Compared to traditional liquid electrolyte batteries, solid metal batteries offer advantages such as a wide operating temperature range, high energy density, and improved safety, making them a promising energy storage technology. Solid electrolytes, as the core components of solid-state batteries, are key factors in advancing solid-state battery technology. Among various solid electrolytes, Na super ionic conductor (NASICON)-type solid electrolytes exhibit high ionic conductivity (10−3 S·cm−1), a wide electrochemical window, and good thermal stability, providing room for the development of high energy-density solid metal batteries. Since the discovery of NASICON-type solid electrolytes in 1976, interest in their use in all-solid-state battery development has grown significantly. In this review, we comprehensively analyze the common features of NASICON lithium-ion conductors and NASICON sodium-ion conductors, review the historical development of NASICON-type solid electrolytes, systematically summarize the transport mechanisms of metal cations in NASICON-type solid electrolytes, discuss the latest strategies for enhancing ionic conductivity, elaborate on the latest methods for improving mechanical stability and interface stability, and point out the requirements of high energy density devices for NASICON-type solid electrolytes as well as three types of in situ characterization techniques for interfaces. Finally, we highlight the challenges and potential solutions for the future development of NASICON-type solid electrolytes and solid-state metal batteries.
{"title":"Recent Advances in NASICON-Type Electrolytes for Solid-State Metal Batteries","authors":"Jingrui Kang, Zhengyang Hu, Meng Niu, Jiahui Wang, Zexuan Qi, Zejian Zheng, Yazi Liu, Cuiping Jia, Xinai Ren, Tianle Yang, Shiyao Xu, Tianyu Wu, Yongsong Liu, Dingquan Wang, Shijin Yuan, Xiaoyong Wei, Yao Liu, Lei Liu","doi":"10.1002/cey2.70031","DOIUrl":"https://doi.org/10.1002/cey2.70031","url":null,"abstract":"<p>Compared to traditional liquid electrolyte batteries, solid metal batteries offer advantages such as a wide operating temperature range, high energy density, and improved safety, making them a promising energy storage technology. Solid electrolytes, as the core components of solid-state batteries, are key factors in advancing solid-state battery technology. Among various solid electrolytes, Na super ionic conductor (NASICON)-type solid electrolytes exhibit high ionic conductivity (10<sup>−3</sup> S·cm<sup>−1</sup>), a wide electrochemical window, and good thermal stability, providing room for the development of high energy-density solid metal batteries. Since the discovery of NASICON-type solid electrolytes in 1976, interest in their use in all-solid-state battery development has grown significantly. In this review, we comprehensively analyze the common features of NASICON lithium-ion conductors and NASICON sodium-ion conductors, review the historical development of NASICON-type solid electrolytes, systematically summarize the transport mechanisms of metal cations in NASICON-type solid electrolytes, discuss the latest strategies for enhancing ionic conductivity, elaborate on the latest methods for improving mechanical stability and interface stability, and point out the requirements of high energy density devices for NASICON-type solid electrolytes as well as three types of in situ characterization techniques for interfaces. Finally, we highlight the challenges and potential solutions for the future development of NASICON-type solid electrolytes and solid-state metal batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 11","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rockson Kwesi Tonnah, Milton Chai, Mohammad Khedri, Milad Razbin, Yasaman Boroumand, Reza Maleki, Huan Xiao, Amir Razmjou, Mohsen Asadnia
Salination of solutions of salinity gradient releases large-scale clean and renewable energy, which can be directly and efficiently transformed into electrical energy using ion-selective nanofluidic channel membranes. However, conventional ion-selective membranes are typically either cation- or anion-selective. A pH-switchable system capable of dual cation and anion transport along with salt gradient energy harvesting properties has not been demonstrated in ion-selective membranes. Here, we constructed an amphoteric heterolayer metal–organic framework (MOF) membrane with subnanochannels modified with carboxylic and amino functional groups. The amphoteric MOF-composite membrane, AAO/aUiO-66-(COOH)2/UiO-66-NH2, exhibits pH-tuneable ion conduction and achieves osmotic energy conversion of 7.4 and 5.7 W/m2 in acidic and alkaline conditions, respectively, using a 50-fold salt gradient. For different anions but the same cation diffusion transport, the amphoteric membrane produces an outstanding I−/CO32− selectivity of ~4160 and an osmotic energy conversion of ~133.5 W/m2. The amphoteric membrane concept introduces a new pathway to explore the development of ion transport and separation technologies and their application in osmotic energy-conversion devices and flow batteries.
{"title":"Zirconium-Based Amphoteric Metal–Organic Framework Membrane for Blue Energy Harvesting","authors":"Rockson Kwesi Tonnah, Milton Chai, Mohammad Khedri, Milad Razbin, Yasaman Boroumand, Reza Maleki, Huan Xiao, Amir Razmjou, Mohsen Asadnia","doi":"10.1002/cey2.70050","DOIUrl":"https://doi.org/10.1002/cey2.70050","url":null,"abstract":"<p>Salination of solutions of salinity gradient releases large-scale clean and renewable energy, which can be directly and efficiently transformed into electrical energy using ion-selective nanofluidic channel membranes. However, conventional ion-selective membranes are typically either cation- or anion-selective. A pH-switchable system capable of dual cation and anion transport along with salt gradient energy harvesting properties has not been demonstrated in ion-selective membranes. Here, we constructed an amphoteric heterolayer metal–organic framework (MOF) membrane with subnanochannels modified with carboxylic and amino functional groups. The amphoteric MOF-composite membrane, AAO/aUiO-66-(COOH)<sub>2</sub>/UiO-66-NH<sub>2</sub>, exhibits pH-tuneable ion conduction and achieves osmotic energy conversion of 7.4 and 5.7 W/m<sup>2</sup> in acidic and alkaline conditions, respectively, using a 50-fold salt gradient. For different anions but the same cation diffusion transport, the amphoteric membrane produces an outstanding I<sup>−</sup>/CO<sub>3</sub><sup>2−</sup> selectivity of ~4160 and an osmotic energy conversion of ~133.5 W/m<sup>2</sup>. The amphoteric membrane concept introduces a new pathway to explore the development of ion transport and separation technologies and their application in osmotic energy-conversion devices and flow batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 11","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The high chloride (Cl) concentration in seawater presents a critical challenge for hydrogen production via seawater electrolysis by deactivating catalysts through active site passivation, highlighting the need for catalyst innovation. Herein, in situ boron-doped Co2P/CoP (B-CoxP) ultrathin nanosheet arrays are prepared as high-performance bifunctional electrocatalysts for seawater decomposition. Density functional theory (DFT) simulations, comprehensive characterizations, and in-situ analyses reveal that boron doping enhances electron density around Co centers, induces lattice distortions, and significantly elevates catalytic activity and durability. Moreover, boron doping reduces *Cl retention time at active sites—defined as the DFT-derived residence time of adsorbed Cl intermediates based on their adsorption energies—effectively mitigating Cl-induced poisoning. In a three-electrode system, B-CoxP achieves exceptional bifunctional performance with overpotentials of 11 mV for hydrogen evolution reaction and 196 mV for oxygen evolution reaction to deliver 10 and 50 mA·cm–2, respectively—a result that showcases its superior bifunctional properties surpassing noble metal-based counterparts. In an alkaline electrolyzer, it delivers 1.56 A·cm–2 at 2.87 V for seawater electrolysis with outstanding stability over 500 h, preserving active site integrity via boron's robust protective role. This study defines a paradigm for designing advanced seawater electrolysis catalysts through a strategic in-situ doping approach.
{"title":"Electronic and Lattice Modulation of CoxP Nanosheets by In-Situ Doped Boron to Enhance Activity and *Cl Anti-Poisoning in Alkaline Seawater Electrolysis","authors":"Kun Lang, Yuanyingxue Gao, Qi Li, Mingyang Liu, Bowen Liu, Jianan Liu, Xudong Xiao, Zhijun Li, Huiyuan Meng, Baojiang Jiang","doi":"10.1002/cey2.70056","DOIUrl":"https://doi.org/10.1002/cey2.70056","url":null,"abstract":"<p>The high chloride (Cl) concentration in seawater presents a critical challenge for hydrogen production via seawater electrolysis by deactivating catalysts through active site passivation, highlighting the need for catalyst innovation. Herein, in situ boron-doped Co<sub>2</sub>P/CoP (B-Co<sub><i>x</i></sub>P) ultrathin nanosheet arrays are prepared as high-performance bifunctional electrocatalysts for seawater decomposition. Density functional theory (DFT) simulations, comprehensive characterizations, and in-situ analyses reveal that boron doping enhances electron density around Co centers, induces lattice distortions, and significantly elevates catalytic activity and durability. Moreover, boron doping reduces *Cl retention time at active sites—defined as the DFT-derived residence time of adsorbed Cl intermediates based on their adsorption energies—effectively mitigating Cl-induced poisoning. In a three-electrode system, B-Co<sub><i>x</i></sub>P achieves exceptional bifunctional performance with overpotentials of 11 mV for hydrogen evolution reaction and 196 mV for oxygen evolution reaction to deliver 10 and 50 mA·cm<sup>–2</sup>, respectively—a result that showcases its superior bifunctional properties surpassing noble metal-based counterparts. In an alkaline electrolyzer, it delivers 1.56 A·cm<sup>–2</sup> at 2.87 V for seawater electrolysis with outstanding stability over 500 h, preserving active site integrity via boron's robust protective role. This study defines a paradigm for designing advanced seawater electrolysis catalysts through a strategic in-situ doping approach.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 10","pages":""},"PeriodicalIF":24.2,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145371763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Front cover image: Lithium-sulfur (Li-S) batteries hold great promise for high-energy-density storage, but their practical performance is hindered by sluggish lithium polysulfide (LiPS) conversion kinetics. To address this issue, in the article numbered e270043, Yang et al. successfully synthesized ultrafine truncated octahedral titanium dioxide nanocrystals (P-Ov-TiO2) with specific {101} crystal faces, phosphorus doping, and oxygen vacancies under mild conditions. The oxygen vacancies significantly enhance the electron enrichment and charge transfer ability by adjusting the electronic structure; phosphorus doping effectively optimize the d-band center of the catalyst, further strengthening the titanium-sulfur interaction at the {101} crystal faces. This dual-defect engineering enables the exposed {101} crystal faces to exhibit excellent chemical adsorption capacity and catalytic performance. The assembled lithium-sulfur battery using P-Ov-TiO2 as the separator modification achieves a high specific capacity of 895 mAh g-1 at 5 C and exhibites a minimal decay rate of 0.14% per cycle over 200 cycles. Additionally, the lithium-sulfur pouch battery delivers a high capacity of 1004 mAh g-1 under a 0.1 C current density in a low electrolyte condition. This research provides important theoretical basis and new ideas for designing efficient catalysts suitable for lithium-sulfur battery applications.