Hong Yu, Lili Xue, Yaqing Xue, Haoting Lu, Yuxin Liu, Long Wang, Cheng-Feng Du, Weimin Liu
MAX phase ceramics is a large family of nanolaminate carbides and nitrides, which integrates the advantages of both metals and ceramics, in general, the distinct chemical inertness of ceramics and excellent physical properties like metals. Meanwhile, the rich chemical and structural diversity of the MAXs endows them with broad space for property regulation. Especially, a much higher self-lubricity, as well as wear resistance, than that of traditional alloys and ceramics, has been observed in MAXs at elevated temperatures in recent decades, which manifests a great application potential and sparks tremendous research interest. Aiming at establishing a correlation among structure, chemical composition, working conditions, and the tribological behaviors of MAXs, this work overviews the recent progress in their high-temperature (HT) tribological properties, accompanied by advances in synthesis and structure analysis. HT tribological-specific behaviors, including the stress responses and damage mechanism, oxidation mechanism, and wear mechanism, are discussed. Whereafter, the tribological behaviors along with factors related to the tribological working conditions are discussed. Accordingly, outlooks of MAX phase ceramics for future HT solid lubricants are given based on the optimization of present mechanical properties and processing technologies.
MAX 相陶瓷是纳米层状碳化物和氮化物的大家族,集金属和陶瓷的优点于一身,既有陶瓷的化学惰性,又有金属的优异物理性能。同时,MAXs 丰富的化学和结构多样性为其性能调节提供了广阔的空间。尤其是近几十年来,人们观察到 MAX 在高温下具有比传统合金和陶瓷高得多的自润滑性和耐磨性,这体现了其巨大的应用潜力,也激发了人们极大的研究兴趣。为了建立 MAXs 的结构、化学成分、工作条件和摩擦学行为之间的相关性,本研究综述了 MAXs 高温(HT)摩擦学特性的最新进展,以及合成和结构分析方面的进展。本文讨论了高温摩擦学特性,包括应力反应和损伤机制、氧化机制和磨损机制。此外,还讨论了摩擦学行为以及与摩擦学工作条件相关的因素。因此,在优化现有机械性能和加工技术的基础上,对未来 HT 固体润滑剂的 MAX 相陶瓷进行了展望。
{"title":"Mapping the structure and chemical composition of MAX phase ceramics for their high-temperature tribological behaviors","authors":"Hong Yu, Lili Xue, Yaqing Xue, Haoting Lu, Yuxin Liu, Long Wang, Cheng-Feng Du, Weimin Liu","doi":"10.1002/cey2.597","DOIUrl":"https://doi.org/10.1002/cey2.597","url":null,"abstract":"MAX phase ceramics is a large family of nanolaminate carbides and nitrides, which integrates the advantages of both metals and ceramics, in general, the distinct chemical inertness of ceramics and excellent physical properties like metals. Meanwhile, the rich chemical and structural diversity of the MAXs endows them with broad space for property regulation. Especially, a much higher self-lubricity, as well as wear resistance, than that of traditional alloys and ceramics, has been observed in MAXs at elevated temperatures in recent decades, which manifests a great application potential and sparks tremendous research interest. Aiming at establishing a correlation among structure, chemical composition, working conditions, and the tribological behaviors of MAXs, this work overviews the recent progress in their high-temperature (HT) tribological properties, accompanied by advances in synthesis and structure analysis. HT tribological-specific behaviors, including the stress responses and damage mechanism, oxidation mechanism, and wear mechanism, are discussed. Whereafter, the tribological behaviors along with factors related to the tribological working conditions are discussed. Accordingly, outlooks of MAX phase ceramics for future HT solid lubricants are given based on the optimization of present mechanical properties and processing technologies.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"80 1","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.
{"title":"Transparent electromagnetic interference shielding materials using MXene","authors":"Yanli Deng, Yaqing Chen, Wei Liu, Lili Wu, Zhou Wang, Dan Xiao, Decheng Meng, Xingguo Jiang, Jiurong Liu, Zhihui Zeng, Na Wu","doi":"10.1002/cey2.593","DOIUrl":"https://doi.org/10.1002/cey2.593","url":null,"abstract":"With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"19 1","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Jegan Roy, Do Minh Phuong, Vivek Verma, Richa Chaudhary, Michael Carboni, Daniel Meyer, Bin Cao, Madhavi Srinivasan
Front cover image: Integrating automation and intelligence into battery sorting can decrease dependence on humans, minimize risk and cost, and enhance sorting speed while upholding competitive performance. In the image, the first robot is capable of extracting bolts and nuts, as well as unscrewing screws from the battery pack, using a camera equipped with vision technology. The second robot then picks up the cells and organizes them into clusters based on their remaining capacity. A third robot cuts the cell case and separates the cathode and anode components from the polymer separator. In article cey2.492, Roy et al. provide a comprehensive overview of the progress made in direct recycling LIBs and discuss several aspects of the recycling process, such as battery sorting, pre-treatment methods, the separation of cathode and anode materials, and the regeneration and quality enhancement of electrode materials.