optimization, reduce computational cost, and improve predictive accuracy. By systematically comparing achievements and limitations across the literature, this review provides not only a consolidated reference for engineers but also a roadmap for advancing next-generation STHEs that are compact, energy-efficient, and better aligned with future industrial needs.
管壳式换热器(STHEs)被广泛认为是发电、化学加工和能源系统中最可靠、最通用的热设备之一。其强大的设计和适应性解释了其广泛使用的原因,但对更高效率、紧凑性和降低运营成本的日益增长的需求继续推动着性能改进。在各种增强技术中,紊流等被动增强技术尤其具有吸引力。通过引入干扰流体流动的结构修改,紊流器加剧湍流,增强混合,减少停滞区,从而在不需要外部能量的情况下实现更强的传热。然而,这些好处通常伴随着压力降的增加(ΔP),因此优化是必不可少的。计算流体动力学(CFD)已经成为探索这些设计权衡的主要工具。与分析或实验方法不同,CFD可以以更少的成本和时间,提供对速度场、温度分布和流动结构的详细洞察。它的灵活性使得它在研究复杂的湍流几何形状,如扭曲管、凹陷和波纹表面、螺旋和修改挡板以及混合配置中不可或缺。然而,CFD的预测能力在很大程度上取决于湍流建模、网格质量和求解器策略,这需要仔细选择以确保准确性和稳定性。这篇综述提供了第一个重点和关键的基于cfd的STHEs湍流研究的综合。它评估了不同设计提高热液性能的能力,同时也强调了随之而来的水力惩罚。除了几何修改之外,它还研究了人工智能(AI)如何与CFD相结合,以加速优化、降低计算成本并提高预测准确性。通过系统地比较文献中的成就和局限性,本综述不仅为工程师提供了综合参考,而且为推进下一代紧凑、节能、更符合未来工业需求的STHEs提供了路线图。
{"title":"A critical review of turbulator effects on shell-and-tube heat exchanger performance based on CFD studies","authors":"Mohammad Saleh Abdollahpour ,&nbsp;Mahyar Fazli ,&nbsp;Alireza Khademi ,&nbsp;Seyed Ali Abtahi Mehrjardi ,&nbsp;Karim Mazaheri ,&nbsp;Mohammad Behshad Shafii","doi":"10.1016/j.icheatmasstransfer.2025.110273","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110273","url":null,"abstract":"<div><div>Shell-and-tube heat exchangers (STHEs) are widely recognized as one of the most reliable and versatile thermal devices in power generation, chemical processing, and energy systems. Their robust design and adaptability explain their extensive use, yet the growing need for higher efficiency, compactness, and reduced operating costs continues to drive efforts for performance improvement. Among various enhancement techniques, passive methods such as turbulators are particularly attractive. By introducing structural modifications that disturb fluid flow, turbulators intensify turbulence, enhance mixing, and reduce stagnant zones, which results in stronger heat transfer without the requirement for external energy. However, these benefits are usually accompanied by increased pressure drops (ΔP), making optimization essential. Computational fluid dynamics (CFD) has become the primary tool for exploring these design trade-offs. Unlike analytical or experimental methods, CFD provides detailed insight into velocity fields, temperature distributions, and flow structures at a fraction of the cost and time. Its flexibility makes it indispensable for studying complex turbulator geometries, such as twisted tubes, dimpled and corrugated surfaces, helical and modified baffles, and hybrid configurations. Nevertheless, the predictive power of CFD depends heavily on turbulence modeling, grid quality, and solver strategies, which require careful selection to ensure accuracy and stability. This review offers the first focused and critical synthesis of CFD-based studies on turbulators in STHEs. It evaluates the ability of different designs to enhance hydrothermal performance, while also highlighting the hydraulic penalties that accompany them. Beyond geometric modifications, it examines how artificial intelligence (AI) is being coupled with CFD to accelerate optimization, reduce computational cost, and improve predictive accuracy. By systematically comparing achievements and limitations across the literature, this review provides not only a consolidated reference for engineers but also a roadmap for advancing next-generation STHEs that are compact, energy-efficient, and better aligned with future industrial needs.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110273"},"PeriodicalIF":6.4,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scale analysis and direct numerical simulation of two-dimensional Rayleigh–Bénard convection under horizontal magnetic field 水平磁场作用下二维rayleigh - b宇航对流的尺度分析与直接数值模拟
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-10 DOI: 10.1016/j.icheatmasstransfer.2025.110218
Nuo Sun , Pan-Xin Li , Yu-Hang Zhao , Ben-Wen Li , Xi-Yan Tian
<div><div>Over the past few decades, the heat transfer and complex flow evolution in magnetohydrodynamic Rayleigh-Bénard convection have been extensively studied, but the unified scaling law remains elusive. This study combines scale analysis and direct numerical simulation to investigate heat transfer and flow structure in a two-dimensional square cavity under an imposed horizontal magnetic field. The results show that in the absence of a magnetic field, for high Prandtl number <span><math><mi>Pr</mi></math></span> (<span><math><mi>Pr</mi><mo>></mo><mo>></mo><mn>1</mn></math></span>) or low <span><math><mi>Pr</mi></math></span> (<span><math><mi>Pr</mi><mo><</mo><mo><</mo><mn>1</mn></math></span>) fluids, they have the same Nusselt number <span><math><mi>Nu</mi></math></span> scaling laws <span><math><mi>Nu</mi><mo>=</mo><mn>0.212</mn><msup><mi>Ra</mi><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></math></span>and <span><math><mi>Nu</mi><mo>=</mo><mn>0.061</mn><msup><mi>Ra</mi><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> within a specific Rayleigh number <span><math><mi>Ra</mi></math></span> range. While for <span><math><mi>Pr</mi><mo><</mo><mo><</mo><mn>1</mn></math></span>, when <span><math><mi>Ra</mi><mo>></mo><msup><mn>10</mn><mn>6</mn></msup></math></span>, <span><math><mi>Nu</mi></math></span> depends on both <span><math><mi>Ra</mi></math></span> and <span><math><mi>Pr</mi></math></span>. Under the influence of the magnetic field, at low <span><math><mi>Ra</mi></math></span> (<span><math><msup><mn>10</mn><mn>5</mn></msup><mo>≤</mo><mi>Ra</mi><mo>≤</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></math></span>), <span><math><mi>Nu</mi></math></span> first decreases and then increases with the Hartmann number <span><math><mi>Ha</mi></math></span>, a critical Hartmann number <span><math><mi>H</mi><msub><mi>a</mi><mi>c</mi></msub></math></span> is observed, beyond which the Lorentz force strongly suppresses heat convection, leading to a monotonic decline in <span><math><mi>Nu</mi></math></span>, until <span><math><mi>Ha</mi></math></span> increases to its maximum <span><math><msub><mi>Ha</mi><mi>max</mi></msub></math></span>, <span><math><mi>Nu</mi></math></span> decreases to 1. At higher <span><math><mi>Ra</mi></math></span> (<span><math><msup><mn>10</mn><mn>6</mn></msup><mo>≤</mo><mi>Ra</mi><mo>≤</mo><msup><mn>10</mn><mn>8</mn></msup></math></span>), a two-stage critical behavior emerges: a pseudo-critical point <span><math><msubsup><mi>Ha</mi><mi>c</mi><mo>∗</mo></msubsup></math></span> corresponding to the transition of flow from unsteady to steady; followed by a true critical point <span><math><msub><mi>Ha</mi><mi>c</mi></msub></math></span> associated with the reorganization of large-scale circulation. When<span><math><msub><mi>Ha</mi><mi>c</mi></msub><mo>≤</mo><mi>Ha</mi><mo>≤</mo><msub><mi>Ha</mi><mi>max</mi></msub></math></span>, we get scaling laws <span><math><mi>Nu</mi><mo>=</mo
在过去的几十年里,人们对磁流体动力学rayleigh - bsamadard对流中的传热和复杂流动演化进行了广泛的研究,但统一的标度规律仍然难以捉摸。本文采用尺度分析和直接数值模拟相结合的方法,研究了施加水平磁场作用下二维方形腔内的传热和流动结构。结果表明,在没有磁场的情况下,对于高普朗特数Pr (Pr>>1)和低普朗特数Pr (Pr<<1)流体,在特定的瑞利数Ra范围内具有相同的努瑟尔数Nu标度规律Nu=0.212 ra1 /4和Nu=0.061Ra1/3。而对于Pr<;<1,当Ra>;106时,Nu同时依赖于Ra和Pr。在磁场的影响下,在低Ra(105≤Ra≤5×105)时,Nu随哈特曼数Ha先减小后增大,达到一个临界哈特曼数Hac,超过此值时,洛伦兹力强烈抑制热对流,导致Nu单调下降,直到Ha增大到最大值Hamax时,Nu减小为1。在较高的Ra(106≤Ra≤108)下,出现了两阶段的临界行为:一个伪临界点Hac∗对应于流动从非定常到定常的过渡;其次是一个真正的临界点Hac,与大规模循环的重组有关。当hac≤Ha≤Hamax时,得到105≤Ra≤106时Nu=0.0488RaHa−2,107≤Ra≤108时Nu=0.0745RaHa−2。数值结果验证了由标度分析得出的Nu标度定律。
{"title":"Scale analysis and direct numerical simulation of two-dimensional Rayleigh–Bénard convection under horizontal magnetic field","authors":"Nuo Sun ,&nbsp;Pan-Xin Li ,&nbsp;Yu-Hang Zhao ,&nbsp;Ben-Wen Li ,&nbsp;Xi-Yan Tian","doi":"10.1016/j.icheatmasstransfer.2025.110218","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110218","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Over the past few decades, the heat transfer and complex flow evolution in magnetohydrodynamic Rayleigh-Bénard convection have been extensively studied, but the unified scaling law remains elusive. This study combines scale analysis and direct numerical simulation to investigate heat transfer and flow structure in a two-dimensional square cavity under an imposed horizontal magnetic field. The results show that in the absence of a magnetic field, for high Prandtl number &lt;span&gt;&lt;math&gt;&lt;mi&gt;Pr&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mi&gt;Pr&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;) or low &lt;span&gt;&lt;math&gt;&lt;mi&gt;Pr&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mi&gt;Pr&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;) fluids, they have the same Nusselt number &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; scaling laws &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0.212&lt;/mn&gt;&lt;msup&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;and &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0.061&lt;/mn&gt;&lt;msup&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; within a specific Rayleigh number &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; range. While for &lt;span&gt;&lt;math&gt;&lt;mi&gt;Pr&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, when &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; depends on both &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;Pr&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Under the influence of the magnetic field, at low &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;), &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; first decreases and then increases with the Hartmann number &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, a critical Hartmann number &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is observed, beyond which the Lorentz force strongly suppresses heat convection, leading to a monotonic decline in &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, until &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; increases to its maximum &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; decreases to 1. At higher &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;Ra&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;), a two-stage critical behavior emerges: a pseudo-critical point &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; corresponding to the transition of flow from unsteady to steady; followed by a true critical point &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; associated with the reorganization of large-scale circulation. When&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;Ha&lt;/mi&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, we get scaling laws &lt;span&gt;&lt;math&gt;&lt;mi&gt;Nu&lt;/mi&gt;&lt;mo&gt;=&lt;/mo","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110218"},"PeriodicalIF":6.4,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal conductivity and viscosity optimization of CuO/cyclohexane - diethyl amine non-polar hybrid nanofluid using artificial neural network and multi-objective particle swarm optimization 基于人工神经网络和多目标粒子群优化的CuO/环己烷-二乙胺非极性杂化纳米流体导热性和粘度优化
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-10 DOI: 10.1016/j.icheatmasstransfer.2025.110208
Changgui Xie , Xin Sun , Soheil Salahshour , N. Emami , Tamim Alkhalifah , Belgacem Bouallegue
Nanoparticles (NPs) can improve the thermo-physical properties of fluids and increase the effectiveness of heat transfer systems. In this way, achieving optimal properties of nanofluids (NFs) is an important subject. The present work aims to model and optimize the thermo-physical properties of dynamic viscosity (DV) and thermal conductivity (TC) of CuO/Cyclohexane + Diethylamine (DEA) as a non-polar nanofluid with binary base fluids. The input parameters include the temperature and the solid volume fraction (SVF) of NF. Based on available experimental data, the molar weight ratio of the NPs ranges from 0.01 % to 0.06 % with temperatures varying from 298 K to 318 K. The NF is modeled by two trained two-layer feedforward artificial neural networks (ANNs) for the prediction of DV and TC at a specified range of temperature and SVF. The average and maximum relative errors for test datasets are 0.4872 and 0.9106 for DV and 0.4279 and 0.7338 for TC prediction networks, respectively. Through the ANNs' sensitivity analysis, the importance of the SVF rather than the temperature on DV and TC was revealed. Based on the proposed model, a multi-objective optimization problem was formulated to maximize TC and minimize DV simultaneously, and solved using the multi-objective particle swarm optimization (MOPSO) method. Finally, the optimal values of the objective functions and the corresponding input parameters were plotted along with the Pareto optimal points.
纳米颗粒(NPs)可以改善流体的热物理性质,提高传热系统的有效性。因此,实现纳米流体的最佳性能是一个重要的课题。本工作旨在模拟和优化CuO/环己烷+二乙胺(DEA)作为二元基流体的非极性纳米流体的动态粘度(DV)和热导率(TC)的热物理性质。输入参数包括温度和NF的固体体积分数(SVF)。根据现有的实验数据,在298 ~ 318 K的温度范围内,NPs的摩尔质量比在0.01% ~ 0.06%之间。利用两个训练好的两层前馈人工神经网络(ann)对指定温度和SVF范围内的DV和TC进行建模。DV预测网络的平均相对误差为0.4872,最大相对误差为0.9106,TC预测网络的平均相对误差为0.4279,最大相对误差为0.7338。通过对人工神经网络的敏感性分析,揭示了SVF对DV和TC的影响大于温度。在该模型的基础上,建立了以最大总成本和最小总成本为目标的多目标优化问题,并采用多目标粒子群优化(MOPSO)方法求解。最后,将目标函数的最优值和相应的输入参数与Pareto最优点一起绘制。
{"title":"Thermal conductivity and viscosity optimization of CuO/cyclohexane - diethyl amine non-polar hybrid nanofluid using artificial neural network and multi-objective particle swarm optimization","authors":"Changgui Xie ,&nbsp;Xin Sun ,&nbsp;Soheil Salahshour ,&nbsp;N. Emami ,&nbsp;Tamim Alkhalifah ,&nbsp;Belgacem Bouallegue","doi":"10.1016/j.icheatmasstransfer.2025.110208","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110208","url":null,"abstract":"<div><div>Nanoparticles (<em>NP</em>s) can improve the thermo-physical properties of fluids and increase the effectiveness of heat transfer systems. In this way, achieving optimal properties of nanofluids (<em>NF</em>s) is an important subject. The present work aims to model and optimize the thermo-physical properties of dynamic viscosity (DV) and thermal conductivity (TC) of CuO/Cyclohexane + Diethylamine (DEA) as a non-polar nanofluid with binary base fluids. The input parameters include the temperature and the solid volume fraction (<em>SVF</em>) of <em>NF</em>. Based on available experimental data, the molar weight ratio of the <em>NP</em>s ranges from 0.01 % to 0.06 % with temperatures varying from 298 K to 318 K. The <em>NF</em> is modeled by two trained two-layer feedforward artificial neural networks (<em>ANN</em>s) for the prediction of <em>DV</em> and <em>TC</em> at a specified range of temperature and <em>SVF</em>. The average and maximum relative errors for test datasets are 0.4872 and 0.9106 for <em>DV</em> and 0.4279 and 0.7338 for <em>TC</em> prediction networks, respectively. Through the <em>ANN</em>s' sensitivity analysis, the importance of the <em>SVF</em> rather than the temperature on <em>DV</em> and <em>TC</em> was revealed. Based on the proposed model, a multi-objective optimization problem was formulated to maximize TC and minimize DV simultaneously, and solved using the multi-objective particle swarm optimization (<em>MOPSO</em>) method. Finally, the optimal values of the objective functions and the corresponding input parameters were plotted along with the Pareto optimal points.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110208"},"PeriodicalIF":6.4,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical assessment and design of advanced micro pin-fin heat sink configurations: Augmented water cooling solutions 先进微型翅片散热器配置的数值评估和设计:增强水冷却解决方案
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-09 DOI: 10.1016/j.icheatmasstransfer.2025.110248
Walid Aich , Ramadan Youssef Sakr , Ali Basem , As'ad Alizadeh , Mazen M. Othayq , Mujtaba A. Flayyih , Wajdi Rajhi , Khalil Hajlaoui
This study aims to improve thermal management in small, high-power devices by numerically analyzing water-cooled micro-pin-fin heat sinks with novel geometries. Under various Reynolds numbers, the impacts of the proposed fin geometry and diameter ratio were systematically assessed using computational fluid dynamics (CFD). The trade-off between cooling enhancement and hydraulic losses was evaluated by analyzing key performance indicators, including average Nusselt number, wall temperature, pressure drop, thermal energy absorption, heat transfer coefficient, and thermal performance factor. The concave pin-fin configuration (Case A) outperformed traditional cylindrical fins in the first section, improving thermal performance of almost 8 % at Re = 500 and 7 % at Re = 2000. The impact of the diameter ratio was examined in the second section. The biggest ratio (DR = 1.00) produced the best results, with efficiency gains of roughly 6 % at Re = 500 and 5 % at Re = 2000 compared to the lowest ratio (DR = 0.25). All things considered, the results demonstrate that novel pin-fin designs and adjusted diameter ratios deliver notable and reliable increases in thermal efficiency across a broad range of flow conditions, making them attractive options for cutting-edge liquid-cooling applications.
本研究旨在通过数值分析具有新颖几何形状的水冷微型针翅散热器来改善小型高功率器件的热管理。在不同雷诺数下,利用计算流体动力学(CFD)系统地评估了所提出的翅片几何形状和直径比的影响。通过分析主要性能指标,包括平均努塞尔数、壁面温度、压降、热能吸收、传热系数和热性能因子,评估了冷却增强和水力损失之间的权衡。在第一部分中,凹针翅结构(案例A)优于传统的圆柱形翅片,在Re = 500和Re = 2000时,热性能分别提高了8%和7%。在第二节中考察了直径比的影响。与最低比率(DR = 0.25)相比,最大比率(DR = 1.00)产生了最好的结果,在Re = 500时效率提高约6%,在Re = 2000时效率提高约5%。综上所述,研究结果表明,新颖的翅片设计和调整后的直径比在各种流动条件下都能显著提高热效率,使其成为尖端液体冷却应用的有吸引力的选择。
{"title":"Numerical assessment and design of advanced micro pin-fin heat sink configurations: Augmented water cooling solutions","authors":"Walid Aich ,&nbsp;Ramadan Youssef Sakr ,&nbsp;Ali Basem ,&nbsp;As'ad Alizadeh ,&nbsp;Mazen M. Othayq ,&nbsp;Mujtaba A. Flayyih ,&nbsp;Wajdi Rajhi ,&nbsp;Khalil Hajlaoui","doi":"10.1016/j.icheatmasstransfer.2025.110248","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110248","url":null,"abstract":"<div><div>This study aims to improve thermal management in small, high-power devices by numerically analyzing water-cooled micro-pin-fin heat sinks with novel geometries. Under various Reynolds numbers, the impacts of the proposed fin geometry and diameter ratio were systematically assessed using computational fluid dynamics (CFD). The trade-off between cooling enhancement and hydraulic losses was evaluated by analyzing key performance indicators, including average Nusselt number, wall temperature, pressure drop, thermal energy absorption, heat transfer coefficient, and thermal performance factor. The concave pin-fin configuration (Case A) outperformed traditional cylindrical fins in the first section, improving thermal performance of almost 8 % at <em>Re</em> = 500 and 7 % at <em>Re</em> = 2000. The impact of the diameter ratio was examined in the second section. The biggest ratio (DR = 1.00) produced the best results, with efficiency gains of roughly 6 % at <em>Re</em> = 500 and 5 % at <em>Re</em> = 2000 compared to the lowest ratio (DR = 0.25). All things considered, the results demonstrate that novel pin-fin designs and adjusted diameter ratios deliver notable and reliable increases in thermal efficiency across a broad range of flow conditions, making them attractive options for cutting-edge liquid-cooling applications.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110248"},"PeriodicalIF":6.4,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on the infrared radiative properties of ZrB2-SiC ceramic composites ZrB2-SiC陶瓷复合材料红外辐射性能的数值研究
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-09 DOI: 10.1016/j.icheatmasstransfer.2025.110230
Qi Xie , Xinyu Mao , Lin Ruan , De Lu , Liang Ji , Hu Zhang
The thermal radiation properties of ZrB2-SiC ceramic composites are vital for thermal transport applications, such as thermal protection system of aircraft. The optical constants of ZrB2 and α-SiC were experimentally determined via spectroscopic ellipsometry across 0.2–20 μm wavelengths from 25 °C to 600 °C. A finite-difference time-domain (FDTD) framework was established to quantify the influences of material thickness (0.5 to 6 μm), temperature (25 to 600 °C), SiC particle shape (sphere, whisker, platelet), SiC volume fraction (20 % to 50 %), SiC particle diameter (1 to 4 μm), surface roughness (Ra, 0 to 1 μm) and porosity (5 % to 15 %) on the spectral emissivity within 1–20 μm. Additionally, the effects of above factors on the average emissivity within the atmospheric windows were compared to assess infrared stealth performance of the composites. The results indicate that the emissivity of ZrB2-SiC composites increases with the increments of temperature, surface roughness, porosity, SiC volume fraction, and particle diameter and decreases with the increment of the surface-area-to-volume ratio of SiC particle and material thickness. These factors can induce a variation of 83.9 %, 41.5 %, 12.3 %, 136.1 %, 75.6 %, 74.9 %, and 9.7 % in the total emissivity, respectively. This research offers promising insights for guiding the regulation of spectral radiative characteristics of ZrB2-SiC ceramic composites and enhancing the infrared stealth performance.
ZrB2-SiC陶瓷复合材料的热辐射性能对飞机热防护系统等热传输应用具有重要意义。采用椭圆偏振光谱法测定了ZrB2和α-SiC在25 ~ 600℃范围内0.2 ~ 20 μm波长范围内的光学常数。建立时域有限差分(FDTD)框架,量化材料厚度(0.5 ~ 6 μm)、温度(25 ~ 600°C)、SiC颗粒形状(球形、晶须、片状)、SiC体积分数(20% ~ 50%)、SiC颗粒直径(1 ~ 4 μm)、表面粗糙度(Ra, 0 ~ 1 μm)和孔隙率(5% ~ 15%)对1 ~ 20 μm范围内光谱发射率的影响。此外,还比较了上述因素对大气窗口内平均发射率的影响,以评估复合材料的红外隐身性能。结果表明:ZrB2-SiC复合材料的发射率随温度、表面粗糙度、孔隙率、SiC体积分数和颗粒直径的增加而增大,随SiC颗粒表面积体积比和材料厚度的增加而减小;这些因素对总发射率的影响分别为83.9%、41.5%、12.3%、136.1%、75.6%、74.9%和9.7%。该研究为指导ZrB2-SiC陶瓷复合材料的光谱辐射特性调控和提高红外隐身性能提供了有希望的见解。
{"title":"Numerical study on the infrared radiative properties of ZrB2-SiC ceramic composites","authors":"Qi Xie ,&nbsp;Xinyu Mao ,&nbsp;Lin Ruan ,&nbsp;De Lu ,&nbsp;Liang Ji ,&nbsp;Hu Zhang","doi":"10.1016/j.icheatmasstransfer.2025.110230","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110230","url":null,"abstract":"<div><div>The thermal radiation properties of ZrB<sub>2</sub>-SiC ceramic composites are vital for thermal transport applications, such as thermal protection system of aircraft. The optical constants of ZrB<sub>2</sub> and <em>α</em>-SiC were experimentally determined via spectroscopic ellipsometry across 0.2–20 μm wavelengths from 25 °C to 600 °C. A finite-difference time-domain (FDTD) framework was established to quantify the influences of material thickness (0.5 to 6 μm), temperature (25 to 600 °C), SiC particle shape (sphere, whisker, platelet), SiC volume fraction (20 % to 50 %), SiC particle diameter (1 to 4 μm), surface roughness (<em>R</em><sub><em>a</em></sub>, 0 to 1 μm) and porosity (5 % to 15 %) on the spectral emissivity within 1–20 μm. Additionally, the effects of above factors on the average emissivity within the atmospheric windows were compared to assess infrared stealth performance of the composites. The results indicate that the emissivity of ZrB<sub>2</sub>-SiC composites increases with the increments of temperature, surface roughness, porosity, SiC volume fraction, and particle diameter and decreases with the increment of the surface-area-to-volume ratio of SiC particle and material thickness. These factors can induce a variation of 83.9 %, 41.5 %, 12.3 %, 136.1 %, 75.6 %, 74.9 %, and 9.7 % in the total emissivity, respectively. This research offers promising insights for guiding the regulation of spectral radiative characteristics of ZrB<sub>2</sub>-SiC ceramic composites and enhancing the infrared stealth performance.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110230"},"PeriodicalIF":6.4,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of heat transfer by natural convection of a nano-encapsulated phase-change materials in a porous cavity with heated cylinders 纳米包封相变材料在加热圆柱多孔腔内自然对流传热的数值分析
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-09 DOI: 10.1016/j.icheatmasstransfer.2025.110262
Abdelhak Daiz , Rachid Hidki , Ahmed Bahlaoui , Ismail Arroub
This article proposes a comprehensive computational investigation of natural convection-driven heat transport within a porous square enclosure containing a nanofluid incorporating nano-encapsulated phase change materials (NEPCMs). The arrangement consists of nine heated hollow cylinders symmetrically arranged, each having a conductive strip of different materials around it. The nonlinear flow and heat transfer governing equations are numerically solved using the finite element approach to examine the effect of various dimensionless parameters, i.e., Darcy number Da, NEPCM volume fraction φ, reduced melting temperature θf and Stefan number Ste, regarding the system's thermal behavior and performance. The results indicate that low Darcy number values correspond to heat transfer dominated by conduction due to the limited permeability of the medium, while high values favor the formation of convection cells, leading to an increase in the average Nusselt number. Increasing the concentration of NEPCM significantly improves the heat transfer and storage, particularly for large Rayleigh numbers, because of the effect of latent heat. An optimum behavior is observed for θf0.5, for which the partial melting of the particles increases the heat exchange. Small values of the Ste also improve the latent heat-associated effects, thereby enhancing the phase change process effectiveness. Finally, the thermal conductivity of the material enclosing the cylinders plays a deciding role: materials with high thermal conductivity (such as copper or aluminum) increase the heat exchange, while insulating materials (such as glass or plastic) decrease it. These results sanction the excellent prospect of NEPCMs in compact thermal storage devices, particularly when embedded in porous structures under complex thermal conditions.
本文提出了一个全面的计算研究自然对流驱动的热传输在一个多孔的方形外壳包含纳米流体包含纳米封装相变材料(NEPCMs)。该装置由九个对称排列的加热空心圆柱体组成,每个圆柱体周围都有不同材料的导电带。采用有限元方法对非线性流动和传热控制方程进行了数值求解,考察了Darcy数Da、NEPCM体积分数φ、降低熔化温度θf和Stefan数Ste等无量纲参数对系统热行为和性能的影响。结果表明,由于介质渗透性有限,低达西数值对应的传热以传导为主,高达西数值有利于对流细胞的形成,导致平均努塞尔数增加。由于潜热的影响,增加NEPCM的浓度可以显著改善传热和储热,特别是对于大瑞利数的情况。当θf≈0.5时,观察到最佳行为,此时颗粒的部分熔化增加了热交换。Ste的小值也改善了潜热相关效应,从而提高了相变过程的有效性。最后,包裹圆柱体的材料的导热性起决定性作用:高导热性的材料(如铜或铝)增加了热交换,而绝缘材料(如玻璃或塑料)则减少了热交换。这些结果支持了nepcm在紧凑型储热装置中的良好前景,特别是在复杂热条件下嵌入多孔结构时。
{"title":"Numerical analysis of heat transfer by natural convection of a nano-encapsulated phase-change materials in a porous cavity with heated cylinders","authors":"Abdelhak Daiz ,&nbsp;Rachid Hidki ,&nbsp;Ahmed Bahlaoui ,&nbsp;Ismail Arroub","doi":"10.1016/j.icheatmasstransfer.2025.110262","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110262","url":null,"abstract":"<div><div>This article proposes a comprehensive computational investigation of natural convection-driven heat transport within a porous square enclosure containing a nanofluid incorporating nano-encapsulated phase change materials (NEPCMs). The arrangement consists of nine heated hollow cylinders symmetrically arranged, each having a conductive strip of different materials around it. The nonlinear flow and heat transfer governing equations are numerically solved using the finite element approach to examine the effect of various dimensionless parameters, i.e., Darcy number <span><math><mfenced><mi>Da</mi></mfenced></math></span>, NEPCM volume fraction <span><math><mfenced><mi>φ</mi></mfenced></math></span>, reduced melting temperature <span><math><mfenced><msub><mi>θ</mi><mi>f</mi></msub></mfenced></math></span> and Stefan number <span><math><mfenced><mi>Ste</mi></mfenced></math></span>, regarding the system's thermal behavior and performance. The results indicate that low Darcy number values correspond to heat transfer dominated by conduction due to the limited permeability of the medium, while high values favor the formation of convection cells, leading to an increase in the average Nusselt number. Increasing the concentration of NEPCM significantly improves the heat transfer and storage, particularly for large Rayleigh numbers, because of the effect of latent heat. An optimum behavior is observed for <span><math><msub><mi>θ</mi><mi>f</mi></msub><mo>≈</mo><mn>0.5</mn></math></span>, for which the partial melting of the particles increases the heat exchange. Small values of the <span><math><mi>Ste</mi></math></span> also improve the latent heat-associated effects, thereby enhancing the phase change process effectiveness. Finally, the thermal conductivity of the material enclosing the cylinders plays a deciding role: materials with high thermal conductivity (such as copper or aluminum) increase the heat exchange, while insulating materials (such as glass or plastic) decrease it. These results sanction the excellent prospect of NEPCMs in compact thermal storage devices, particularly when embedded in porous structures under complex thermal conditions.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110262"},"PeriodicalIF":6.4,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel application of COMBI learning models and multi-objective Lichtenberg algorithm in HVAC system design COMBI学习模型和多目标Lichtenberg算法在暖通空调系统设计中的新应用
IF 6.4 2区 工程技术 Q1 MECHANICS Pub Date : 2025-12-09 DOI: 10.1016/j.icheatmasstransfer.2025.110210
Abdulilah Mohammad Mayet
The growing demand for energy-efficient and comfort-oriented indoor environments highlights the need for advanced decision-support frameworks for task/ambient conditioning (TAC) systems. Traditional approaches often fall short in simultaneously capturing complex system behavior, quantifying energy–comfort trade-offs, and providing actionable design guidance. To address this challenge, the present study introduces a novel four-stage AI-based framework that integrates CFD data analysis, surrogate machine learning modeling, multi-objective optimization, and multi-criteria decision-making. Specifically, CFD-based simulations first generate system dataset, which are then modeled using the COMBI regression technique to construct predictive surrogates. These models feed into a Pareto-based optimization process using the multi-objective Lichtenberg algorithm (MOLA), benchmarked against NSGA-II, while final solution ranking is achieved through the VIKOR method. The results demonstrate the robustness of the COMBI models, achieving R2 values of 0.999, confirming high predictive fidelity without overfitting. Both MOLA and NSGA-II produced smooth, overlapping Pareto fronts, ensuring reliable exploration of energy–comfort trade-offs. Analysis revealed that supply air temperature consistently converged to 26 °C, while airflow rate governed system performance, with optimal solutions ranging from energy-saving (10 L/s, QC ≈ 30.5 W, PMV ≈ 0.7) to comfort-maximizing (32.25 L/s, QC ≈ 49 W, PMV ≈ 0.0). Finally, VIKOR ranking highlighted seven representative scenarios reflecting diverse design priorities, from energy-focused to comfort-oriented settings. Overall, the proposed hybrid methodology offers a robust, flexible, and practical pathway for optimizing TAC systems, bridging methodological gaps and supporting stakeholder-driven decision-making in building energy management.
对节能和舒适的室内环境日益增长的需求突出了对任务/环境调节(TAC)系统的高级决策支持框架的需求。传统的方法在同时捕捉复杂的系统行为、量化能源舒适权衡和提供可操作的设计指导方面往往存在不足。为了应对这一挑战,本研究引入了一种新的基于人工智能的四阶段框架,该框架集成了CFD数据分析、代理机器学习建模、多目标优化和多标准决策。具体来说,基于cfd的模拟首先生成系统数据集,然后使用COMBI回归技术对其建模以构建预测代理。这些模型使用多目标Lichtenberg算法(MOLA)进行pareto优化过程,并以NSGA-II为基准,而最终的解决方案排名通过VIKOR方法实现。结果表明,COMBI模型具有较好的稳健性,R2值为0.999,具有较高的预测保真度,没有过拟合。MOLA和NSGA-II都产生了平滑、重叠的帕累托前沿,确保了能源舒适权衡的可靠探索。分析表明,送风温度始终趋近于26°C,而气流速率决定系统性能,最佳解决方案范围从节能(10 L/s, QC≈30.5 W, PMV≈0.7)到舒适最大化(32.25 L/s, QC≈49 W, PMV≈0.0)。最后,VIKOR的排名突出了七个具有代表性的场景,反映了不同的设计重点,从以能源为中心到以舒适为导向的设置。总的来说,提出的混合方法为优化TAC系统、弥合方法差距和支持建筑能源管理中利益相关者驱动的决策提供了一个强大、灵活和实用的途径。
{"title":"Novel application of COMBI learning models and multi-objective Lichtenberg algorithm in HVAC system design","authors":"Abdulilah Mohammad Mayet","doi":"10.1016/j.icheatmasstransfer.2025.110210","DOIUrl":"10.1016/j.icheatmasstransfer.2025.110210","url":null,"abstract":"<div><div>The growing demand for energy-efficient and comfort-oriented indoor environments highlights the need for advanced decision-support frameworks for task/ambient conditioning (TAC) systems. Traditional approaches often fall short in simultaneously capturing complex system behavior, quantifying energy–comfort trade-offs, and providing actionable design guidance. To address this challenge, the present study introduces a novel four-stage AI-based framework that integrates CFD data analysis, surrogate machine learning modeling, multi-objective optimization, and multi-criteria decision-making. Specifically, CFD-based simulations first generate system dataset, which are then modeled using the COMBI regression technique to construct predictive surrogates. These models feed into a Pareto-based optimization process using the multi-objective Lichtenberg algorithm (MOLA), benchmarked against NSGA-II, while final solution ranking is achieved through the VIKOR method. The results demonstrate the robustness of the COMBI models, achieving R<sup>2</sup> values of 0.999, confirming high predictive fidelity without overfitting. Both MOLA and NSGA-II produced smooth, overlapping Pareto fronts, ensuring reliable exploration of energy–comfort trade-offs. Analysis revealed that supply air temperature consistently converged to 26 °C, while airflow rate governed system performance, with optimal solutions ranging from energy-saving (10 L/s, Q<sub>C</sub> ≈ 30.5 W, PMV ≈ 0.7) to comfort-maximizing (32.25 L/s, Q<sub>C</sub> ≈ 49 W, PMV ≈ 0.0). Finally, VIKOR ranking highlighted seven representative scenarios reflecting diverse design priorities, from energy-focused to comfort-oriented settings. Overall, the proposed hybrid methodology offers a robust, flexible, and practical pathway for optimizing TAC systems, bridging methodological gaps and supporting stakeholder-driven decision-making in building energy management.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"172 ","pages":"Article 110210"},"PeriodicalIF":6.4,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145734296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Communications in Heat and Mass Transfer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1