首页 > 最新文献

Carbon Energy最新文献

英文 中文
Perovskite oxides as electrocatalysts for water electrolysis: From crystalline to amorphous 作为水电解电催化剂的包晶体氧化物:从晶体到非晶体
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-02 DOI: 10.1002/cey2.595
Hainan Sun, Xiaomin Xu, Gao Chen, Zongping Shao
Crystalline perovskite oxides are regarded as promising electrocatalysts for water electrolysis, particularly for anodic oxygen evolution reactions, owing to their low cost and high intrinsic activity. Perovskite oxides with noncrystalline or amorphous characteristics also exhibit promising electrocatalytic performance toward electrochemical water splitting. In this review, a fundamental understanding of the characteristics and advantages of crystalline, noncrystalline, and amorphous perovskite oxides is presented. Subsequently, recent progress in the development of advanced electrocatalysts for water electrolysis by engineering and breaking the crystallinity of perovskite oxides is reviewed, with a special focus on the underlying structure–activity relationships. Finally, the remaining challenges and unsolved issues are presented, and an outlook is briefly proposed for the future exploration of next-generation water-splitting electrocatalysts based on perovskite oxides.
晶体包晶氧化物因其低成本和高内在活性,被认为是很有前途的水电解电催化剂,特别是在阳极氧进化反应中。具有非晶或无定形特征的包晶氧化物在电化学水分离方面也表现出良好的电催化性能。本综述介绍了对晶体、非晶和非晶包晶氧化物特性和优势的基本认识。随后,综述了通过工程设计和破坏包晶石氧化物的结晶性来开发先进电解水电催化剂的最新进展,并特别关注了基本的结构-活性关系。最后,介绍了尚存在的挑战和未解决的问题,并简要展望了基于包晶石氧化物的下一代水分离电催化剂的未来探索。
{"title":"Perovskite oxides as electrocatalysts for water electrolysis: From crystalline to amorphous","authors":"Hainan Sun, Xiaomin Xu, Gao Chen, Zongping Shao","doi":"10.1002/cey2.595","DOIUrl":"https://doi.org/10.1002/cey2.595","url":null,"abstract":"Crystalline perovskite oxides are regarded as promising electrocatalysts for water electrolysis, particularly for anodic oxygen evolution reactions, owing to their low cost and high intrinsic activity. Perovskite oxides with noncrystalline or amorphous characteristics also exhibit promising electrocatalytic performance toward electrochemical water splitting. In this review, a fundamental understanding of the characteristics and advantages of crystalline, noncrystalline, and amorphous perovskite oxides is presented. Subsequently, recent progress in the development of advanced electrocatalysts for water electrolysis by engineering and breaking the crystallinity of perovskite oxides is reviewed, with a special focus on the underlying structure–activity relationships. Finally, the remaining challenges and unsolved issues are presented, and an outlook is briefly proposed for the future exploration of next-generation water-splitting electrocatalysts based on perovskite oxides.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facile ice-templating-induced puzzle coupled with carbonization strategy for kilogram-level production of porous carbon nanosheets as high-capacity anode for lithium-ion batteries 一种简便的冰雏形诱导拼图和碳化策略,用于生产公斤级多孔碳纳米片,作为锂离子电池的高容量负极
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-02 DOI: 10.1002/cey2.633
Baolin Xing, Feng Shi, Zhanzhan Jin, Huihui Zeng, Xiaoxiao Qu, Guangxu Huang, Chuanxiang Zhang, Yunkai Xu, Zhengfei Chen, Jun Lu
Two-dimensional porous carbon nanosheets (PCNSs) are considered promising anodes for lithium-ion batteries due to their synergetic features arising from both graphene and porous structures. Herein, using naturally abundant and biocompatible sodium humate (SH) as the precursor, PCNSs are prepared from the laboratory scale up to the kilogram scale by a method of a facile ice-templating-induced puzzle coupled with a carbonization strategy. Such obtained SH-derived PCNSs (SH-PCNSs) possess a hierarchical porous structure dominated by mesopores having a specific surface area (~127.19 2 g−1), pore volume (~0.134 cm3 g−1), sheet-like morphology (~2.18 nm in thickness), and nitrogen/oxygen-containing functional groups. Owing to these merits, the SH-PCNSs present impressive Li-ion storage characteristics, including high reversible capacity (1011 mAh g−1 at 0.1 A g−1), excellent rate capability (465 mAh g−1 at 5 A g−1), and superior cycle stability (76.8% capacitance retention after 1000 cycles at 5 A g−1). It is noted that the SH-PCNSs prepared from the kilogram-scale production procedure possess comparable electrochemical properties. Furthermore, coupling with a LiNi1/3Co1/3Mn1/3O2 cathode, the full cells deliver a high capacity of 167 mAh g−1 at 0.2 A g−1 and exhibit an outstanding energy density of 128.8 Wh kg−1, highlighting the practicability of this porous carbon nanosheets and the potential commercial opportunity of the scalable processing approach.
二维多孔碳纳米片(PCNSs)因其石墨烯和多孔结构的协同特性而被认为是锂离子电池的理想阳极。本文以天然丰富且具有生物相容性的腐植酸钠(SH)为前驱体,通过简便的冰诱导拼图法和碳化策略,制备出从实验室规模到公斤级的 PCNS。这种由 SH 衍生的 PCNSs(SH-PCNSs)具有分层多孔结构,以中孔为主,具有比表面积(约 127.19 2 g-1)、孔体积(约 0.134 cm3 g-1)、片状形态(厚度约 2.18 nm)和含氮/氧官能团。由于这些优点,SH-PCNS 具有令人印象深刻的锂离子存储特性,包括高可逆容量(0.1 A g-1 时为 1011 mAh g-1)、出色的速率能力(5 A g-1 时为 465 mAh g-1)和卓越的循环稳定性(5 A g-1 时循环 1000 次后电容保持率为 76.8%)。值得注意的是,通过公斤级生产程序制备的 SH-PCNS 具有类似的电化学特性。此外,与 LiNi1/3Co1/3Mn1/3O2 阴极耦合后,全电池在 0.2 A g-1 的条件下可提供 167 mAh g-1 的高容量,并表现出 128.8 Wh kg-1 的出色能量密度,这凸显了这种多孔碳纳米片的实用性以及可扩展加工方法的潜在商业机会。
{"title":"A facile ice-templating-induced puzzle coupled with carbonization strategy for kilogram-level production of porous carbon nanosheets as high-capacity anode for lithium-ion batteries","authors":"Baolin Xing, Feng Shi, Zhanzhan Jin, Huihui Zeng, Xiaoxiao Qu, Guangxu Huang, Chuanxiang Zhang, Yunkai Xu, Zhengfei Chen, Jun Lu","doi":"10.1002/cey2.633","DOIUrl":"https://doi.org/10.1002/cey2.633","url":null,"abstract":"Two-dimensional porous carbon nanosheets (PCNSs) are considered promising anodes for lithium-ion batteries due to their synergetic features arising from both graphene and porous structures. Herein, using naturally abundant and biocompatible sodium humate (SH) as the precursor, PCNSs are prepared from the laboratory scale up to the kilogram scale by a method of a facile ice-templating-induced puzzle coupled with a carbonization strategy. Such obtained SH-derived PCNSs (SH-PCNSs) possess a hierarchical porous structure dominated by mesopores having a specific surface area (~127.19 <sup>2</sup> g<sup>−1</sup>), pore volume (~0.134 cm<sup>3</sup> g<sup>−1</sup>), sheet-like morphology (~2.18 nm in thickness), and nitrogen/oxygen-containing functional groups. Owing to these merits, the SH-PCNSs present impressive Li-ion storage characteristics, including high reversible capacity (1011 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>), excellent rate capability (465 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>), and superior cycle stability (76.8% capacitance retention after 1000 cycles at 5 A g<sup>−1</sup>). It is noted that the SH-PCNSs prepared from the kilogram-scale production procedure possess comparable electrochemical properties. Furthermore, coupling with a LiNi<sub>1/3</sub>Co<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> cathode, the full cells deliver a high capacity of 167 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> and exhibit an outstanding energy density of 128.8 Wh kg<sup>−1</sup>, highlighting the practicability of this porous carbon nanosheets and the potential commercial opportunity of the scalable processing approach.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic modulation of valence state and oxygen vacancy induced by surface reconstruction of the CeO2/CuO catalyst toward enhanced electrochemical CO2 reduction CeO2/CuO 催化剂表面重构诱导的价态和氧空位协同调控可增强二氧化碳的电化学还原能力
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-02 DOI: 10.1002/cey2.588
Fangfang Chang, Zhenmao Zhang, Yan Zhang, Yongpeng Liu, Lin Yang, Xiaolei Wang, Zhengyu Bai, Qing Zhang
Electrochemical CO2 reduction reaction (CO2RR) offers a promising strategy for CO2 conversion into value-added C2+ products and facilitates the storage of renewable resources under comparatively mild conditions, but still remains a challenge. Herein, we propose the strategy of surface reconstruction and interface integration engineering to construct tuneable Cu0–Cu+–Cu2+ sites and oxygen vacancy oxide derived from CeO2/CuO nanosheets (OD-CeO2/CuO NSs) heterojunction catalysts and promote the activity and selectivity of CO2RR. The optimized OD-CeO2/CuO electrocatalyst shows the maximum Faradic efficiencies for C2+ products in the H-type cell, which reaches 69.8% at −1.25 V versus a reversible hydrogen electrode (RHE). Advanced characterization analysis and density functional theory (DFT) calculations further confirm the fact that the existence of oxygen vacancies and Cu0–Cu+–Cu2+ sites modified with CeO2 is conducive to CO2 adsorption and activation, enhances the hydrogenation of *CO to *CHO, and further promotes the dimerization of *CHO, thus promoting the selectivity of C2+ generation. This facile interface integration and surface reconstruction strategy provides an ideal strategy to guide the design of CO2RR electrocatalysts.
电化学二氧化碳还原反应(CO2RR)为将二氧化碳转化为高附加值的 C2+ 产品提供了一种前景广阔的策略,并有助于在相对温和的条件下储存可再生资源,但这仍然是一项挑战。在此,我们提出了表面重构和界面整合工程的策略,以构建可调的 Cu0-Cu+-Cu2+ 位点和源于 CeO2/CuO 纳米片的氧空位氧化物(OD-CeO2/CuO NSs)异质结合催化剂,并提高 CO2RR 的活性和选择性。优化的 OD-CeO2/CuO 电催化剂在 H 型电池中显示出最大的 C2+ 产物法拉第效率,与可逆氢电极 (RHE) 相比,在 -1.25 V 时达到 69.8%。先进的表征分析和密度泛函理论(DFT)计算进一步证实,CeO2修饰的氧空位和Cu0-Cu+-Cu2+位点的存在有利于二氧化碳的吸附和活化,增强了*CO向*CHO的氢化,并进一步促进了*CHO的二聚化,从而提高了C2+生成的选择性。这种简便的界面整合和表面重构策略为 CO2RR 电催化剂的设计提供了理想的指导策略。
{"title":"Synergistic modulation of valence state and oxygen vacancy induced by surface reconstruction of the CeO2/CuO catalyst toward enhanced electrochemical CO2 reduction","authors":"Fangfang Chang, Zhenmao Zhang, Yan Zhang, Yongpeng Liu, Lin Yang, Xiaolei Wang, Zhengyu Bai, Qing Zhang","doi":"10.1002/cey2.588","DOIUrl":"https://doi.org/10.1002/cey2.588","url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) offers a promising strategy for CO<sub>2</sub> conversion into value-added C<sub>2+</sub> products and facilitates the storage of renewable resources under comparatively mild conditions, but still remains a challenge. Herein, we propose the strategy of surface reconstruction and interface integration engineering to construct tuneable Cu<sup>0</sup>–Cu<sup>+</sup>–Cu<sup>2+</sup> sites and oxygen vacancy oxide derived from CeO<sub>2</sub>/CuO nanosheets (OD-CeO<sub>2</sub>/CuO NSs) heterojunction catalysts and promote the activity and selectivity of CO<sub>2</sub>RR. The optimized OD-CeO<sub>2</sub>/CuO electrocatalyst shows the maximum Faradic efficiencies for C<sub>2+</sub> products in the H-type cell, which reaches 69.8% at −1.25 V versus a reversible hydrogen electrode (RHE). Advanced characterization analysis and density functional theory (DFT) calculations further confirm the fact that the existence of oxygen vacancies and Cu<sup>0</sup>–Cu<sup>+</sup>–Cu<sup>2+</sup> sites modified with CeO<sub>2</sub> is conducive to CO<sub>2</sub> adsorption and activation, enhances the hydrogenation of *CO to *CHO, and further promotes the dimerization of *CHO, thus promoting the selectivity of C<sub>2+</sub> generation. This facile interface integration and surface reconstruction strategy provides an ideal strategy to guide the design of CO<sub>2</sub>RR electrocatalysts.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 6, Number 7, July 2024 封面图片,第 6 卷第 7 号,2024 年 7 月
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-29 DOI: 10.1002/cey2.644
Jeong Seok Yeon, Sul Ki Park, Shinik Kim, Santosh V. Mohite, Won Il Kim, Gun Jang, Hyun-Seok Jang, Jiyoung Bae, Sang Moon Lee, Won G. Hong, Byung Hoon Kim, Yeonho Kim, Ho Seok Park

Front cover image: Rechargeable zinc-ion batteries (ZIBs) have received much attention because they are cheaper and safer than Li metals. However, the introduction of strong adhesives (i.e. binders) between electrodes and current collectors leads to capacity decay and lower rate capability due to their electrochemical inactivity and low electrical conductivity. This work reports flexible ZIBs without binder- and conductive agent-free pyroprotein-based fibres/VO2 electrodes. These ZIBs offer application possibilities for portable and wearable power sources. cey2.469.

封面图片:可充电锌离子电池(ZIB)因比锂金属更便宜、更安全而备受关注。然而,在电极和集流器之间引入强粘合剂(即粘结剂)会导致容量衰减,并因其电化学不活跃和导电率低而降低速率能力。这项工作报告了不含粘合剂和导电剂的柔性 ZIB(基于烟蛋白的纤维/VO2 电极)。这些 ZIB 为便携式和可穿戴式电源提供了应用可能性。
{"title":"Cover Image, Volume 6, Number 7, July 2024","authors":"Jeong Seok Yeon,&nbsp;Sul Ki Park,&nbsp;Shinik Kim,&nbsp;Santosh V. Mohite,&nbsp;Won Il Kim,&nbsp;Gun Jang,&nbsp;Hyun-Seok Jang,&nbsp;Jiyoung Bae,&nbsp;Sang Moon Lee,&nbsp;Won G. Hong,&nbsp;Byung Hoon Kim,&nbsp;Yeonho Kim,&nbsp;Ho Seok Park","doi":"10.1002/cey2.644","DOIUrl":"10.1002/cey2.644","url":null,"abstract":"<p><b><i>Front cover image</i></b>: Rechargeable zinc-ion batteries (ZIBs) have received much attention because they are cheaper and safer than Li metals. However, the introduction of strong adhesives (i.e. binders) between electrodes and current collectors leads to capacity decay and lower rate capability due to their electrochemical inactivity and low electrical conductivity. This work reports flexible ZIBs without binder- and conductive agent-free pyroprotein-based fibres/VO<sub>2</sub> electrodes. These ZIBs offer application possibilities for portable and wearable power sources. cey2.469.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.644","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image, Volume 6, Number 7, July 2024 封底图片,第 6 卷第 7 号,2024 年 7 月
IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-29 DOI: 10.1002/cey2.645
Leijun Ye, Weiheng Chen, Zhong-Jie Jiang, Zhongqing Jiang

Back cover image: Traditionally, expensive precious metal based electrocatalysts have been relied upon as air electrodes for rechargeable zinc air batteries (ZABs), which have prompted researchers to innovate and develop cost-effective and efficient novel bifunctional electrocatalytic systems. In the article number cey2.457, Jiang and co-workers reported Co/CoO heterojunction nanoparticles (NPs) rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes (P-Co/CoOV@NHCNB@NCNT) as bifunctional electrocatalysts synthesized through zeoliteimidazole framework (ZIF-67) carbonization, chemical vapor deposition and O2 plasma treatment. It displays exceedingly good electrocatalytic performance for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER), significantly superior to standard noble metal-based Pt/C + RuO2 systems. The enhanced electrocatalytic performance of the P-Co/CoOV@NHCNB@NCNT can be attributed to the formation of heterojunctions and oxygen vacancies induced by O2 plasma treatment.

封底图片:传统上,可充电锌空气电池(ZABs)一直依赖昂贵的贵金属电催化剂作为空气电极,这促使研究人员进行创新,开发出经济高效的新型双功能电催化系统。在编号为cey2.457的文章中,Jiang及其合作者报道了通过沸石咪唑框架(ZIF-67)碳化、化学气相沉积和O2等离子体处理合成的富含氧空位的Co/CoO异质结纳米粒子(NPs)作为双功能电催化剂。它在氧还原反应(ORR)和氧进化反应(OER)中表现出了极好的电催化性能,明显优于标准的贵金属基 Pt/C + RuO2 系统。P-Co/CoOV@NHCNB@NCNT 电催化性能的增强可归因于 O2 等离子处理诱导的异质结和氧空位的形成。
{"title":"Back Cover Image, Volume 6, Number 7, July 2024","authors":"Leijun Ye,&nbsp;Weiheng Chen,&nbsp;Zhong-Jie Jiang,&nbsp;Zhongqing Jiang","doi":"10.1002/cey2.645","DOIUrl":"10.1002/cey2.645","url":null,"abstract":"<p><b><i>Back cover image</i></b>: Traditionally, expensive precious metal based electrocatalysts have been relied upon as air electrodes for rechargeable zinc air batteries (ZABs), which have prompted researchers to innovate and develop cost-effective and efficient novel bifunctional electrocatalytic systems. In the article number cey2.457, Jiang and co-workers reported Co/CoO heterojunction nanoparticles (NPs) rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes (P-Co/CoO<sub>V</sub>@NHCNB@NCNT) as bifunctional electrocatalysts synthesized through zeoliteimidazole framework (ZIF-67) carbonization, chemical vapor deposition and O<sub>2</sub> plasma treatment. It displays exceedingly good electrocatalytic performance for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER), significantly superior to standard noble metal-based Pt/C + RuO<sub>2</sub> systems. The enhanced electrocatalytic performance of the P-Co/CoO<sub>V</sub>@NHCNB@NCNT can be attributed to the formation of heterojunctions and oxygen vacancies induced by O<sub>2</sub> plasma treatment.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.645","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-energy-density long-cycle lithium–sulfur battery enabled by 3D graphene architecture 利用三维石墨烯结构实现的高能量密度长循环锂硫电池
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-17 DOI: 10.1002/cey2.599
Yan Cheng, Bihan Liu, Xiang Li, Xin He, Zhiyi Sun, Wentao Zhang, Ziyao Gao, Leyuan Zhang, Xiangxiang Chen, Zhen Chen, Zhuo Chen, Lele Peng, Xiangfeng Duan
Lithium–sulfur (Li–S) battery is attracting increasing interest for its potential in low-cost high-density energy storage. However, it has been a persistent challenge to simultaneously realize high energy density and long cycle life. Herein, we report a synergistic strategy to exploit a unique nitrogen-doped three-dimensional graphene aerogel as both the lithium anode host to ensure homogeneous lithium plating/stripping and mitigate lithium dendrite formation and the sulfur cathode host to facilitate efficient sulfur redox chemistry and combat undesirable polysulfide shuttling effect, realizing Li–S battery simultaneously with ultrahigh energy density and long cycle life. The as-demonstrated polysulfide-based device delivers a high areal capacity of 7.5 mAh/cm2 (corresponds to 787 Wh/L) and an ultralow capacity fading of 0.025% per cycle over 1000 cycles at a high current density of 8.6 mA/cm2. Our findings suggest a novel strategy to scale up the superior electrochemical property of every microscopic unit to a macroscopic-level performance that enables simultaneously high areal energy density and long cycling stability that are critical for practical Li–S batteries.
锂硫(Li-S)电池在低成本、高密度储能方面的潜力正吸引着越来越多的关注。然而,如何同时实现高能量密度和长循环寿命一直是个难题。在此,我们报告了一种协同策略,即利用独特的氮掺杂三维石墨烯气凝胶作为锂正极载体,以确保锂镀层/剥离的均匀性并减少锂枝晶的形成;同时利用硫作为阴极载体,以促进高效的硫氧化还原化学反应并消除不良的多硫穿梭效应,从而同时实现锂-S 电池的超高能量密度和长循环寿命。所展示的基于多硫化物的器件在 8.6 mA/cm2 的高电流密度下,可提供 7.5 mAh/cm2 (相当于 787 Wh/L)的高面值容量,并且在 1000 次循环中,每次循环的容量衰减率仅为 0.025%。我们的研究结果提出了一种新颖的策略,可将每个微观单元的优异电化学特性放大到宏观级别的性能,从而同时实现对实用锂-S 电池至关重要的高面值能量密度和长循环稳定性。
{"title":"A high-energy-density long-cycle lithium–sulfur battery enabled by 3D graphene architecture","authors":"Yan Cheng, Bihan Liu, Xiang Li, Xin He, Zhiyi Sun, Wentao Zhang, Ziyao Gao, Leyuan Zhang, Xiangxiang Chen, Zhen Chen, Zhuo Chen, Lele Peng, Xiangfeng Duan","doi":"10.1002/cey2.599","DOIUrl":"https://doi.org/10.1002/cey2.599","url":null,"abstract":"Lithium–sulfur (Li–S) battery is attracting increasing interest for its potential in low-cost high-density energy storage. However, it has been a persistent challenge to simultaneously realize high energy density and long cycle life. Herein, we report a synergistic strategy to exploit a unique nitrogen-doped three-dimensional graphene aerogel as both the lithium anode host to ensure homogeneous lithium plating/stripping and mitigate lithium dendrite formation and the sulfur cathode host to facilitate efficient sulfur redox chemistry and combat undesirable polysulfide shuttling effect, realizing Li–S battery simultaneously with ultrahigh energy density and long cycle life. The as-demonstrated polysulfide-based device delivers a high areal capacity of 7.5 mAh/cm<sup>2</sup> (corresponds to 787 Wh/L) and an ultralow capacity fading of 0.025% per cycle over 1000 cycles at a high current density of 8.6 mA/cm<sup>2</sup>. Our findings suggest a novel strategy to scale up the superior electrochemical property of every microscopic unit to a macroscopic-level performance that enables simultaneously high areal energy density and long cycling stability that are critical for practical Li–S batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic field-assisted electrocatalysis: Mechanisms and design strategies 磁场辅助电催化:机理和设计策略
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-11 DOI: 10.1002/cey2.575
Yongwen Sun, Hong Lv, Han Yao, Yuanfeng Gao, Cunman Zhang
Electrocatalysis has received a great deal of interest in recent decades as a possible energy-conversion technology involving a variety of chemical processes. External magnetic field application is a powerful method for improving electrocatalytic performance that is customizable and compatible with existing electrocatalytic devices. In addition, magnetic fields can assist in catalyst synthesis and act on the catalytic reaction process. This paper systematically reviews the most recent developments in magnetic field-assisted electrocatalytic enhancement technology. The enhancement of electrocatalysis by a magnetic field is mainly represented in the three features listed below: The spin selectivity effect improves the activity of the catalyst in a magnetic field; furthermore, magnetic fields can improve mass transport and electron transport in catalytic processes (due to Lorentz forces, Kelvin forces, magnetohydrodynamic [MHD], and micro-MHD); the magnetothermal effect may raise the reaction temperature and boost electrocatalytic activity. This review focuses on the rational design of catalytic systems incorporating the interaction between catalysts and magnetic fields, aiming to produce enhanced catalytic effects. The recommendations for further utilization of strategies for electrocatalysis and broader energy technologies for magnetic fields, as well as potential challenges for future research, are also discussed.
近几十年来,电催化作为一种可能的能量转换技术受到了广泛关注,其中涉及多种化学过程。外部磁场应用是一种提高电催化性能的强大方法,可定制并与现有电催化设备兼容。此外,磁场还能帮助催化剂合成并作用于催化反应过程。本文系统回顾了磁场辅助电催化增强技术的最新发展。磁场对电催化的增强作用主要体现在以下三个方面:自旋选择性效应可提高催化剂在磁场中的活性;此外,磁场还可改善催化过程中的质量传输和电子传输(由于洛伦兹力、开尔文力、磁流体动力 [MHD] 和微 MHD);磁热效应可提高反应温度并增强电催化活性。本综述侧重于结合催化剂与磁场之间的相互作用合理设计催化系统,旨在产生更强的催化效果。此外,还讨论了进一步利用磁场电催化和更广泛的能源技术策略的建议,以及未来研究的潜在挑战。
{"title":"Magnetic field-assisted electrocatalysis: Mechanisms and design strategies","authors":"Yongwen Sun, Hong Lv, Han Yao, Yuanfeng Gao, Cunman Zhang","doi":"10.1002/cey2.575","DOIUrl":"https://doi.org/10.1002/cey2.575","url":null,"abstract":"Electrocatalysis has received a great deal of interest in recent decades as a possible energy-conversion technology involving a variety of chemical processes. External magnetic field application is a powerful method for improving electrocatalytic performance that is customizable and compatible with existing electrocatalytic devices. In addition, magnetic fields can assist in catalyst synthesis and act on the catalytic reaction process. This paper systematically reviews the most recent developments in magnetic field-assisted electrocatalytic enhancement technology. The enhancement of electrocatalysis by a magnetic field is mainly represented in the three features listed below: The spin selectivity effect improves the activity of the catalyst in a magnetic field; furthermore, magnetic fields can improve mass transport and electron transport in catalytic processes (due to Lorentz forces, Kelvin forces, magnetohydrodynamic [MHD], and micro-MHD); the magnetothermal effect may raise the reaction temperature and boost electrocatalytic activity. This review focuses on the rational design of catalytic systems incorporating the interaction between catalysts and magnetic fields, aiming to produce enhanced catalytic effects. The recommendations for further utilization of strategies for electrocatalysis and broader energy technologies for magnetic fields, as well as potential challenges for future research, are also discussed.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production 用于光催化过氧化氢生产的氮化石墨碳能带工程
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-09 DOI: 10.1002/cey2.596
Tengyang Gao, Degui Zhao, Saisai Yuan, Ming Zheng, Xianjuan Pu, Liang Tang, Zhendong Lei
Hydrogen peroxide (H2O2) is one of the 100 most important chemicals in the world with high energy density and environmental friendliness. Compared with anthraquinone oxidation, direct synthesis of H2O2 with hydrogen (H2) and oxygen (O2), and electrochemical methods, photocatalysis has the characteristics of low energy consumption, easy operation and less pollution, and broad application prospects in H2O2 generation. Various photocatalysts, such as titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), metal-organic materials, and nonmetallic materials, have been studied for H2O2 production. Among them, g-C3N4 materials, which are simple to synthesize and functionalize, have attracted wide attention. The electronic band structure of g-C3N4 shows a bandgap of 2.77 eV, a valence band maximum of 1.44 V, and a conduction band minimum of −1.33 V, which theoretically meets the requirements for hydrogen peroxide production. In comparison to semiconductor materials like TiO2 (3.2 eV), this material has a smaller bandgap, which results in a more efficient response to visible light. However, the photocatalytic activity of g-C3N4 and the yield of H2O2 were severely inhibited by the electron-hole pair with high recombination rate, low utilization rate of visible light, and poor selectivity of products. Although previous reviews also presented various strategies to improve photocatalytic H2O2 production, they did not systematically elaborate the inherent relationship between the control strategies and their energy band structure. From this point of view, this article focuses on energy band engineering and reviews the latest research progress of g-C3N4 photocatalytic H2O2 production. On this basis, a strategy to improve the H2O2 production by g-C3N4 photocatalysis is proposed through morphology control, crystallinity and defect, and doping, combined with other materials and other strategies. Finally, the challenges and prospects of industrialization of g-C3N4 photocatalytic H2O2 production are discussed and envisioned.
过氧化氢(H2O2)是世界上最重要的 100 种化学品之一,具有高能量密度和环境友好的特点。与蒽醌氧化法、氢气(H2)和氧气(O2)直接合成 H2O2 法以及电化学法相比,光催化法具有能耗低、操作简便、污染少等特点,在 H2O2 生成方面具有广阔的应用前景。目前已研究了多种光催化剂,如二氧化钛(TiO2)、氮化石墨碳(g-C3N4)、金属有机材料和非金属材料,用于生产 H2O2。其中,合成和功能化简单的 g-C3N4 材料引起了广泛关注。g-C3N4 的电子带结构显示其带隙为 2.77 eV,价带最大值为 1.44 V,导带最小值为 -1.33 V,理论上符合生产过氧化氢的要求。与 TiO2(3.2 eV)等半导体材料相比,这种材料的带隙更小,因此对可见光的响应效率更高。然而,g-C3N4 的光催化活性和 H2O2 产率受到电子-空穴对的严重抑制,电子-空穴对的重组率高,对可见光的利用率低,产物的选择性差。以往的综述虽然也介绍了提高光催化 H2O2 产率的各种策略,但没有系统地阐述控制策略与其能带结构之间的内在关系。从这个角度出发,本文以能带工程为重点,综述了 g-C3N4 光催化 H2O2 产能的最新研究进展。在此基础上,提出了通过形貌控制、结晶度和缺陷、掺杂等方法,结合其他材料和其他策略,提高 g-C3N4 光催化产生 H2O2 的策略。最后,对 g-C3N4 光催化生产 H2O2 所面临的挑战和产业化前景进行了讨论和展望。
{"title":"Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production","authors":"Tengyang Gao, Degui Zhao, Saisai Yuan, Ming Zheng, Xianjuan Pu, Liang Tang, Zhendong Lei","doi":"10.1002/cey2.596","DOIUrl":"https://doi.org/10.1002/cey2.596","url":null,"abstract":"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is one of the 100 most important chemicals in the world with high energy density and environmental friendliness. Compared with anthraquinone oxidation, direct synthesis of H<sub>2</sub>O<sub>2</sub> with hydrogen (H<sub>2</sub>) and oxygen (O<sub>2</sub>), and electrochemical methods, photocatalysis has the characteristics of low energy consumption, easy operation and less pollution, and broad application prospects in H<sub>2</sub>O<sub>2</sub> generation. Various photocatalysts, such as titanium dioxide (TiO<sub>2</sub>), graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), metal-organic materials, and nonmetallic materials, have been studied for H<sub>2</sub>O<sub>2</sub> production. Among them, g-C<sub>3</sub>N<sub>4</sub> materials, which are simple to synthesize and functionalize, have attracted wide attention. The electronic band structure of g-C<sub>3</sub>N<sub>4</sub> shows a bandgap of 2.77 eV, a valence band maximum of 1.44 V, and a conduction band minimum of −1.33 V, which theoretically meets the requirements for hydrogen peroxide production. In comparison to semiconductor materials like TiO<sub>2</sub> (3.2 eV), this material has a smaller bandgap, which results in a more efficient response to visible light. However, the photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub> and the yield of H<sub>2</sub>O<sub>2</sub> were severely inhibited by the electron-hole pair with high recombination rate, low utilization rate of visible light, and poor selectivity of products. Although previous reviews also presented various strategies to improve photocatalytic H<sub>2</sub>O<sub>2</sub> production, they did not systematically elaborate the inherent relationship between the control strategies and their energy band structure. From this point of view, this article focuses on energy band engineering and reviews the latest research progress of g-C<sub>3</sub>N<sub>4</sub> photocatalytic H<sub>2</sub>O<sub>2</sub> production. On this basis, a strategy to improve the H<sub>2</sub>O<sub>2</sub> production by g-C<sub>3</sub>N<sub>4</sub> photocatalysis is proposed through morphology control, crystallinity and defect, and doping, combined with other materials and other strategies. Finally, the challenges and prospects of industrialization of g-C<sub>3</sub>N<sub>4</sub> photocatalytic H<sub>2</sub>O<sub>2</sub> production are discussed and envisioned.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced water-splitting performance: Interface-engineered tri-metal phosphides with carbon dots modification 提高分水性能:具有碳点修饰的界面工程三金属磷化物
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-05 DOI: 10.1002/cey2.631
Yingnan Jiang, Jingkun Yu, Haoqiang Song, Lingling Du, Wenxuan Sun, Yulong Cui, Yuwen Su, Meiling Sun, Guangchao Yin, Siyu Lu
Designing integrated overall water-splitting catalysts that maintain high efficiency and stability under various conditions is an important trend for future development, yet it remains a significant challenge. Herein, novel nanoflower-like tri-metallic Ni–Ru–Mo phosphide catalyst ((Ni–Ru–Mo)P@F-CDs), integrated with F-doped carbon dots (F-CDs), were synthesized via a straightforward hydrothermal process and subsequent phosphatization. Attributable to precise interface engineering and electronic structure optimization, (Ni–Ru–Mo)P@F-CDs exhibit exceptional bi-functional catalytic activity in alkaline conditions, achieving remarkably low overpotentials of 231 and 123 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, at a current density of 100 mA cm−2. Industrially, only 1.426 V is needed for the same efficacy. Additionally, the catalyst requires merely 1.508 and 1.564 V for overall water splitting in 1 M KOH and simulated seawater, respectively, at 100 mA cm−2. The catalyst also shows excellent stability, with minimal performance decline over 100 h within 100–200 mA cm−2. Density functional theory calculations indicate that the interface structure synergistically optimizes Gibbs free energy for H* and O* intermediates during HER and OER, respectively, accelerating electrochemical water-splitting kinetics.
设计能在各种条件下保持高效率和稳定性的集成整体分水催化剂是未来发展的重要趋势,但这仍然是一项重大挑战。本文通过直接水热法合成了新型纳米花状三金属 Ni-Ru-Mo 磷化物催化剂 ((Ni-Ru-Mo)P@F-CDs),并与掺杂 F 的碳点 (F-CDs) 集成。由于精确的界面工程和电子结构优化,(Ni-Ru-Mo)P@F-CDs 在碱性条件下表现出卓越的双功能催化活性,在 100 mA cm-2 的电流密度下,氧进化反应(OER)和氢进化反应(HER)的过电位分别为 231 mV 和 123 mV。在工业上,只需要 1.426 V 就能达到同样的功效。此外,在 100 mA cm-2 的电流密度下,催化剂在 1 M KOH 和模拟海水中进行整体水分离分别只需要 1.508 V 和 1.564 V 的电压。该催化剂还表现出极佳的稳定性,在 100-200 mA cm-2 的条件下,100 小时内性能下降极小。密度泛函理论计算表明,在 HER 和 OER 过程中,界面结构分别协同优化了 H* 和 O* 中间体的吉布斯自由能,从而加速了电化学水分离动力学。
{"title":"Enhanced water-splitting performance: Interface-engineered tri-metal phosphides with carbon dots modification","authors":"Yingnan Jiang, Jingkun Yu, Haoqiang Song, Lingling Du, Wenxuan Sun, Yulong Cui, Yuwen Su, Meiling Sun, Guangchao Yin, Siyu Lu","doi":"10.1002/cey2.631","DOIUrl":"https://doi.org/10.1002/cey2.631","url":null,"abstract":"Designing integrated overall water-splitting catalysts that maintain high efficiency and stability under various conditions is an important trend for future development, yet it remains a significant challenge. Herein, novel nanoflower-like tri-metallic Ni–Ru–Mo phosphide catalyst ((Ni–Ru–Mo)P@F-CDs), integrated with F-doped carbon dots (F-CDs), were synthesized via a straightforward hydrothermal process and subsequent phosphatization. Attributable to precise interface engineering and electronic structure optimization, (Ni–Ru–Mo)P@F-CDs exhibit exceptional bi-functional catalytic activity in alkaline conditions, achieving remarkably low overpotentials of 231 and 123 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, at a current density of 100 mA cm<sup>−2</sup>. Industrially, only 1.426 V is needed for the same efficacy. Additionally, the catalyst requires merely 1.508 and 1.564 V for overall water splitting in 1 M KOH and simulated seawater, respectively, at 100 mA cm<sup>−2</sup>. The catalyst also shows excellent stability, with minimal performance decline over 100 h within 100–200 mA cm<sup>−2</sup>. Density functional theory calculations indicate that the interface structure synergistically optimizes Gibbs free energy for H* and O* intermediates during HER and OER, respectively, accelerating electrochemical water-splitting kinetics.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arc plasma-deposited Co single-atom catalysts supported on an aligned carbon nanofiber for hydrogen peroxide electrosynthesis and an electro-Fenton process 弧等离子体沉积钴单原子催化剂在排列整齐的碳纳米纤维上的支持,用于过氧化氢电合成和电-芬顿工艺
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-05 DOI: 10.1002/cey2.582
Chang-Kyu Hwang, Sooyeon Kim, Ki Ro Yoon, Thao Thi Le, Chinh V. Hoang, Jae Won Choi, Wenjun Zhang, Sae Yane Paek, Chung Hyeon Lee, Ji Hyun Lee, Keun Hwa Chae, Sohee Jeong, Seung Yong Lee, Byeong-Kwon Ju, Sang Hoon Kim, Sang Soo Han, Jong Min Kim
Atomically dispersed single-atom catalysts (SACs) on carbon supports show great promise for H2O2 electrosynthesis, but conventional wet chemistry methods using particulate carbon blacks in powder form have limited their potential as two-electron (2e) oxygen reduction reaction (ORR) catalysts. Here, we demonstrate high-performance Co SACs supported on a free-standing aligned carbon nanofiber (CNF) using electrospinning and arc plasma deposition (APD). Based on the surface oxidation treatment of aligned CNF and precise control of the deposition amount in a dry-based APD process, we successfully form densely populated Co SACs on aligned CNF. Through experimental analyses and density functional theory calculations, we reveal that Co SAC has a Co–N2–O2 moiety with one epoxy group, leading to excellent 2e ORR activity. Furthermore, the aligned CNF significantly improves mass transfer in flow cells compared to randomly oriented CNF, showing an overpotential reduction of 30 mV and a 1.3-fold improvement (84.5%) in Faradaic efficiency, and finally achieves an outstanding production rate of 15.75 mol gcat−1 h−1 at 300 mA cm−2. The high-performance Co SAC supported on well-aligned CNF is also applied in an electro-Fenton process, demonstrating rapid removal of methylene blue and bisphenol F due to its exceptional 2e ORR activity.
碳载体上的原子分散单原子催化剂(SACs)在 H2O2 电合成中大有可为,但使用粉末状微粒碳黑的传统湿化学方法限制了它们作为双电子(2e-)氧还原反应(ORR)催化剂的潜力。在这里,我们利用电纺丝和电弧等离子体沉积(APD)技术,展示了支撑在独立排列的碳纳米纤维(CNF)上的高性能 Co SACs。通过对排列整齐的 CNF 进行表面氧化处理,并在干式 APD 过程中精确控制沉积量,我们成功地在排列整齐的 CNF 上形成了高密度的 Co SACs。通过实验分析和密度泛函理论计算,我们发现 Co SAC 具有一个带有环氧基团的 Co-N2-O2 分子,因而具有出色的 2e- ORR 活性。此外,与随机取向的 CNF 相比,对齐的 CNF 显著改善了流动池中的传质,过电位降低了 30 mV,法拉第效率提高了 1.3 倍(84.5%),最终在 300 mA cm-2 的条件下实现了 15.75 mol gcat-1 h-1 的出色生产率。由于其出色的 2e- ORR 活性,支撑在排列整齐的 CNF 上的高性能 Co SAC 还被应用于电-芬顿过程中,显示出其可快速去除亚甲基蓝和双酚 F。
{"title":"Arc plasma-deposited Co single-atom catalysts supported on an aligned carbon nanofiber for hydrogen peroxide electrosynthesis and an electro-Fenton process","authors":"Chang-Kyu Hwang, Sooyeon Kim, Ki Ro Yoon, Thao Thi Le, Chinh V. Hoang, Jae Won Choi, Wenjun Zhang, Sae Yane Paek, Chung Hyeon Lee, Ji Hyun Lee, Keun Hwa Chae, Sohee Jeong, Seung Yong Lee, Byeong-Kwon Ju, Sang Hoon Kim, Sang Soo Han, Jong Min Kim","doi":"10.1002/cey2.582","DOIUrl":"https://doi.org/10.1002/cey2.582","url":null,"abstract":"Atomically dispersed single-atom catalysts (SACs) on carbon supports show great promise for H<sub>2</sub>O<sub>2</sub> electrosynthesis, but conventional wet chemistry methods using particulate carbon blacks in powder form have limited their potential as two-electron (2e<sup>−</sup>) oxygen reduction reaction (ORR) catalysts. Here, we demonstrate high-performance Co SACs supported on a free-standing aligned carbon nanofiber (CNF) using electrospinning and arc plasma deposition (APD). Based on the surface oxidation treatment of aligned CNF and precise control of the deposition amount in a dry-based APD process, we successfully form densely populated Co SACs on aligned CNF. Through experimental analyses and density functional theory calculations, we reveal that Co SAC has a Co–N<sub>2</sub>–O<sub>2</sub> moiety with one epoxy group, leading to excellent 2e<sup>−</sup> ORR activity. Furthermore, the aligned CNF significantly improves mass transfer in flow cells compared to randomly oriented CNF, showing an overpotential reduction of 30 mV and a 1.3-fold improvement (84.5%) in Faradaic efficiency, and finally achieves an outstanding production rate of 15.75 mol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> at 300 mA cm<sup>−2</sup>. The high-performance Co SAC supported on well-aligned CNF is also applied in an electro-Fenton process, demonstrating rapid removal of methylene blue and bisphenol F due to its exceptional 2e<sup>−</sup> ORR activity.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1