首页 > 最新文献

Carbon Energy最新文献

英文 中文
Mapping the structure and chemical composition of MAX phase ceramics for their high-temperature tribological behaviors 绘制 MAX 相陶瓷的结构和化学成分图,以了解其高温摩擦学行为
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-27 DOI: 10.1002/cey2.597
Hong Yu, Lili Xue, Yaqing Xue, Haoting Lu, Yuxin Liu, Long Wang, Cheng-Feng Du, Weimin Liu
MAX phase ceramics is a large family of nanolaminate carbides and nitrides, which integrates the advantages of both metals and ceramics, in general, the distinct chemical inertness of ceramics and excellent physical properties like metals. Meanwhile, the rich chemical and structural diversity of the MAXs endows them with broad space for property regulation. Especially, a much higher self-lubricity, as well as wear resistance, than that of traditional alloys and ceramics, has been observed in MAXs at elevated temperatures in recent decades, which manifests a great application potential and sparks tremendous research interest. Aiming at establishing a correlation among structure, chemical composition, working conditions, and the tribological behaviors of MAXs, this work overviews the recent progress in their high-temperature (HT) tribological properties, accompanied by advances in synthesis and structure analysis. HT tribological-specific behaviors, including the stress responses and damage mechanism, oxidation mechanism, and wear mechanism, are discussed. Whereafter, the tribological behaviors along with factors related to the tribological working conditions are discussed. Accordingly, outlooks of MAX phase ceramics for future HT solid lubricants are given based on the optimization of present mechanical properties and processing technologies.
MAX 相陶瓷是纳米层状碳化物和氮化物的大家族,集金属和陶瓷的优点于一身,既有陶瓷的化学惰性,又有金属的优异物理性能。同时,MAXs 丰富的化学和结构多样性为其性能调节提供了广阔的空间。尤其是近几十年来,人们观察到 MAX 在高温下具有比传统合金和陶瓷高得多的自润滑性和耐磨性,这体现了其巨大的应用潜力,也激发了人们极大的研究兴趣。为了建立 MAXs 的结构、化学成分、工作条件和摩擦学行为之间的相关性,本研究综述了 MAXs 高温(HT)摩擦学特性的最新进展,以及合成和结构分析方面的进展。本文讨论了高温摩擦学特性,包括应力反应和损伤机制、氧化机制和磨损机制。此外,还讨论了摩擦学行为以及与摩擦学工作条件相关的因素。因此,在优化现有机械性能和加工技术的基础上,对未来 HT 固体润滑剂的 MAX 相陶瓷进行了展望。
{"title":"Mapping the structure and chemical composition of MAX phase ceramics for their high-temperature tribological behaviors","authors":"Hong Yu, Lili Xue, Yaqing Xue, Haoting Lu, Yuxin Liu, Long Wang, Cheng-Feng Du, Weimin Liu","doi":"10.1002/cey2.597","DOIUrl":"https://doi.org/10.1002/cey2.597","url":null,"abstract":"MAX phase ceramics is a large family of nanolaminate carbides and nitrides, which integrates the advantages of both metals and ceramics, in general, the distinct chemical inertness of ceramics and excellent physical properties like metals. Meanwhile, the rich chemical and structural diversity of the MAXs endows them with broad space for property regulation. Especially, a much higher self-lubricity, as well as wear resistance, than that of traditional alloys and ceramics, has been observed in MAXs at elevated temperatures in recent decades, which manifests a great application potential and sparks tremendous research interest. Aiming at establishing a correlation among structure, chemical composition, working conditions, and the tribological behaviors of MAXs, this work overviews the recent progress in their high-temperature (HT) tribological properties, accompanied by advances in synthesis and structure analysis. HT tribological-specific behaviors, including the stress responses and damage mechanism, oxidation mechanism, and wear mechanism, are discussed. Whereafter, the tribological behaviors along with factors related to the tribological working conditions are discussed. Accordingly, outlooks of MAX phase ceramics for future HT solid lubricants are given based on the optimization of present mechanical properties and processing technologies.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"80 1","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transparent electromagnetic interference shielding materials using MXene 使用 MXene 的透明电磁干扰屏蔽材料
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-24 DOI: 10.1002/cey2.593
Yanli Deng, Yaqing Chen, Wei Liu, Lili Wu, Zhou Wang, Dan Xiao, Decheng Meng, Xingguo Jiang, Jiurong Liu, Zhihui Zeng, Na Wu
With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.
随着太赫兹技术的快速发展,需要电磁干扰(EMI)屏蔽材料来确保安全的电磁环境。为了实现高效的 EMI 屏蔽膜,人们付出了巨大的努力,以增强其柔韧性、轻量化、机械坚固性和高屏蔽效率。然而,对这些屏蔽材料光学特性的考虑仍处于起步阶段。通过加入透明性,可保留受保护系统的视觉信息,以监控内部工作条件,而且光学上的不可感知性使屏蔽材料在设备和生物体上的覆盖都不会引起反感。有许多材料可用于透明 EMI 屏蔽。其中,二维过渡金属碳化物/氮化物(MXenes)具有优异的导电性、光学特性、良好的柔韧性和易加工性等优点,已成为一个很好的候选材料。本研究全面回顾了近年来有关开发高效、光学透明 EMI 屏蔽层的研究。研究涵盖了氧化二甲烯、氧化铟锡、金属、碳和导电聚合物等材料,重点关注了基于氧化二甲烯的复合材料在透明 EMI 屏蔽中的应用。还讨论了基于 MXene 的透明 EMI 屏蔽的未来发展前景和挑战。这项工作旨在通过利用 MXene,促进高性能、光学透明 EMI 屏蔽的开发,使其得到更广泛的应用。
{"title":"Transparent electromagnetic interference shielding materials using MXene","authors":"Yanli Deng, Yaqing Chen, Wei Liu, Lili Wu, Zhou Wang, Dan Xiao, Decheng Meng, Xingguo Jiang, Jiurong Liu, Zhihui Zeng, Na Wu","doi":"10.1002/cey2.593","DOIUrl":"https://doi.org/10.1002/cey2.593","url":null,"abstract":"With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"19 1","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 6, Number 6, June 2024 封面图片,第 6 卷第 6 号,2024 年 6 月
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-24 DOI: 10.1002/cey2.634
Joseph Jegan Roy, Do Minh Phuong, Vivek Verma, Richa Chaudhary, Michael Carboni, Daniel Meyer, Bin Cao, Madhavi Srinivasan

Front cover image: Integrating automation and intelligence into battery sorting can decrease dependence on humans, minimize risk and cost, and enhance sorting speed while upholding competitive performance. In the image, the first robot is capable of extracting bolts and nuts, as well as unscrewing screws from the battery pack, using a camera equipped with vision technology. The second robot then picks up the cells and organizes them into clusters based on their remaining capacity. A third robot cuts the cell case and separates the cathode and anode components from the polymer separator. In article cey2.492, Roy et al. provide a comprehensive overview of the progress made in direct recycling LIBs and discuss several aspects of the recycling process, such as battery sorting, pre-treatment methods, the separation of cathode and anode materials, and the regeneration and quality enhancement of electrode materials.

封面图片:将自动化和智能化整合到电池分拣中,可以减少对人力的依赖,最大限度地降低风险和成本,并在保持竞争力的同时提高分拣速度。图中,第一个机器人能够利用配备视觉技术的摄像头,从电池组中提取螺栓和螺母,并拧下螺丝。然后,第二个机器人拾起电池,并根据电池的剩余容量将其整理成组。第三个机器人切割电池外壳,将阴极和阳极组件从聚合物隔板中分离出来。在文章cey2.492中,Roy等人全面概述了直接回收锂电池所取得的进展,并讨论了回收过程的几个方面,如电池分类、预处理方法、阴极和阳极材料的分离以及电极材料的再生和质量提升。
{"title":"Cover Image, Volume 6, Number 6, June 2024","authors":"Joseph Jegan Roy,&nbsp;Do Minh Phuong,&nbsp;Vivek Verma,&nbsp;Richa Chaudhary,&nbsp;Michael Carboni,&nbsp;Daniel Meyer,&nbsp;Bin Cao,&nbsp;Madhavi Srinivasan","doi":"10.1002/cey2.634","DOIUrl":"https://doi.org/10.1002/cey2.634","url":null,"abstract":"<p><b><i>Front cover image</i></b>: Integrating automation and intelligence into battery sorting can decrease dependence on humans, minimize risk and cost, and enhance sorting speed while upholding competitive performance. In the image, the first robot is capable of extracting bolts and nuts, as well as unscrewing screws from the battery pack, using a camera equipped with vision technology. The second robot then picks up the cells and organizes them into clusters based on their remaining capacity. A third robot cuts the cell case and separates the cathode and anode components from the polymer separator. In article cey2.492, Roy et al. provide a comprehensive overview of the progress made in direct recycling LIBs and discuss several aspects of the recycling process, such as battery sorting, pre-treatment methods, the separation of cathode and anode materials, and the regeneration and quality enhancement of electrode materials.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 6","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.634","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicomponent organic blend systems: A review of quaternary organic photovoltaics 多组分有机混合系统:四元有机光伏技术综述
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-24 DOI: 10.1002/cey2.579
Kekeli N'Konou, Souk Y. Kim, Nutifafa Y. Doumon

Embedding a third and/or fourth component into a binary blend active layer of organic photovoltaics (OPVs) is a promising approach to achieve high-performance photovoltaic cells and modules. This multicomponent strategy favors absorption broadening via additional components. Quaternary OPV (QOPV) blends have four components in three possible configurations: (i) a donor and three acceptors, (ii) two donors and two acceptors, or (iii) three donors and an acceptor. Although quaternary systems have only been relatively recently studied compared to other systems in OPVs, leveraging the synergistic effects of the four components leads to record power conversion efficiencies, currently approaching 20%. QOPVs provide ample material choices for compatibility and channels for charge transfer mechanisms, possibly leading to optimized morphology and orientation. Reviewing recent progress in advancing QOPVs is essential for understanding their contribution to the OPV field. The review mainly discusses research progress in QOPVs with a keen interest in their various configurations, semitransparency, and outdoor and indoor applications. It describes the not-well-understood QOPV's general working mechanism. This review explores high-performance QOPVs based on the fourth component's contribution as a donor, acceptor, or dye molecule and beyond in photovoltaic applications. Finally, there is a discussion around QOPV's outlook and projected future research directions in this field. This review intends to provide an overview of the quaternary systems approach to OPVs and inform current and future researchers on investigating the full spectrum of OPVs.

在有机光伏(OPV)的二元混合活性层中嵌入第三和/或第四种成分,是实现高性能光伏电池和模块的一种很有前途的方法。这种多组分策略有利于通过附加成分扩大吸收范围。四元 OPV(QOPV)混合物由四种成分组成,有三种可能的配置:(i) 一个供体和三个受体,(ii) 两个供体和两个受体,或 (iii) 三个供体和一个受体。虽然与 OPV 中的其他系统相比,四元系统的研究相对较晚,但利用四种成分的协同效应,可实现创纪录的功率转换效率,目前已接近 20%。QOPV 为兼容性和电荷转移机制通道提供了充足的材料选择,可能会导致形态和取向的优化。回顾 QOPV 的最新进展对于了解其对 OPV 领域的贡献至关重要。本综述主要讨论了 QOPV 的研究进展,并对其各种配置、半透明性、室外和室内应用产生了浓厚的兴趣。综述描述了尚未被充分理解的 QOPV 的一般工作机制。本综述根据第四种成分作为供体、受体或染料分子及其他光电应用的贡献,探讨了高性能 QOPV。最后,还围绕 QOPV 的前景和该领域的未来研究方向进行了讨论。这篇综述旨在概述四元系统方法在 OPV 中的应用,并为当前和未来的研究人员研究 OPV 的所有方面提供信息。
{"title":"Multicomponent organic blend systems: A review of quaternary organic photovoltaics","authors":"Kekeli N'Konou,&nbsp;Souk Y. Kim,&nbsp;Nutifafa Y. Doumon","doi":"10.1002/cey2.579","DOIUrl":"10.1002/cey2.579","url":null,"abstract":"<p>Embedding a third and/or fourth component into a binary blend active layer of organic photovoltaics (OPVs) is a promising approach to achieve high-performance photovoltaic cells and modules. This multicomponent strategy favors absorption broadening via additional components. Quaternary OPV (QOPV) blends have four components in three possible configurations: (i) a donor and three acceptors, (ii) two donors and two acceptors, or (iii) three donors and an acceptor. Although quaternary systems have only been relatively recently studied compared to other systems in OPVs, leveraging the synergistic effects of the four components leads to record power conversion efficiencies, currently approaching 20%. QOPVs provide ample material choices for compatibility and channels for charge transfer mechanisms, possibly leading to optimized morphology and orientation. Reviewing recent progress in advancing QOPVs is essential for understanding their contribution to the OPV field. The review mainly discusses research progress in QOPVs with a keen interest in their various configurations, semitransparency, and outdoor and indoor applications. It describes the not-well-understood QOPV's general working mechanism. This review explores high-performance QOPVs based on the fourth component's contribution as a donor, acceptor, or dye molecule and beyond in photovoltaic applications. Finally, there is a discussion around QOPV's outlook and projected future research directions in this field. This review intends to provide an overview of the quaternary systems approach to OPVs and inform current and future researchers on investigating the full spectrum of OPVs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.579","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image, Volume 6, Number 6, June 2024 封底图片,第 6 卷第 6 号,2024 年 6 月
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-24 DOI: 10.1002/cey2.635
Yinyu Xiang, Liqiang Lu, Feng Yan, Debarun Sengupta, Petra Rudolf, Ajay Giri Prakash Kottapalli, Yutao Pei

Back cover image: Despite the huge potential of lithium-sulfur (Li-S) batteries due to the high energy density and energy-to-price ratio, the commercial survival of this promising energy storage device is plagued by the polysulfide shuttling and sluggish redox reactions. In the article number cey2.450, Xiang and co-works report a series of novel carbon nanofibers (CNFs) interlayers that are composed of CNFs substrate, Cu nanoparticles decorations, and TiN coatings. Systematic control experiments confirm that lowcrystalline TiN coating exhibits stronger chemical adsorption toward polysulfides than its highly-crystalline counterpart, contributing to enhanced reaction kinetics and electrochemical performance.

封底图片:尽管锂硫(Li-S)电池具有高能量密度和高能价比的巨大潜力,但这种前景广阔的储能装置的商业化生存却受到多硫化物穿梭和氧化还原反应迟缓的困扰。在cey2.450号文章中,Xiang和合作者报告了一系列新型碳纳米纤维(CNFs)夹层,由CNFs基底、铜纳米颗粒装饰和TiN涂层组成。系统控制实验证实,低晶TiN涂层对多硫化物的化学吸附力强于高晶涂层,有助于提高反应动力学和电化学性能。
{"title":"Back Cover Image, Volume 6, Number 6, June 2024","authors":"Yinyu Xiang,&nbsp;Liqiang Lu,&nbsp;Feng Yan,&nbsp;Debarun Sengupta,&nbsp;Petra Rudolf,&nbsp;Ajay Giri Prakash Kottapalli,&nbsp;Yutao Pei","doi":"10.1002/cey2.635","DOIUrl":"https://doi.org/10.1002/cey2.635","url":null,"abstract":"<p><b><i>Back cover image</i></b>: Despite the huge potential of lithium-sulfur (Li-S) batteries due to the high energy density and energy-to-price ratio, the commercial survival of this promising energy storage device is plagued by the polysulfide shuttling and sluggish redox reactions. In the article number cey2.450, Xiang and co-works report a series of novel carbon nanofibers (CNFs) interlayers that are composed of CNFs substrate, Cu nanoparticles decorations, and TiN coatings. Systematic control experiments confirm that lowcrystalline TiN coating exhibits stronger chemical adsorption toward polysulfides than its highly-crystalline counterpart, contributing to enhanced reaction kinetics and electrochemical performance.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 6","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological proton regulation of interlayered local structure in sodium titanite for wide-temperature sodium storage 用于宽温钠储存的钠钛铁矿层间局部结构的拓扑质子调控
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-21 DOI: 10.1002/cey2.560
Ru-Ning Tian, Siwei Zhao, Zhuoran Lv, Guozhong Lu, Mengnuo Fu, Jingjing Chen, Dajian Wang, Chenlong Dong, Zhiyong Mao

Developing high-capacity and high-rate anodes is significant to engineering sodium-ion batteries with high energy density and high power density. Layered Na2Ti3O7 (NTO), with an open crystal structure, large theoretical capacity, and low working potential, is recognized as one of the prospective anodes for sodium storage. Nevertheless, it suffers from sluggish sodiation kinetics and low (micro)structure stability triggered by a high Na+ diffusion barrier and weak adhesion of [Ti3O7] slabs. Herein, the interlayered local structure of NTO is regulated to solve the above issues, in which parts of interlayered Na+ sites are substituted by H+ (Na2−xHxTi3O7 [NHTO]). Theoretical calculations prove that the NHTO offers lower activation energy for Na+ transports and low interlayer spacings with alleviated Na–Na repulsion and relatively flexible [Ti3O7] slabs to reduce fractural stress. In situ and ex situ characterizations of (micro)structure evolution reveal that NHTO goes through transformation between H-rich and Na-rich phases, resulting in high structure stability and microstructure integrity. The optimal NHTO anode delivers a high capacity of 190.6 mA h g−1 at 0.5 C after 300 cycles and a superior high-rate stability of 90.6 mA h g−1 at 50 C over 10,000 cycles at room temperature. Besides, it offers a capacity of 50.3 mA h g−1 after 1800 cycles at a low temperature of −20°C and 195.7 mA h g−1 after 500 cycles at a high temperature of 40°C at 0.5 C. The developed topologically interlayered local structure regulation strategy would raise the prospect of designing high-performance layered anodes.

开发高容量和高倍率阳极对于制造高能量密度和高功率密度的钠离子电池意义重大。层状 Na2Ti3O7(NTO)具有开放晶体结构、理论容量大、工作电位低等特点,是公认的钠离子储能阳极之一。然而,由于 Na+ 扩散阻力大、[Ti3O7] 板的附着力弱,NTO 存在钠化动力学缓慢、(微)结构稳定性低等问题。为解决上述问题,本文对 NTO 的层间局部结构进行了调节,其中部分层间 Na+ 位点被 H+ 取代(Na2-xHxTi3O7 [NHTO])。理论计算证明,NHTO 具有较低的 Na+ 迁移活化能和较低的层间间隔,可减轻 Na-Na 排斥和相对柔性的 [Ti3O7] 板,从而降低断裂应力。对(微)结构演化的原位和非原位表征显示,NHTO 经历了富 H 相和富 Na 相之间的转变,因而具有较高的结构稳定性和微结构完整性。最佳的 NHTO 阳极经过 300 次循环后,在 0.5 摄氏度时可达到 190.6 mA h g-1 的高容量,在室温下经过 10,000 次循环后,在 50 摄氏度时可达到 90.6 mA h g-1 的高倍率稳定性。此外,在-20°C的低温条件下循环 1800 次后,它的容量为 50.3 mA h g-1;在 0.5°C 的高温条件下循环 500 次后,它的容量为 195.7 mA h g-1。所开发的拓扑层间局部结构调节策略将为设计高性能层状阳极带来更广阔的前景。
{"title":"Topological proton regulation of interlayered local structure in sodium titanite for wide-temperature sodium storage","authors":"Ru-Ning Tian,&nbsp;Siwei Zhao,&nbsp;Zhuoran Lv,&nbsp;Guozhong Lu,&nbsp;Mengnuo Fu,&nbsp;Jingjing Chen,&nbsp;Dajian Wang,&nbsp;Chenlong Dong,&nbsp;Zhiyong Mao","doi":"10.1002/cey2.560","DOIUrl":"10.1002/cey2.560","url":null,"abstract":"<p>Developing high-capacity and high-rate anodes is significant to engineering sodium-ion batteries with high energy density and high power density. Layered Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> (NTO), with an open crystal structure, large theoretical capacity, and low working potential, is recognized as one of the prospective anodes for sodium storage. Nevertheless, it suffers from sluggish sodiation kinetics and low (micro)structure stability triggered by a high Na<sup>+</sup> diffusion barrier and weak adhesion of [Ti<sub>3</sub>O<sub>7</sub>] slabs. Herein, the interlayered local structure of NTO is regulated to solve the above issues, in which parts of interlayered Na<sup>+</sup> sites are substituted by H<sup>+</sup> (Na<sub>2−<i>x</i></sub>H<sub><i>x</i></sub>Ti<sub>3</sub>O<sub>7</sub> [NHTO]). Theoretical calculations prove that the NHTO offers lower activation energy for Na<sup>+</sup> transports and low interlayer spacings with alleviated Na–Na repulsion and relatively flexible [Ti<sub>3</sub>O<sub>7</sub>] slabs to reduce fractural stress. In situ and ex situ characterizations of (micro)structure evolution reveal that NHTO goes through transformation between H-rich and Na-rich phases, resulting in high structure stability and microstructure integrity. The optimal NHTO anode delivers a high capacity of 190.6 mA h g<sup>−1</sup> at 0.5 C after 300 cycles and a superior high-rate stability of 90.6 mA h g<sup>−1</sup> at 50 C over 10,000 cycles at room temperature. Besides, it offers a capacity of 50.3 mA h g<sup>−1</sup> after 1800 cycles at a low temperature of −20°C and 195.7 mA h g<sup>−1</sup> after 500 cycles at a high temperature of 40°C at 0.5 C. The developed topologically interlayered local structure regulation strategy would raise the prospect of designing high-performance layered anodes.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.560","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamically frequency-tunable and environmentally stable microwave absorbers 动态频率可调且环境稳定的微波吸收器
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-21 DOI: 10.1002/cey2.589
Xiao Liu, Lihong Wu, Jun Liu, Haiming Lv, Pengpeng Mou, Shaohua Shi, Lei Yu, Gengping Wan, Guizhen Wang

The threat to information security from electromagnetic pollution has sparked widespread interest in the development of microwave absorption materials (MAMs). Although considerable progress has been made in high-performance MAMs, little attention was paid to their absorption frequency regulation to respond to variable input frequencies and their stability and durability to cope with complex environments. Here, a highly compressible polyimide-packaging carbon nanocoils/carbon foam (PI@CNCs/CF) fabricated by a facile vacuum impregnation method is reported to be used as a dynamically frequency-tunable and environmentally stable microwave absorber. PI@CNCs/CF exhibits good structural stability and mechanical properties, which allows precise absorption frequency tuning by simply changing its compression ratio. For the first time, the tunable effective absorption bandwidth can cover the whole test frequency band (2−18 GHz) with the broadest effective absorption bandwidth of 10.8 GHz and the minimum reflection loss of −60.5 dB. Moreover, PI@CNCs/CF possesses excellent heat insulation, infrared stealth, self-cleaning, flame retardant, and acid-alkali corrosion resistance, which endows it high reliability even under various harsh environments and repeated compression testing. The frequency-tunable mechanism is elucidated by combining experiment and simulation results, possibly guiding in designing dynamically frequency-tunable MAMs with good environmental stability in the future.

电磁污染对信息安全的威胁引发了人们对开发微波吸收材料(MAM)的广泛兴趣。虽然在高性能微波吸收材料方面已经取得了相当大的进展,但人们很少关注它们对不同输入频率的吸收频率调节,以及它们应对复杂环境的稳定性和耐用性。本文报告了一种通过简便的真空浸渍法制造的高可压缩性聚酰亚胺包裹碳纳米oils/碳泡沫(PI@CNCs/CF),可用作动态频率可调且环境稳定的微波吸收器。PI@CNCs/CF 具有良好的结构稳定性和机械性能,只需改变其压缩比即可实现精确的吸收频率调节。可调谐的有效吸收带宽首次覆盖了整个测试频段(2-18 GHz),最宽有效吸收带宽为 10.8 GHz,最小反射损耗为 -60.5 dB。此外,PI@CNCs/CF 还具有优异的隔热性、红外隐身性、自洁性、阻燃性和耐酸碱腐蚀性,即使在各种恶劣环境和反复压缩测试下也能保持高可靠性。结合实验和仿真结果,阐明了频率可调的机理,为今后设计具有良好环境稳定性的动态频率可调 MAM 提供了指导。
{"title":"Dynamically frequency-tunable and environmentally stable microwave absorbers","authors":"Xiao Liu,&nbsp;Lihong Wu,&nbsp;Jun Liu,&nbsp;Haiming Lv,&nbsp;Pengpeng Mou,&nbsp;Shaohua Shi,&nbsp;Lei Yu,&nbsp;Gengping Wan,&nbsp;Guizhen Wang","doi":"10.1002/cey2.589","DOIUrl":"10.1002/cey2.589","url":null,"abstract":"<p>The threat to information security from electromagnetic pollution has sparked widespread interest in the development of microwave absorption materials (MAMs). Although considerable progress has been made in high-performance MAMs, little attention was paid to their absorption frequency regulation to respond to variable input frequencies and their stability and durability to cope with complex environments. Here, a highly compressible polyimide-packaging carbon nanocoils/carbon foam (PI@CNCs/CF) fabricated by a facile vacuum impregnation method is reported to be used as a dynamically frequency-tunable and environmentally stable microwave absorber. PI@CNCs/CF exhibits good structural stability and mechanical properties, which allows precise absorption frequency tuning by simply changing its compression ratio. For the first time, the tunable effective absorption bandwidth can cover the whole test frequency band (2−18 GHz) with the broadest effective absorption bandwidth of 10.8 GHz and the minimum reflection loss of −60.5 dB. Moreover, PI@CNCs/CF possesses excellent heat insulation, infrared stealth, self-cleaning, flame retardant, and acid-alkali corrosion resistance, which endows it high reliability even under various harsh environments and repeated compression testing. The frequency-tunable mechanism is elucidated by combining experiment and simulation results, possibly guiding in designing dynamically frequency-tunable MAMs with good environmental stability in the future.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.589","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospinning engineering of gas electrodes for high-performance lithium–gas batteries 用于高性能锂-气电池的气体电极电纺丝工程
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-19 DOI: 10.1002/cey2.572
Jingzhao Wang, Xin Chen, Jianan Wang, Xiangming Cui, Ze Wang, Guangpeng Zhang, Wei Lyu, Maxim Shkunov, S. Ravi P. Silva, Yaozu Liao, Kai Yang, Wei Yan

Lithium–gas batteries (LGBs) have garnered significant attention due to their impressive high-energy densities and unique gas conversion capability. Nevertheless, the practical application of LGBs faces substantial challenges, including sluggish gas conversion kinetics inducing in low-rate performance and high overpotential, along with limited electrochemical reversibility leading to poor cycle life. The imperative task is to develop gas electrodes with remarkable catalytic activity, abundant active sites, and exceptional electrochemical stability. Electrospinning, a versatile and well-established technique for fabricating fibrous nanomaterials, has been extensively explored in LGB applications. In this work, we emphasize the critical structure–property for ideal gas electrodes and summarize the advancement of employing electrospun nanofibers (NFs) for performance enhancement in LGBs. Beyond elucidating the fundamental principles of LGBs and the electrospinning technique, we focus on the systematic design of electrospun NF-based gas electrodes regarding optimal structural fabrication, catalyst handling and activation, and catalytic site optimization, as well as considerations for large-scale implementation. The demonstrated principles and regulations for electrode design are expected to inspire broad applications in catalyst-based energy applications.

锂-气电池(LGB)因其令人印象深刻的高能量密度和独特的气体转换能力而备受关注。然而,LGB 的实际应用面临着巨大的挑战,包括缓慢的气体转换动力学导致的低速率性能和高过电位,以及有限的电化学可逆性导致的低循环寿命。当务之急是开发具有显著催化活性、丰富活性位点和优异电化学稳定性的气体电极。电纺丝是一种多功能、成熟的纤维状纳米材料制造技术,已在 LGB 应用中得到广泛探索。在这项工作中,我们强调了理想气体电极的关键结构-性能,并总结了采用电纺纳米纤维 (NF) 提高 LGB 性能的进展。除了阐明 LGB 和电纺技术的基本原理外,我们还重点关注了基于电纺 NF 的气体电极的系统设计,包括最佳结构制造、催化剂处理和活化、催化位点优化以及大规模实施的注意事项。所展示的电极设计原则和规范有望在基于催化剂的能源应用中得到广泛应用。
{"title":"Electrospinning engineering of gas electrodes for high-performance lithium–gas batteries","authors":"Jingzhao Wang,&nbsp;Xin Chen,&nbsp;Jianan Wang,&nbsp;Xiangming Cui,&nbsp;Ze Wang,&nbsp;Guangpeng Zhang,&nbsp;Wei Lyu,&nbsp;Maxim Shkunov,&nbsp;S. Ravi P. Silva,&nbsp;Yaozu Liao,&nbsp;Kai Yang,&nbsp;Wei Yan","doi":"10.1002/cey2.572","DOIUrl":"10.1002/cey2.572","url":null,"abstract":"<p>Lithium–gas batteries (LGBs) have garnered significant attention due to their impressive high-energy densities and unique gas conversion capability. Nevertheless, the practical application of LGBs faces substantial challenges, including sluggish gas conversion kinetics inducing in low-rate performance and high overpotential, along with limited electrochemical reversibility leading to poor cycle life. The imperative task is to develop gas electrodes with remarkable catalytic activity, abundant active sites, and exceptional electrochemical stability. Electrospinning, a versatile and well-established technique for fabricating fibrous nanomaterials, has been extensively explored in LGB applications. In this work, we emphasize the critical structure–property for ideal gas electrodes and summarize the advancement of employing electrospun nanofibers (NFs) for performance enhancement in LGBs. Beyond elucidating the fundamental principles of LGBs and the electrospinning technique, we focus on the systematic design of electrospun NF-based gas electrodes regarding optimal structural fabrication, catalyst handling and activation, and catalytic site optimization, as well as considerations for large-scale implementation. The demonstrated principles and regulations for electrode design are expected to inspire broad applications in catalyst-based energy applications.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure–performance relationship of Au nanoclusters in electrocatalysis: Metal core and ligand structure 电催化中金纳米团簇的结构-性能关系:金属核与配体结构
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-18 DOI: 10.1002/cey2.547
Bowen Li, Lianmei Kang, Yongfeng Lun, Jinli Yu, Shuqin Song, Yi Wang

Remarkable progress has characterized the field of electrocatalysis in recent decades, driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale. Atomically precise metal nanoclusters, serving as exemplary models, significantly expand the range of accessible structures through diverse cores and ligands, creating an exceptional platform for the investigation of catalytic reactions. Notably, ligand-protected Au nanoclusters (NCs) with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis. The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions. This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis, elucidating their underlying mechanisms. A detailed exploration of the fundamentals of Au NCs, considering core and ligand structures, follows. Subsequently, the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined. Concluding the discourse, challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.

近几十年来,电催化领域取得了显著进展,部分原因是对纳米级催化剂结构和机理的理解得到了提高。原子级精密金属纳米簇作为典范,通过不同的核心和配体大大扩展了可访问结构的范围,为研究催化反应创造了一个卓越的平台。值得注意的是,配体保护的金纳米簇(NC)具有精确定义的核数,在阐明其特定结构与电催化反应机制之间的相关性方面具有明显优势。对金纳米团簇的微观结构进行战略性调控,为定制其在各种反应中的电催化性能提供了重要机会。本综述深入探讨了 Au NC 内核和配体在电催化中的深远结构影响,并阐明了其潜在机制。接下来将详细探讨 Au NC 的基本原理,包括核心和配体结构。随后,研究了 Au NCs 内核和配体结构之间的相互作用及其对各种反应中电催化性能的影响。最后,提出了面临的挑战和个人展望,以指导高效电催化剂的合理设计和推进电催化反应。
{"title":"Structure–performance relationship of Au nanoclusters in electrocatalysis: Metal core and ligand structure","authors":"Bowen Li,&nbsp;Lianmei Kang,&nbsp;Yongfeng Lun,&nbsp;Jinli Yu,&nbsp;Shuqin Song,&nbsp;Yi Wang","doi":"10.1002/cey2.547","DOIUrl":"10.1002/cey2.547","url":null,"abstract":"<p>Remarkable progress has characterized the field of electrocatalysis in recent decades, driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale. Atomically precise metal nanoclusters, serving as exemplary models, significantly expand the range of accessible structures through diverse cores and ligands, creating an exceptional platform for the investigation of catalytic reactions. Notably, ligand-protected Au nanoclusters (NCs) with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis. The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions. This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis, elucidating their underlying mechanisms. A detailed exploration of the fundamentals of Au NCs, considering core and ligand structures, follows. Subsequently, the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined. Concluding the discourse, challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 8","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.547","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon fiber confined mixed Ni-based crystal phases with interfacial charge redistribution induced by high bond polarity for electrochemical urea-assisted hydrogen generation 高键极性诱导界面电荷再分布的碳纤维封闭镍基混合晶相用于电化学脲辅助制氢
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-06-11 DOI: 10.1002/cey2.553
Chun Yin, Jiaxin Li, Shuli Wang, Huan Wen, Fulin Yang, Ligang Feng

Interfacial electronic structure modulation of nickel-based electrocatalysts is significant in boosting energy-conversion-relevant urea oxidation reaction (UOR). Herein, porous carbon nanofibers confined mixed Ni-based crystal phases of Ni2P and NiF2 are developed via fluorination and phosphorization of Ni coated carbon nanofiber (Ni2P/NiF2/PCNF), which possess sufficient mesoporous and optimized Gibbs adsorption free energy by mixed phase-induced charge redistribution. This novel system further reduces the reaction energy barrier and improves the reaction activity by addressing the challenges of low intrinsic activity, difficulty in active site formation, and insufficient synergism. A considerably high current density of 254.29 mA cm−2 is reached at 1.54 V versus reversible hydrogen electrode on a glass carbon electrode, and the cell voltage requires 1.39 V to get 10 mA cm−2 in hydrogen generation, with very good stability, about 190 mV less than that of the traditional water electrolysis. The facile active phase formation and high charge transfer ability induced by asymmetric charge redistribution are found in the interface, where the urea molecules tend to bond with Ni atoms on the surface of heterojunction, and the rate-determining step is changed from CO2 desorption to the fourth H-atom deprotonation. The work reveals a novel catalyst system by interfacial charge redistribution induced by high bond polarity for energy-relevant catalysis reactions.

镍基电催化剂的界面电子结构调制对促进能量转换相关的尿素氧化反应(UOR)具有重要意义。在此,通过对镍涂层碳纳米纤维(Ni2P/NiF2/PCNF)进行氟化和磷化,开发出内含 Ni2P 和 NiF2 混合镍基晶相的多孔碳纳米纤维,这种碳纳米纤维具有足够的介孔性,并通过混合相诱导的电荷再分布优化了吉布斯吸附自由能。这种新型体系通过解决低内在活性、活性位点形成困难和协同作用不足等难题,进一步降低了反应能垒,提高了反应活性。与玻璃碳电极上的可逆氢电极相比,在 1.54 V 的电压下可达到 254.29 mA cm-2 的相当高的电流密度,电池电压需要 1.39 V 才能产生 10 mA cm-2 的氢气,稳定性非常好,比传统的水电解低约 190 mV。非对称电荷再分布诱导的活性相形成容易、电荷转移能力强,在界面上,尿素分子倾向于与异质结表面的镍原子结合,速率决定步骤由二氧化碳解吸变为第四个H原子的去质子化。这项研究揭示了一种新型催化剂体系,它通过高键极性诱导的界面电荷再分布来实现与能量相关的催化反应。
{"title":"Carbon fiber confined mixed Ni-based crystal phases with interfacial charge redistribution induced by high bond polarity for electrochemical urea-assisted hydrogen generation","authors":"Chun Yin,&nbsp;Jiaxin Li,&nbsp;Shuli Wang,&nbsp;Huan Wen,&nbsp;Fulin Yang,&nbsp;Ligang Feng","doi":"10.1002/cey2.553","DOIUrl":"10.1002/cey2.553","url":null,"abstract":"<p>Interfacial electronic structure modulation of nickel-based electrocatalysts is significant in boosting energy-conversion-relevant urea oxidation reaction (UOR). Herein, porous carbon nanofibers confined mixed Ni-based crystal phases of Ni<sub>2</sub>P and NiF<sub>2</sub> are developed via fluorination and phosphorization of Ni coated carbon nanofiber (Ni<sub>2</sub>P/NiF<sub>2</sub>/PCNF), which possess sufficient mesoporous and optimized Gibbs adsorption free energy by mixed phase-induced charge redistribution. This novel system further reduces the reaction energy barrier and improves the reaction activity by addressing the challenges of low intrinsic activity, difficulty in active site formation, and insufficient synergism. A considerably high current density of 254.29 mA cm<sup>−2</sup> is reached at 1.54 V versus reversible hydrogen electrode on a glass carbon electrode, and the cell voltage requires 1.39 V to get 10 mA cm<sup>−2</sup> in hydrogen generation, with very good stability, about 190 mV less than that of the traditional water electrolysis. The facile active phase formation and high charge transfer ability induced by asymmetric charge redistribution are found in the interface, where the urea molecules tend to bond with Ni atoms on the surface of heterojunction, and the rate-determining step is changed from CO<sub>2</sub> desorption to the fourth H-atom deprotonation. The work reveals a novel catalyst system by interfacial charge redistribution induced by high bond polarity for energy-relevant catalysis reactions.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141358536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1