首页 > 最新文献

Carbon Energy最新文献

英文 中文
Enhancing the electrochemical performance of semicoke-based hard carbon anode through oxidation-crosslinking strategy for low-cost sodium-ion batteries 通过氧化-交联策略提高半焦基硬碳阳极的电化学性能,用于低成本钠离子电池
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-26 DOI: 10.1002/cey2.584
Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao
Semicoke, a coal pyrolysis product, is a cost-effective and high-yield precursor for hard carbon used as anode in sodium-ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high-temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation-crosslinking strategy to realize fusion-to-solid-state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali-oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross-linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant -C-(O)–O- groups (up to 21 at% oxygen content). The -C-(O)–O- groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke-based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g−1, with low-voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X-ray diffraction analysis, the plateau capacity of semicoke-based hard carbon is mainly derived from interlayer intercalation of Na+ ion. The proposed oxidation-crosslinking strategy can contribute to the usage of low-cost and high-performance hard carbons in advanced SIBs.
Semicoke 是一种煤热解产物,是钠离子电池(SIB)中用作负极的硬质碳的一种低成本、高产出的前驱体。然而,作为一种热塑性前驱体,半焦在高温碳化过程中不可避免地会发生石墨化,因此不易形成硬碳结构。在此,我们提出了一种氧化-交联策略,以实现半焦的熔融-固态热解。首先使用改良的碱氧氧化法对半焦进行预氧化,使其表面富含作为定位点的羧基,然后与柠檬酸发生交联反应,形成具有均匀而丰富的 -C-(O)-O- 基团(氧含量高达 21%)的半焦前驱体。在碳化过程中,-C-(O)-O-基团可有效阻止半焦中碳微晶的重新排列,从而形成具有较大碳层间距和微孔的丰富假象石结构。优化后的半焦基硬质碳的初始库仑效率高达 81%,比容量为 307 mAh g-1,与未改性的半焦碳相比,低电压高原容量提高了 2.5 倍。结合详细的放电曲线和原位 X 射线衍射分析,半焦基硬质碳的高原容量主要来源于 Na+ 离子的层间插层。所提出的氧化-交联策略有助于在先进的 SIB 中使用低成本、高性能的硬质碳。
{"title":"Enhancing the electrochemical performance of semicoke-based hard carbon anode through oxidation-crosslinking strategy for low-cost sodium-ion batteries","authors":"Huizhen Ma, Yakun Tang, Bin Tang, Yue Zhang, Limin Deng, Lang Liu, Sen Dong, Yuliang Cao","doi":"10.1002/cey2.584","DOIUrl":"https://doi.org/10.1002/cey2.584","url":null,"abstract":"Semicoke, a coal pyrolysis product, is a cost-effective and high-yield precursor for hard carbon used as anode in sodium-ion batteries (SIBs). However, as a thermoplastic precursor, semicoke inevitably graphitizes during high-temperature carbonization, so it is not easy to form the hard carbon structure. Herein, we propose an oxidation-crosslinking strategy to realize fusion-to-solid-state pyrolysis of semicoke. The semicoke is first preoxidized using a modified alkali-oxygen oxidation method to enrich its surface with carboxyl groups, which are localization points and the cross-linking reactions occur with citric acid to build the semicoke precursor with homogeneous and abundant -C-(O)–O- groups (up to 21 at% oxygen content). The -C-(O)–O- groups effectively prevent the rearrangement of carbon microcrystals in semicoke during carbonization, resulting in the formation of an abundant pseudographite structure with larger carbon interlayer spacing and micropores. The optimized semicoke-based hard carbon shows both a high initial Coulombic efficiency of 81% and a specific capacity of 307 mAh g<sup>−1</sup>, with low-voltage plateau capacity increased to 2.5 times, compared to that of the unmodified semicoke carbon. By the combination of detailed discharge curves and in situ X-ray diffraction analysis, the plateau capacity of semicoke-based hard carbon is mainly derived from interlayer intercalation of Na<sup>+</sup> ion. The proposed oxidation-crosslinking strategy can contribute to the usage of low-cost and high-performance hard carbons in advanced SIBs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial chemistry and structural engineering modified carbon fibers for stable sodium metal anodes 用于稳定钠金属阳极的界面化学和结构工程改性碳纤维
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1002/cey2.601
Chenxiao Chu, Chunting Wang, Weisong Meng, Feipeng Cai, Bo Wang, Nana Wang, Jian Yang, Zhongchao Bai
Sodium (Na) metal stands out as a highly promising anode material for high-energy-density Na batteries owing to its abundant resources and exceptional theoretical capacity at low redox potential. Nevertheless, the uncontrolled growth of Na dendrites and the accompanying volumetric changes during the plating/stripping process lead to safety concerns and poor electrochemical performances. This study introduces nitrogen and oxygen co-doped carbon nanofiber networks wrapped carbon felt (NO-CNCF), serving as Na deposition skeletons to facilitate a highly reversible Na metal anode. The NO-CNCF framework with uniformly distributed “sodiophilic” functional groups, nanonetwork protuberances, and cross-linked network scaffold structure can avoid charge accumulation and facilitate the dendrite-free Na deposition. Benefiting from these features, the NO-CNCF@Na symmetrical cells demonstrate notable enhancements in cycling stability, achieving 4000 h cycles at 1 mA cm−2 for 1 mAh cm−2 and 2400 h cycles at 2 mA cm−2 for 2 mAh cm−2 with voltage overpotential of approximately 6 and 10 mV, respectively. Furthermore, the NVP//NO-CNCF@Na full cells achieve stable cycling performance and favorable rate capability. This investigation offers novel insights into fabricating a “sodiophilic” matrix with a multistage structure toward high-performance Na metal batteries.
金属钠(Na)资源丰富,在低氧化还原电位下具有超强的理论容量,是极具潜力的高能量密度钠电池阳极材料。然而,在电镀/剥离过程中,Na 树枝状突起的不可控生长和随之而来的体积变化会导致安全问题和较差的电化学性能。本研究引入氮氧共掺杂碳纳米纤维网络包裹碳毡(NO-CNCF)作为 Na 沉积骨架,以促进高度可逆的 Na 金属阳极。NO-CNCF骨架具有均匀分布的 "亲钠 "官能团、纳米网络突起和交联网络支架结构,可避免电荷积累,促进无树枝状的Na沉积。得益于这些特点,NO-CNCF@Na 对称电池的循环稳定性显著提高,1 mAh cm-2 的电池在 1 mA cm-2 下可循环 4000 小时,2 mAh cm-2 的电池在 2 mA cm-2 下可循环 2400 小时,过电位电压分别约为 6 mV 和 10 mV。此外,NVP//NO-CNCF@Na 全电池实现了稳定的循环性能和良好的速率能力。这项研究为制造具有多级结构的 "亲钠 "基质以实现高性能镍金属电池提供了新的见解。
{"title":"Interfacial chemistry and structural engineering modified carbon fibers for stable sodium metal anodes","authors":"Chenxiao Chu, Chunting Wang, Weisong Meng, Feipeng Cai, Bo Wang, Nana Wang, Jian Yang, Zhongchao Bai","doi":"10.1002/cey2.601","DOIUrl":"https://doi.org/10.1002/cey2.601","url":null,"abstract":"Sodium (Na) metal stands out as a highly promising anode material for high-energy-density Na batteries owing to its abundant resources and exceptional theoretical capacity at low redox potential. Nevertheless, the uncontrolled growth of Na dendrites and the accompanying volumetric changes during the plating/stripping process lead to safety concerns and poor electrochemical performances. This study introduces nitrogen and oxygen co-doped carbon nanofiber networks wrapped carbon felt (NO-CNCF), serving as Na deposition skeletons to facilitate a highly reversible Na metal anode. The NO-CNCF framework with uniformly distributed “sodiophilic” functional groups, nanonetwork protuberances, and cross-linked network scaffold structure can avoid charge accumulation and facilitate the dendrite-free Na deposition. Benefiting from these features, the NO-CNCF@Na symmetrical cells demonstrate notable enhancements in cycling stability, achieving 4000 h cycles at 1 mA cm<sup>−2</sup> for 1 mAh cm<sup>−2</sup> and 2400 h cycles at 2 mA cm<sup>−2</sup> for 2 mAh cm<sup>−2</sup> with voltage overpotential of approximately 6 and 10 mV, respectively. Furthermore, the NVP//NO-CNCF@Na full cells achieve stable cycling performance and favorable rate capability. This investigation offers novel insights into fabricating a “sodiophilic” matrix with a multistage structure toward high-performance Na metal batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rich electron delocalization structure in carbon nitride inducing radical transfer for high-performance photocatalytic uranyl reduction 氮化碳中诱导自由基转移的丰富电子致焦结构可实现高性能光催化铀酰还原
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1002/cey2.636
Zhangmeng Liu, Yayao Li, Shuaiqi Yao, Runchao Zhou, Guiting Lin, Yunzhi Fu, Qixin Zhou, Wei Wang, Weijie Chi
Investigating the activation of the persulfate process through heterogeneous carbonaceous catalysts to expedite the reduction of uranyl ions (U(VI)) is imperative. The primary hurdle involves understanding the transfer and distribution of photogenerated carriers during the reduction process in this intricate system and deciphering the role of activated groups in promoting reduction efficiency. In this study, we strategically regulate the structure of polymeric carbon nitride to promote the N-doped state, thereby facilitating delocalization electron enrichment. The resulting active sites effectively activate peroxyl disulfate (PDS), generating radicals that expedite the selective reduction of U(VI). This strategic approach mitigates the inherent disadvantage of the short half-life of free radicals in persulfate-based advanced oxidation processes. As a consequence of our endeavors and with the simultaneous presence of PDS and hydrogen peroxide, we achieve an exceptional photoreduction efficiency of 100% within a remarkably short period of 20 min. This breakthrough presents a high-efficiency application with significant potential for addressing the pollution associated with uranyl-containing wastewater. Our findings not only contribute to the fundamental understanding of AOPs but also offer a practical solution with implications for environmental remediation.
研究通过异质碳质催化剂激活过硫酸盐过程以加快铀酰离子(U(VI))的还原过程势在必行。首要的障碍是了解光生载流子在这一错综复杂的系统中还原过程中的转移和分布,并破译活化基团在促进还原效率方面的作用。在这项研究中,我们对聚合氮化碳的结构进行了策略性调节,以促进 N 掺杂状态,从而促进电子富集。由此产生的活性位点可有效激活过氧二硫酸盐(PDS),产生自由基,从而加速 U(VI)的选择性还原。这种策略性方法缓解了基于过硫酸盐的高级氧化过程中自由基半衰期短的固有缺点。经过努力,在 PDS 和过氧化氢同时存在的情况下,我们在极短的 20 分钟内实现了 100% 的卓越光还原效率。这一突破为解决含铀废水污染问题提供了一种具有巨大潜力的高效应用。我们的研究成果不仅有助于从根本上理解 AOPs,还为环境修复提供了实用的解决方案。
{"title":"Rich electron delocalization structure in carbon nitride inducing radical transfer for high-performance photocatalytic uranyl reduction","authors":"Zhangmeng Liu, Yayao Li, Shuaiqi Yao, Runchao Zhou, Guiting Lin, Yunzhi Fu, Qixin Zhou, Wei Wang, Weijie Chi","doi":"10.1002/cey2.636","DOIUrl":"https://doi.org/10.1002/cey2.636","url":null,"abstract":"Investigating the activation of the persulfate process through heterogeneous carbonaceous catalysts to expedite the reduction of uranyl ions (U(VI)) is imperative. The primary hurdle involves understanding the transfer and distribution of photogenerated carriers during the reduction process in this intricate system and deciphering the role of activated groups in promoting reduction efficiency. In this study, we strategically regulate the structure of polymeric carbon nitride to promote the N-doped state, thereby facilitating delocalization electron enrichment. The resulting active sites effectively activate peroxyl disulfate (PDS), generating radicals that expedite the selective reduction of U(VI). This strategic approach mitigates the inherent disadvantage of the short half-life of free radicals in persulfate-based advanced oxidation processes. As a consequence of our endeavors and with the simultaneous presence of PDS and hydrogen peroxide, we achieve an exceptional photoreduction efficiency of 100% within a remarkably short period of 20 min. This breakthrough presents a high-efficiency application with significant potential for addressing the pollution associated with uranyl-containing wastewater. Our findings not only contribute to the fundamental understanding of AOPs but also offer a practical solution with implications for environmental remediation.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-sieving MXene flakes with quantum dots enable high plating capacity for dendrite-free Zn anodes 带有量子点的离子筛MXene薄片可实现无枝晶锌阳极的高电镀能力
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1002/cey2.603
Xinlong Liu, Bingang Xu, Shenzhen Deng, Jing Han, Yongling An, Jingxin Zhao, Qingjun Yang, Yana Xiao, Cuiqin Fang
The commercial utilization of Zn metal anodes with high plating capacity is significantly hindered by the uncontrolled growth of dendrites and associated side reactions. Herein, a robust artificial ion-sieving MXene flake (MXF)-coating layer, with abundant polar terminated groups, is constructed to regulate the interfacial Zn2+ deposition behavior. In particular, the fragmented MXF coupled with in situ generated quantum dots not only has strong Zn affinity to homogenize electric fields but also generates numerous zincophilic sites to reduce nucleation energy, thus securing a uniform dendrite-free surface. Additionally, the porous coating layer with polar groups allows the downward diffusion of Zn2+ to achieve bottom-up deposition and repels the excessive free water and anions to prevent parasitic reactions. The ion-sieving effect of MXF is firmly verified in symmetric cells with high areal capacity of 10–40 mAh cm−2 (1.0 mA cm−2) and depth of discharge of 15%–60%. Therefore, the functional MXF-coated anode manifests long-term cycling with 2700 h of stable plating/stripping in Zn||Zn cell. Such rational design of MXF protective layer breaks new ground in developing high plating capacity zinc anodes for practical applications.
具有高电镀能力的锌金属阳极的商业利用受到枝晶生长失控和相关副反应的严重阻碍。在此,我们构建了一种具有丰富极性终止基团的坚固人造离子筛分 MXene 片(MXF)涂层,以调节界面 Zn2+ 沉积行为。特别是,碎化的 MXF 与原位生成的量子点相结合,不仅具有很强的锌亲和力以均化电场,还能产生大量亲锌位点以降低成核能量,从而确保表面均匀无树枝状突起。此外,带有极性基团的多孔涂层允许 Zn2+ 向下扩散,实现自下而上的沉积,并能排斥过多的自由水和阴离子,防止寄生反应。MXF 的离子筛分效应在对称电池中得到了充分验证,其电池容量高达 10-40 mAh cm-2(1.0 mA cm-2),放电深度为 15%-60%。因此,在 Zn||Zn 电池中,功能性 MXF 涂层阳极可实现 2700 小时的稳定电镀/剥离长期循环。这种 MXF 保护层的合理设计为开发高电镀能力锌阳极的实际应用开辟了新天地。
{"title":"Ion-sieving MXene flakes with quantum dots enable high plating capacity for dendrite-free Zn anodes","authors":"Xinlong Liu, Bingang Xu, Shenzhen Deng, Jing Han, Yongling An, Jingxin Zhao, Qingjun Yang, Yana Xiao, Cuiqin Fang","doi":"10.1002/cey2.603","DOIUrl":"https://doi.org/10.1002/cey2.603","url":null,"abstract":"The commercial utilization of Zn metal anodes with high plating capacity is significantly hindered by the uncontrolled growth of dendrites and associated side reactions. Herein, a robust artificial ion-sieving MXene flake (MXF)-coating layer, with abundant polar terminated groups, is constructed to regulate the interfacial Zn<sup>2+</sup> deposition behavior. In particular, the fragmented MXF coupled with in situ generated quantum dots not only has strong Zn affinity to homogenize electric fields but also generates numerous zincophilic sites to reduce nucleation energy, thus securing a uniform dendrite-free surface. Additionally, the porous coating layer with polar groups allows the downward diffusion of Zn<sup>2+</sup> to achieve bottom-up deposition and repels the excessive free water and anions to prevent parasitic reactions. The ion-sieving effect of MXF is firmly verified in symmetric cells with high areal capacity of 10–40 mAh cm<sup>−2</sup> (1.0 mA cm<sup>−2</sup>) and depth of discharge of 15%–60%. Therefore, the functional MXF-coated anode manifests long-term cycling with 2700 h of stable plating/stripping in Zn||Zn cell. Such rational design of MXF protective layer breaks new ground in developing high plating capacity zinc anodes for practical applications.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving reaction uniformity of high-loading lithium-sulfur pouch batteries 改善高负载锂硫袋装电池的反应均匀性
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1002/cey2.578
Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun
Lithium-sulfur batteries (LSBs) have garnered attention from both academia and industry because they can achieve high energy densities (>400 Wh kg–1), which are difficult to achieve in commercially available lithium-ion batteries. As a preparation step for practically utilizing LSBs, there is a problem, wherein battery cycle life rapidly reduces as the loading level of the sulfur cathode increases and the electrode area expands. In this study, a separator coated with boehmite on both sides of polyethylene (hereinafter denoted as boehmite separator) is incorporated into a high-loading Li-S pouch battery to suppress sudden capacity drops and achieve a longer cycle life. We explore a phenomenon by which inequality is generated in regions where an electrochemical reaction occurs in the sulfur cathode during the discharging and charging of a high-capacity Li-S pouch battery. The boehmite separator inhibits the accumulation of sulfur-related species on the surface of the sulfur cathode to induce an even reaction across the entire cathode and suppresses the degradation of the Li metal anode, allowing the pouch battery with an areal capacity of 8 mAh cm–2 to operate stably for 300 cycles. These results demonstrate the importance of customizing separators for the practical use of LSBs.
锂硫电池(LSBs)能够实现高能量密度(400 Wh kg-1),这在市售锂离子电池中很难实现,因此受到学术界和工业界的关注。作为实际利用 LSB 的准备步骤,存在一个问题,即随着硫阴极负载水平的提高和电极面积的扩大,电池循环寿命会迅速缩短。本研究将在聚乙烯两面涂覆波姆石的隔膜(以下简称波姆石隔膜)纳入高负载锂-S 袋式电池,以抑制容量骤降,延长循环寿命。我们探讨了在高容量锂-S 袋装电池放电和充电过程中,硫阴极发生电化学反应的区域产生不平等的现象。玻镁石隔板抑制了硫阴极表面硫相关物种的积累,从而诱导了整个阴极的均匀反应,并抑制了锂金属阳极的降解,使面积容量为 8 mAh cm-2 的袋式电池能够稳定运行 300 个循环。这些结果表明了定制隔膜对于 LSB 实际应用的重要性。
{"title":"Improving reaction uniformity of high-loading lithium-sulfur pouch batteries","authors":"Hun Kim, Jae-Min Kim, Ha-Neul Choi, Kyeong-Jun Min, Shivam Kansara, Jang-Yeon Hwang, Jung Ho Kim, Hun-Gi Jung, Yang-Kook Sun","doi":"10.1002/cey2.578","DOIUrl":"https://doi.org/10.1002/cey2.578","url":null,"abstract":"Lithium-sulfur batteries (LSBs) have garnered attention from both academia and industry because they can achieve high energy densities (&gt;400 Wh kg<sup>–1</sup>), which are difficult to achieve in commercially available lithium-ion batteries. As a preparation step for practically utilizing LSBs, there is a problem, wherein battery cycle life rapidly reduces as the loading level of the sulfur cathode increases and the electrode area expands. In this study, a separator coated with boehmite on both sides of polyethylene (hereinafter denoted as boehmite separator) is incorporated into a high-loading Li-S pouch battery to suppress sudden capacity drops and achieve a longer cycle life. We explore a phenomenon by which inequality is generated in regions where an electrochemical reaction occurs in the sulfur cathode during the discharging and charging of a high-capacity Li-S pouch battery. The boehmite separator inhibits the accumulation of sulfur-related species on the surface of the sulfur cathode to induce an even reaction across the entire cathode and suppresses the degradation of the Li metal anode, allowing the pouch battery with an areal capacity of 8 mAh cm<sup>–2</sup> to operate stably for 300 cycles. These results demonstrate the importance of customizing separators for the practical use of LSBs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced characterization techniques for phosphate cathodes in aqueous rechargeable zinc-based batteries 锌基水性充电电池中磷酸盐阴极的先进表征技术
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1002/cey2.611
Li-Feng Zhou, Jia-Yang Li, Jian Peng, Li-Ying Liu, Hang Zhang, Yi-Song Wang, Yameng Fan, Jia-Zhao Wang, Tao Du
Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries, particularly for large-scale energy storage in power stations. Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential, electrochemical stability, high theoretical capacity, and environmental robustness. However, their application is impeded by various challenges, and research progress is hindered by unclear mechanisms. In this review, the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance. Then, the current advances to reveal the Zn2+ storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed. Finally, some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided. This review aims to guide researchers toward advanced characterization technologies that can address key challenges, thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage.
锌基水性电池正逐渐成为商业上成功的锂离子电池的替代品,特别是在发电站的大规模能源储存方面。磷酸盐阴极因其可调节的操作潜力、电化学稳定性、高理论容量和对环境的适应性而备受研究关注。然而,磷酸盐阴极的应用受到各种挑战的阻碍,研究进展也因机制不明而受阻。在这篇综述中,首先根据磷酸盐材料的结构及其相应的电化学性能,总结了作为锌基电池阴极的各类磷酸盐材料。然后,讨论了利用先进表征技术揭示磷酸盐阴极中 Zn2+ 储存机制的最新进展。最后,就锌基电池中使用的表征技术和磷酸盐的应用潜力提出了一些重要观点。本综述旨在引导研究人员采用先进的表征技术来应对关键挑战,从而加快磷酸盐阴极在锌基电池中的实际应用,实现大规模储能。
{"title":"Advanced characterization techniques for phosphate cathodes in aqueous rechargeable zinc-based batteries","authors":"Li-Feng Zhou, Jia-Yang Li, Jian Peng, Li-Ying Liu, Hang Zhang, Yi-Song Wang, Yameng Fan, Jia-Zhao Wang, Tao Du","doi":"10.1002/cey2.611","DOIUrl":"https://doi.org/10.1002/cey2.611","url":null,"abstract":"Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries, particularly for large-scale energy storage in power stations. Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential, electrochemical stability, high theoretical capacity, and environmental robustness. However, their application is impeded by various challenges, and research progress is hindered by unclear mechanisms. In this review, the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance. Then, the current advances to reveal the Zn<sup>2+</sup> storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed. Finally, some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided. This review aims to guide researchers toward advanced characterization technologies that can address key challenges, thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface sulfidation constructing gradient heterojunctions for high-efficiency (approaching 18%) HTL-free carbon-based inorganic perovskite solar cells 通过表面硫化构建梯度异质结,实现高效率(接近 18%)无 HTL 碳基无机过氧化物太阳能电池
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-23 DOI: 10.1002/cey2.586
Xiaonan Huo, Jinqing Lv, Kexiang Wang, Weiwei Sun, Weifeng Liu, Ran Yin, Yansheng Sun, Yukun Gao, Tingting You, Penggang Yin
Due to the advantages of cost-effectiveness and tunable band gap, hole transport layer (HTL)-free CsPbIXBr3−X carbon-based inorganic perovskite solar cells (C-IPSCs) are emerging candidates for both single junction and tandem solar cells. Because of the direct contact between the carbon electrode and the perovskite surface, energy barriers and defects at the interface limit the enhancement of power conversion efficiency (PCE). In this work, we first reported a preparation method of CsPbI2.75Br0.25 HTL-free C-IPSCs and developed an effective surface sulfidation regulation (SSR) strategy to promote hole extraction and inhibit non-radiative recombination of inorganic perovskite by 2-(thiocyanomethylthio)benzothiazole (TCMTB) surface modification. The introduced S2− anions form strong binding with uncoordinated Pb ions, inhibit the perovskite degradation reaction, and effectively passivate the surface defects. In addition, PbS formed by the SSR strategy constructed a gradient heterojunction, which promoted the arrangement energy levels and enhanced hole extraction. An additional back-surface field is induced at the interface of perovskite by energy band bending, which increases the open-circuit voltage (VOC). As a result, the SSR-based CsPbI2.75Br0.25 HTL-free C-IPSCs showed a PCE of 17.88% with a fill factor of 81.56% and VOC of 1.19 V, which was among the highest reported values of CsPbI2.75Br0.25 HTL-free C-IPSCs.
无空穴传输层(HTL)的 CsPbIXBr3-X 碳基无机包晶体太阳能电池(C-IPSC)具有成本效益高和带隙可调的优点,正在成为单结和串联太阳能电池的新候选材料。由于碳电极与包晶石表面直接接触,界面上的能障和缺陷限制了功率转换效率(PCE)的提高。在这项工作中,我们首次报道了 CsPbI2.75Br0.25 无 HTL C-IPSC 的制备方法,并开发了一种有效的表面硫化调节(SSR)策略,通过 2-(硫氰酸甲硫基)苯并噻唑(TCMTB)表面改性来促进空穴萃取并抑制无机包晶的非辐射重组。引入的 S2- 阴离子与未配位的铅离子形成强结合,抑制了包晶的降解反应,并有效地钝化了表面缺陷。此外,通过 SSR 策略形成的 PbS 构建了梯度异质结,促进了排列能级,增强了空穴萃取。能带弯曲在包晶界面上诱发了额外的背表面场,从而提高了开路电压(VOC)。因此,基于 SSR 的 CsPbI2.75Br0.25 无 HTL C-IPSC 的 PCE 为 17.88%,填充因子为 81.56%,VOC 为 1.19 V,是已报道的 CsPbI2.75Br0.25 无 HTL C-IPSC 的最高值之一。
{"title":"Surface sulfidation constructing gradient heterojunctions for high-efficiency (approaching 18%) HTL-free carbon-based inorganic perovskite solar cells","authors":"Xiaonan Huo, Jinqing Lv, Kexiang Wang, Weiwei Sun, Weifeng Liu, Ran Yin, Yansheng Sun, Yukun Gao, Tingting You, Penggang Yin","doi":"10.1002/cey2.586","DOIUrl":"https://doi.org/10.1002/cey2.586","url":null,"abstract":"Due to the advantages of cost-effectiveness and tunable band gap, hole transport layer (HTL)-free CsPbI<sub><i>X</i></sub>Br<sub>3−<i>X</i></sub> carbon-based inorganic perovskite solar cells (C-IPSCs) are emerging candidates for both single junction and tandem solar cells. Because of the direct contact between the carbon electrode and the perovskite surface, energy barriers and defects at the interface limit the enhancement of power conversion efficiency (PCE). In this work, we first reported a preparation method of CsPbI<sub>2.75</sub>Br<sub>0.25</sub> HTL-free C-IPSCs and developed an effective surface sulfidation regulation (SSR) strategy to promote hole extraction and inhibit non-radiative recombination of inorganic perovskite by 2-(thiocyanomethylthio)benzothiazole (TCMTB) surface modification. The introduced S<sup>2−</sup> anions form strong binding with uncoordinated Pb ions, inhibit the perovskite degradation reaction, and effectively passivate the surface defects. In addition, PbS formed by the SSR strategy constructed a gradient heterojunction, which promoted the arrangement energy levels and enhanced hole extraction. An additional back-surface field is induced at the interface of perovskite by energy band bending, which increases the open-circuit voltage (V<sub>OC</sub>). As a result, the SSR-based CsPbI<sub>2.75</sub>Br<sub>0.25</sub> HTL-free C-IPSCs showed a PCE of 17.88% with a fill factor of 81.56% and V<sub>OC</sub> of 1.19 V, which was among the highest reported values of CsPbI<sub>2.75</sub>Br<sub>0.25</sub> HTL-free C-IPSCs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-temperature performance of Na-ion batteries 钠离子电池的低温性能
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-13 DOI: 10.1002/cey2.546
Meng Li, Haoxiang Zhuo, Qihang Jing, Yang Gu, Zhou Liao, Kuan Wang, Jiangtao Hu, Dongsheng Geng, Xueliang Sun, Biwei Xiao
Sodium-ion batteries (NIBs) have become an ideal alternative to lithium-ion batteries in the field of electrochemical energy storage due to their abundant raw materials and cost-effectiveness. With the progress of human society, the requirements for energy storage systems in extreme environments, such as deep-sea exploration, aerospace missions, and tunnel operations, have become more stringent. The comprehensive performance of NIBs at low temperatures (LTs) has also become an important consideration. Under LT conditions, challenges such as increased viscosity of electrolyte, abnormal growth of solid electrolyte interface, and poor contact between collector and electrode materials emerge. The aforementioned issues hinder the diffusion kinetics of sodium ions (Na+) at the electrode/electrolyte interface and cause rapid degradation of battery performance. Consequently, the optimization of electrolyte composition and cathode/anode materials becomes an effective approach to improve LT performance. This review discusses the conduction behavior and limiting factors of Na+ in both solid electrodes and liquid electrolytes at LT. Furthermore, it systematically reviews the recent research progress of LT NIBs from three aspects: cathode materials, anode materials, and electrolyte components. This review aims to provide a valuable reference for developing high-performance LT NIBs.
在电化学储能领域,钠离子电池(NIB)以其丰富的原材料和成本效益成为锂离子电池的理想替代品。随着人类社会的进步,深海探测、航天任务、隧道作业等极端环境对储能系统的要求越来越严格。NIB 在低温条件下的综合性能也成为一个重要的考虑因素。在低温条件下,会出现电解质粘度增加、固体电解质界面异常生长、集电极和电极材料接触不良等挑战。上述问题阻碍了钠离子(Na+)在电极/电解质界面的扩散动力学,并导致电池性能迅速下降。因此,优化电解质成分和阴极/阳极材料成为提高 LT 性能的有效方法。本综述讨论了固态电极和液态电解质中 Na+ 在低温下的传导行为和限制因素。此外,它还从阴极材料、阳极材料和电解质成分三个方面系统地综述了近来有关低温无损探伤的研究进展。本综述旨在为开发高性能低温无离子电极提供有价值的参考。
{"title":"Low-temperature performance of Na-ion batteries","authors":"Meng Li, Haoxiang Zhuo, Qihang Jing, Yang Gu, Zhou Liao, Kuan Wang, Jiangtao Hu, Dongsheng Geng, Xueliang Sun, Biwei Xiao","doi":"10.1002/cey2.546","DOIUrl":"https://doi.org/10.1002/cey2.546","url":null,"abstract":"Sodium-ion batteries (NIBs) have become an ideal alternative to lithium-ion batteries in the field of electrochemical energy storage due to their abundant raw materials and cost-effectiveness. With the progress of human society, the requirements for energy storage systems in extreme environments, such as deep-sea exploration, aerospace missions, and tunnel operations, have become more stringent. The comprehensive performance of NIBs at low temperatures (LTs) has also become an important consideration. Under LT conditions, challenges such as increased viscosity of electrolyte, abnormal growth of solid electrolyte interface, and poor contact between collector and electrode materials emerge. The aforementioned issues hinder the diffusion kinetics of sodium ions (Na<sup>+</sup>) at the electrode/electrolyte interface and cause rapid degradation of battery performance. Consequently, the optimization of electrolyte composition and cathode/anode materials becomes an effective approach to improve LT performance. This review discusses the conduction behavior and limiting factors of Na<sup>+</sup> in both solid electrodes and liquid electrolytes at LT. Furthermore, it systematically reviews the recent research progress of LT NIBs from three aspects: cathode materials, anode materials, and electrolyte components. This review aims to provide a valuable reference for developing high-performance LT NIBs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of the performance of Ge–air batteries under high temperatures using conductive MOF-modified Ge anodes 利用导电 MOF 改性 Ge 阳极提高高温下 Ge-air 电池的性能
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-13 DOI: 10.1002/cey2.580
Yuhang Zhang, Ya Han, Fengjun Deng, Tingyu Zhao, Ze Liu, Dongxu Wang, Jinlong Luo, Yingjian Yu
Germanium (Ge)–air batteries have gained significant attention from researchers owing to their high power density and excellent safety. However, self-corrosion and surface passivation issues of Ge anode limit the development of high-performance Ge–air batteries. In this study, conductive metal-organic framework (MOF) Ni3(HITP)2 material was synthesized by the gas–liquid interface approach. The Ni3(HITP)2 material was deposited on the surface of the Ge anode to prevent corrosion and passivation reactions inside the battery. At 16°C, the discharge time of Ge anodes protected with MOFs was extended to 59 h at 195 μA cm−2, which was twice that of bare Ge anodes. The positive effect of MOFs on Ge–air batteries at high temperatures was observed for the first time. The Ge@Ni3(HITP)2 anodes discharged over 600 h at 65.0 μA cm−2. The experimental results confirmed that the two-dimensional conductive MOF material effectively suppressed the self-corrosion and passivation on Ge anodes. This work provides new ideas for improving the performance of batteries in extreme environments and a new strategy for anode protection in air batteries.
锗(Ge)-空气电池因其高功率密度和出色的安全性而备受研究人员的关注。然而,Ge 阳极的自腐蚀和表面钝化问题限制了高性能 Ge 空气电池的发展。本研究采用气液界面法合成了导电金属有机框架(MOF)Ni3(HITP)2 材料。Ni3(HITP)2 材料沉积在 Ge 阳极表面,以防止电池内部发生腐蚀和钝化反应。在 16°C 温度条件下,195 μA cm-2 的放电时间延长至 59 h,是裸 Ge 阳极的两倍。这是首次观察到 MOFs 在高温下对 Ge-air 电池的积极作用。Ge@Ni3(HITP)2 阳极在 65.0 μA cm-2 下放电超过 600 小时。实验结果证实,二维导电 MOF 材料有效抑制了 Ge 阳极的自腐蚀和钝化。这项工作为提高电池在极端环境下的性能提供了新思路,也为空气电池的阳极保护提供了新策略。
{"title":"Enhancement of the performance of Ge–air batteries under high temperatures using conductive MOF-modified Ge anodes","authors":"Yuhang Zhang, Ya Han, Fengjun Deng, Tingyu Zhao, Ze Liu, Dongxu Wang, Jinlong Luo, Yingjian Yu","doi":"10.1002/cey2.580","DOIUrl":"https://doi.org/10.1002/cey2.580","url":null,"abstract":"Germanium (Ge)–air batteries have gained significant attention from researchers owing to their high power density and excellent safety. However, self-corrosion and surface passivation issues of Ge anode limit the development of high-performance Ge–air batteries. In this study, conductive metal-organic framework (MOF) Ni<sub>3</sub>(HITP)<sub>2</sub> material was synthesized by the gas–liquid interface approach. The Ni<sub>3</sub>(HITP)<sub>2</sub> material was deposited on the surface of the Ge anode to prevent corrosion and passivation reactions inside the battery. At 16°C, the discharge time of Ge anodes protected with MOFs was extended to 59 h at 195 μA cm<sup>−2</sup>, which was twice that of bare Ge anodes. The positive effect of MOFs on Ge–air batteries at high temperatures was observed for the first time. The Ge@Ni<sub>3</sub>(HITP)<sub>2</sub> anodes discharged over 600 h at 65.0 μA cm<sup>−2</sup>. The experimental results confirmed that the two-dimensional conductive MOF material effectively suppressed the self-corrosion and passivation on Ge anodes. This work provides new ideas for improving the performance of batteries in extreme environments and a new strategy for anode protection in air batteries.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption 由 Ti2SnC MAX 相衍生出的用于吸收超宽带电磁波的新型电缆状锡@碳晶须
IF 20.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-07 DOI: 10.1002/cey2.638
Feiyue Hu, Pei Ding, Fushuo Wu, Peigen Zhang, Wei Zheng, Wenwen Sun, Rui Zhang, Longzhu Cai, Bingbing Fan, ZhengMing Sun
One-dimensional (1D) metals are well known for their exceptional conductivity and their ease of formation of interconnected networks that facilitate electron migration, making them promising candidates for electromagnetic (EM) attenuation. However, the impedance mismatch from high conductivity and their singular mode of energy loss hinder effective EM wave dissipation. Construction of cable structures not only optimizes impedance matching but also introduces a multitude of heterojunctions, increasing attenuation modes and potentially enhancing EM wave absorption (EMA) performance. Herein, we showcase the scalable synthesis of tin (Sn) whiskers from a Ti2SnC MAX phase precursor, followed by creation of a 1D tin@carbon (Sn@C) cable structure through polymerization of PDA on their surface and annealing in argon. The EMA capabilities of Sn@C significantly surpass those of uncoated Sn whiskers, with an effective absorption bandwidth reaching 7.4 GHz. Remarkably, its maximum radar cross section reduction value of 27.85 dB m2 indicates its exceptional stealth capabilities. The enhanced EMA performance is first attributed to optimized impedance matching, and furthermore, the Sn@C cable structures have rich SnO2/C and Sn/SnO2 heterointerfaces and the associated defects, which increase interfacial and defect-induced polarization losses, as visually demonstrated by off-axis electron holography. The development of the Sn@C cable structure represents a notable advancement in broadening the scope of materials with potential applications in stealth technology, and this study also contributes to the understanding of how heterojunctions can improve EMA performance.
众所周知,一维(1D)金属具有超强的导电性,并且易于形成相互连接的网络,从而促进电子迁移,使其成为电磁衰减的理想候选材料。然而,高导电性带来的阻抗失配及其单一的能量损耗模式阻碍了电磁波的有效消散。构建电缆结构不仅能优化阻抗匹配,还能引入大量异质结,从而增加衰减模式,并有可能提高电磁波吸收(EMA)性能。在此,我们展示了利用 Ti2SnC MAX 相前驱体合成锡(Sn)晶须的可扩展性,然后通过在其表面聚合 PDA 并在氩气中退火来创建一维锡@碳(Sn@C)电缆结构。锡@碳的 EMA 能力大大超过了无涂层锡晶须,其有效吸收带宽达到 7.4 GHz。值得注意的是,其最大雷达截面降低值为 27.85 dB m2,这表明它具有卓越的隐身能力。EMA 性能的提高首先归功于阻抗匹配的优化,此外,Sn@C 电缆结构具有丰富的 SnO2/C 和 Sn/SnO2 异质界面及相关缺陷,这增加了界面和缺陷引起的极化损耗,离轴电子全息图可以直观地证明这一点。Sn@C 电缆结构的开发标志着在扩大隐形技术潜在应用材料范围方面取得了显著进展,这项研究还有助于人们了解异质结如何改善 EMA 性能。
{"title":"Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption","authors":"Feiyue Hu, Pei Ding, Fushuo Wu, Peigen Zhang, Wei Zheng, Wenwen Sun, Rui Zhang, Longzhu Cai, Bingbing Fan, ZhengMing Sun","doi":"10.1002/cey2.638","DOIUrl":"https://doi.org/10.1002/cey2.638","url":null,"abstract":"One-dimensional (1D) metals are well known for their exceptional conductivity and their ease of formation of interconnected networks that facilitate electron migration, making them promising candidates for electromagnetic (EM) attenuation. However, the impedance mismatch from high conductivity and their singular mode of energy loss hinder effective EM wave dissipation. Construction of cable structures not only optimizes impedance matching but also introduces a multitude of heterojunctions, increasing attenuation modes and potentially enhancing EM wave absorption (EMA) performance. Herein, we showcase the scalable synthesis of tin (Sn) whiskers from a Ti<sub>2</sub>SnC MAX phase precursor, followed by creation of a 1D tin@carbon (Sn@C) cable structure through polymerization of PDA on their surface and annealing in argon. The EMA capabilities of Sn@C significantly surpass those of uncoated Sn whiskers, with an effective absorption bandwidth reaching 7.4 GHz. Remarkably, its maximum radar cross section reduction value of 27.85 dB m<sup>2</sup> indicates its exceptional stealth capabilities. The enhanced EMA performance is first attributed to optimized impedance matching, and furthermore, the Sn@C cable structures have rich SnO<sub>2</sub>/C and Sn/SnO<sub>2</sub> heterointerfaces and the associated defects, which increase interfacial and defect-induced polarization losses, as visually demonstrated by off-axis electron holography. The development of the Sn@C cable structure represents a notable advancement in broadening the scope of materials with potential applications in stealth technology, and this study also contributes to the understanding of how heterojunctions can improve EMA performance.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1