Dong Il Kim, Jun-Hui Choi, Wonki Lee, Byung Do Lee, Min Kyeong Kim, Woon Bae Park, Jin Pyo Hong, Jun Yeon Hwang, Jae-Hyun Lee, John Hong
Aqueous zinc-ion batteries encounter issues with the formation of Zn dendrites and parasitic reactions at Zn anodes. To address these issues, coating Zn anodes with two-dimensional (2D) nanocarbon materials, such as graphene, has proven effective in ensuring uniform current distribution and facilitating charge transfer. While direct growth of 2D nanocarbon on Zn substrates offers significant advantages, it remains challenging due to Zn's low melting point (420°C). In this study, as a first proof-of-concept, a unique sonochemical route was developed to directly grow crystalline-amorphous mixed 2D nanocarbon films, named “Leopard-patterned graphene,” on Zn substrates. This unique structure provides uniform nucleation sites while maintaining high Zn2+ ion permeability, mitigating dendrite formation. In Zn symmetric coin cell tests, the Zn electrodes coated with Leopard-patterned graphene maintained stable cycling for over 2000 h at a constant current density of 3 mA cm−2. This study introduces an innovative approach for bottom-up synthesis of 2D nanocarbon on Zn substrates under ambient conditions and demonstrates its potential to address critical challenges in Zn-ion battery performance. The findings provide insights into advanced electrode design strategies for next-generation energy storage devices.
含水锌离子电池遇到的问题与锌枝晶的形成和寄生反应在锌阳极。为了解决这些问题,在锌阳极上涂上二维(2D)纳米碳材料,如石墨烯,已被证明可以有效地确保均匀的电流分布和促进电荷转移。虽然在锌衬底上直接生长二维纳米碳具有显著的优势,但由于锌的熔点低(420°C),它仍然具有挑战性。在这项研究中,作为第一个概念验证,开发了一种独特的声化学方法,可以直接在Zn衬底上生长晶体-非晶混合二维纳米碳薄膜,称为“豹纹石墨烯”。这种独特的结构提供了均匀的核位,同时保持了高的Zn2+离子渗透率,减轻了枝晶的形成。在锌对称硬币电池测试中,涂有豹纹石墨烯的锌电极在恒定电流密度为3 mA cm - 2的情况下保持稳定循环超过2000小时。本研究介绍了一种在环境条件下在锌衬底上自下而上合成二维纳米碳的创新方法,并展示了其解决锌离子电池性能关键挑战的潜力。这些发现为下一代储能设备的先进电极设计策略提供了见解。
{"title":"Direct Growth of Leopard-Patterned Graphene on Zinc Anodes via Sonochemistry for High-Performance Aqueous Zinc-Ion Batteries","authors":"Dong Il Kim, Jun-Hui Choi, Wonki Lee, Byung Do Lee, Min Kyeong Kim, Woon Bae Park, Jin Pyo Hong, Jun Yeon Hwang, Jae-Hyun Lee, John Hong","doi":"10.1002/cey2.70093","DOIUrl":"https://doi.org/10.1002/cey2.70093","url":null,"abstract":"<p>Aqueous zinc-ion batteries encounter issues with the formation of Zn dendrites and parasitic reactions at Zn anodes. To address these issues, coating Zn anodes with two-dimensional (2D) nanocarbon materials, such as graphene, has proven effective in ensuring uniform current distribution and facilitating charge transfer. While direct growth of 2D nanocarbon on Zn substrates offers significant advantages, it remains challenging due to Zn's low melting point (420°C). In this study, as a first proof-of-concept, a unique sonochemical route was developed to directly grow crystalline-amorphous mixed 2D nanocarbon films, named “Leopard-patterned graphene,” on Zn substrates. This unique structure provides uniform nucleation sites while maintaining high Zn<sup>2+</sup> ion permeability, mitigating dendrite formation. In Zn symmetric coin cell tests, the Zn electrodes coated with Leopard-patterned graphene maintained stable cycling for over 2000 h at a constant current density of 3 mA cm<sup>−2</sup>. This study introduces an innovative approach for bottom-up synthesis of 2D nanocarbon on Zn substrates under ambient conditions and demonstrates its potential to address critical challenges in Zn-ion battery performance. The findings provide insights into advanced electrode design strategies for next-generation energy storage devices.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 12","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145848373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The frost-driven self-fracture of ionomer-bound carbon electrodes compromises the mechanical stability of electrochemical systems under subzero conditions. This study suggests that the mechanical degradation of ionomer-bound carbon electrodes under subfreezing conditions is primarily driven by damage within the ionomer binder phase rather than within the nanopores. This damage occurs owing to the expansion of confined water upon freezing. Reducing the size of the freezable water domains significantly enhances the mechanical robustness. Structural and mechanical analyses reveal that thermal reconfiguration effectively modifies the ionomer nanostructure, leading to an approximately 30% reduction in water uptake and improved resistance to frost-induced self-fracturing. Nanostructural analyses further confirm that crystallized packing in the ionomer binder minimizes the number of water retention sites, thereby restricting the buildup of internal stress during freezing. Consequently, the elongation of the as-prepared electrodes reduces by approximately 65% after freezing at −10°C, whereas that of the thermally reconfigured electrodes is above 90% of its initial value with minimal deterioration. These findings highlight the critical role of ionomer-phase engineering in improving the low-temperature durability of ionomer-bound carbon electrodes, providing a scalable strategy applicable to fuel cells, water electrolyzers, and next-generation energy storage systems without requiring antifreezing agents.
{"title":"Prevention of Frost-Driven Self-Fracture of Ionomer-Bound Carbon Films by Controlling Freezable Water Domain Size","authors":"Jae-Bum Pyo, Ji Hun Kim, Taek-Soo Kim","doi":"10.1002/cey2.70098","DOIUrl":"https://doi.org/10.1002/cey2.70098","url":null,"abstract":"<p>The frost-driven self-fracture of ionomer-bound carbon electrodes compromises the mechanical stability of electrochemical systems under subzero conditions. This study suggests that the mechanical degradation of ionomer-bound carbon electrodes under subfreezing conditions is primarily driven by damage within the ionomer binder phase rather than within the nanopores. This damage occurs owing to the expansion of confined water upon freezing. Reducing the size of the freezable water domains significantly enhances the mechanical robustness. Structural and mechanical analyses reveal that thermal reconfiguration effectively modifies the ionomer nanostructure, leading to an approximately 30% reduction in water uptake and improved resistance to frost-induced self-fracturing. Nanostructural analyses further confirm that crystallized packing in the ionomer binder minimizes the number of water retention sites, thereby restricting the buildup of internal stress during freezing. Consequently, the elongation of the as-prepared electrodes reduces by approximately 65% after freezing at −10°C, whereas that of the thermally reconfigured electrodes is above 90% of its initial value with minimal deterioration. These findings highlight the critical role of ionomer-phase engineering in improving the low-temperature durability of ionomer-bound carbon electrodes, providing a scalable strategy applicable to fuel cells, water electrolyzers, and next-generation energy storage systems without requiring antifreezing agents.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 12","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145848372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources, environmental compatibility, non-toxicity, corrosion resistance, and high hydrogen evolution overpotential. However, the practical application of these batteries is hindered by challenges such as “dead Sn” shedding and hydrogen evolution side reactions. Extensive research has focused on improving the performance of Sn-based batteries. This paper provides a comprehensive review of the recent advancements in Sn-based battery research, including the selection of current collectors, electrolyte optimization, and the development of new cathode materials. The energy storage mechanisms and challenges of Sn-based batteries are discussed. Overall, this paper presents future perspectives of high-performance rechargeable Sn-based batteries and provides valuable guidance for developing Sn-based energy storage technologies.
{"title":"Research Progress on High-Energy Rechargeable Sn-Based Batteries","authors":"Yao Dong, Rongli Wang, Yingjian Yu","doi":"10.1002/cey2.70091","DOIUrl":"https://doi.org/10.1002/cey2.70091","url":null,"abstract":"<p>Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources, environmental compatibility, non-toxicity, corrosion resistance, and high hydrogen evolution overpotential. However, the practical application of these batteries is hindered by challenges such as “dead Sn” shedding and hydrogen evolution side reactions. Extensive research has focused on improving the performance of Sn-based batteries. This paper provides a comprehensive review of the recent advancements in Sn-based battery research, including the selection of current collectors, electrolyte optimization, and the development of new cathode materials. The energy storage mechanisms and challenges of Sn-based batteries are discussed. Overall, this paper presents future perspectives of high-performance rechargeable Sn-based batteries and provides valuable guidance for developing Sn-based energy storage technologies.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"8 1","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146007691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrogen peroxide (H2O2) is a versatile oxidant with significant applications, particularly in regulating the microenvironment for healthcare purposes. Herein, a rational design of the photoanode is implemented to enhance H2O2 production by oxidizing H2O in a portable photoelectrocatalysis (PEC) device. The obtained solution from this system is demonstrated for effective bactericidal activity against Staphylococcus aureus and Escherichia coli, while maintaining low toxicity toward hippocampal neuronal cells. The photoanode is achieved by Mo-doped BiVO4 films, which are subsequently loaded with cobalt-porphyrin (Co-py) molecules as a co-catalyst. As a result, the optimal performance for H2O2 production rate was achieved at 8.4 μmol h−1 cm−2, which is 1.8 times that of the pristine BiVO4 photoanode. Density functional theory (DFT) simulations reveal that the improved performance results from a 1.1 eV reduction in the energy of the rate-determining step of •OH adsorption by the optimal photoanode. This study demonstrates a PEC approach for promoting H2O2 production by converting H2O for antibacterial purposes, offering potential applications in conventionally controlling microenvironments for healthcare applications.
{"title":"Rational Design of Photoanodes in Portable Devices to Enhance H2O2 Production for Microenvironment Control","authors":"Haisu Wu, Hanliang Fan, Hong Chen, Dongxue Jiao, Yuanxing Fang, Xiaochun Zheng, Maokai Xu","doi":"10.1002/cey2.70101","DOIUrl":"https://doi.org/10.1002/cey2.70101","url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a versatile oxidant with significant applications, particularly in regulating the microenvironment for healthcare purposes. Herein, a rational design of the photoanode is implemented to enhance H<sub>2</sub>O<sub>2</sub> production by oxidizing H<sub>2</sub>O in a portable photoelectrocatalysis (PEC) device. The obtained solution from this system is demonstrated for effective bactericidal activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>, while maintaining low toxicity toward hippocampal neuronal cells. The photoanode is achieved by Mo-doped BiVO<sub>4</sub> films, which are subsequently loaded with cobalt-porphyrin (Co-py) molecules as a co-catalyst. As a result, the optimal performance for H<sub>2</sub>O<sub>2</sub> production rate was achieved at 8.4 μmol h<sup>−1</sup> cm<sup>−2</sup>, which is 1.8 times that of the pristine BiVO<sub>4</sub> photoanode. Density functional theory (DFT) simulations reveal that the improved performance results from a 1.1 eV reduction in the energy of the rate-determining step of •OH adsorption by the optimal photoanode. This study demonstrates a PEC approach for promoting H<sub>2</sub>O<sub>2</sub> production by converting H<sub>2</sub>O for antibacterial purposes, offering potential applications in conventionally controlling microenvironments for healthcare applications.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"8 1","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146027592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Capturing of ambient energy is emerging as a transformative area in energy technology, potentially replacing batteries or significantly extending their lifespan. Harnessing of energy from ambient sources presents a significant opportunity to support sustainable development while mitigating environmental issues. Repurposing energy that would otherwise be wasted from high-consumption systems such as engines and industrial furnaces is essential for reducing ecological footprints and moving toward carbon-neutral goals. Furthermore, compact energy harvesting technologies will play a pivotal role in powering the rapidly expanding Internet of Things, enabling innovative advancements in smart homes, cities, industries, and health care that elevate our living standards. To achieve significant advancements in energy harvesting technologies, the development of innovative materials is crucial for converting ambient energy into electricity. In this regard, two-dimensional (2D) materials, a rising star in the material world, are profoundly and technologically intriguing for energy harvesting. The exceptional atomic thickness, high surface-to-volume ratio, flexibility, and tunable band gap effectively enhance their electronic, optical, and chemical properties, making them a potential candidate for use in flexible electronics and wearable energy harvesting technologies. Consequently, these unique properties of 2D materials remarkably enhance their energy harvesting capabilities, including photovoltaic, triboelectric, thermoelectric, and piezoelectric energy harvesting. Here, we present a tutorial-style review of 2D materials for harvesting energy from different ambient sources (aimed particularly at guiding and educating researchers, especially those new to the field), which starts with a brief overview of the promising properties of 2D materials for energy harvesting, then looks deeply into its advantages as compared to traditional materials along with their 3D counterparts, followed by providing insight into the mechanisms and performance of 2D material–based energy harvesters in portable/wearable electronics, and finally, based on current progress, an overview of the challenges along with corresponding strategies are identified and discussed.
{"title":"Harnessing the Power of 2D Materials for Flexible Energy Harvesting Applications","authors":"Muhammad Zubair, Dongseong Lee, Dae Joon Kang","doi":"10.1002/cey2.70083","DOIUrl":"https://doi.org/10.1002/cey2.70083","url":null,"abstract":"<p>Capturing of ambient energy is emerging as a transformative area in energy technology, potentially replacing batteries or significantly extending their lifespan. Harnessing of energy from ambient sources presents a significant opportunity to support sustainable development while mitigating environmental issues. Repurposing energy that would otherwise be wasted from high-consumption systems such as engines and industrial furnaces is essential for reducing ecological footprints and moving toward carbon-neutral goals. Furthermore, compact energy harvesting technologies will play a pivotal role in powering the rapidly expanding Internet of Things, enabling innovative advancements in smart homes, cities, industries, and health care that elevate our living standards. To achieve significant advancements in energy harvesting technologies, the development of innovative materials is crucial for converting ambient energy into electricity. In this regard, two-dimensional (2D) materials, a rising star in the material world, are profoundly and technologically intriguing for energy harvesting. The exceptional atomic thickness, high surface-to-volume ratio, flexibility, and tunable band gap effectively enhance their electronic, optical, and chemical properties, making them a potential candidate for use in flexible electronics and wearable energy harvesting technologies. Consequently, these unique properties of 2D materials remarkably enhance their energy harvesting capabilities, including photovoltaic, triboelectric, thermoelectric, and piezoelectric energy harvesting. Here, we present a tutorial-style review of 2D materials for harvesting energy from different ambient sources (aimed particularly at guiding and educating researchers, especially those new to the field), which starts with a brief overview of the promising properties of 2D materials for energy harvesting, then looks deeply into its advantages as compared to traditional materials along with their 3D counterparts, followed by providing insight into the mechanisms and performance of 2D material–based energy harvesters in portable/wearable electronics, and finally, based on current progress, an overview of the challenges along with corresponding strategies are identified and discussed.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 12","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145831616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyuan Ren, Kyoung Ryeol Park, Binod Regmi, Wooseon Choi, Yun Seong Cho, Seon Je Kim, Heechae Choi, Young-Min Kim, Joohoon Kang, Hyuksu Han, Seong-Gon Kim, Sung Wng Kim
Back cover image: Organic solar cells (OSCs) are promising candidates for next-generation photovoltaic devices. However, conventional bulk heterojunction (BHJ) devices face inherent limitations in morphology control and phase separation. In article number CEY270070, Peng et al. systematically investigate the optimizing effects of nine halogenated functional additives for layer-by-layer (LbL) devices, identify the core performance advantages of 2-bromo-5-iodothiophene (20.12% PCE), analyzed the bromine-iodine synergistic effect and the donor-acceptor regulation mechanism of the thiophene core additive, balancing ease of processing with industrial application potential.