Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.212
Jiao Li , Yan Shao , Geying Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Zhongmin Su
The production of hydrogen generation catalysts through inexpensive, green and sustainable route is urgently needed in the context of “double carbon”. In this work, a new mesoporous transition metal phosphide (P–MoP@C) as electrocatalytic hydrogen evolution catalyst was prepared by a soft template method using polyoxometalate (POM), biomass gallic acid and ammonium polyphosphate through one-step phosphating and calcination process. The mesoporous structure is formed by organic-organic self-assembly strategy facilitated by strong hydrogen bonding between the pyrogallol group on gallic acid and the block copolymer. P–MoP@C shows good catalytic and stability properties, with overpotentials of 149 and 162 mV in alkaline and acidic solutions, respectively, at a current density of 10 mA cm−2. The mesoporous structure adds up to the quantity of exposed active sites, accelerates the electron transfer rate, and improves the catalytic performance of P–MoP@C. The use of plant polyphenols as a carbon source for the synthesis of green and environmentally friendly hydrogen evolution catalysts provides some reference value for large-scale industrial production.
{"title":"Green preparation of high-efficiency mesoporous MoP electrocatalyst for hydrogen evolution","authors":"Jiao Li , Yan Shao , Geying Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Zhongmin Su","doi":"10.1016/j.ijhydene.2024.11.212","DOIUrl":"10.1016/j.ijhydene.2024.11.212","url":null,"abstract":"<div><div>The production of hydrogen generation catalysts through inexpensive, green and sustainable route is urgently needed in the context of “double carbon”. In this work, a new mesoporous transition metal phosphide (P–MoP@C) as electrocatalytic hydrogen evolution catalyst was prepared by a soft template method using polyoxometalate (POM), biomass gallic acid and ammonium polyphosphate through one-step phosphating and calcination process. The mesoporous structure is formed by organic-organic self-assembly strategy facilitated by strong hydrogen bonding between the pyrogallol group on gallic acid and the block copolymer. P–MoP@C shows good catalytic and stability properties, with overpotentials of 149 and 162 mV in alkaline and acidic solutions, respectively, at a current density of 10 mA cm<sup>−2</sup>. The mesoporous structure adds up to the quantity of exposed active sites, accelerates the electron transfer rate, and improves the catalytic performance of P–MoP@C. The use of plant polyphenols as a carbon source for the synthesis of green and environmentally friendly hydrogen evolution catalysts provides some reference value for large-scale industrial production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1130-1135"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.176
Fengqiu Chen , Qiu Wang , Shengda Lin , Huanhu Luo , Wanjin Yu , Wucan Liu , Dang-guo Cheng
The development of photocatalytic materials with good adsorption capacity and high visible light activity is essential for efficient and stable photocatalytic hydrogen production from formic acid dehydrogenation. The wide band gap of TiO2 photocatalyst materials limits their application in the field of visible light catalysis. In this work, a new composite material, Pd/CQDs/TiO2–NH2, is developed. Here, Pd is attached to amine-functionalized mesoporous titanium dioxide modified with carbon quantum dots (CQDs). This configuration is designed to enhance the catalytic activity for formic acid dehydrogenation when exposed to visible light. The Pd/CQDs-1/TiO2–NH2 catalyst exhibited outstanding performance under visible light, achieving a turnover frequency (TOF) of 2666.1 h−1 at 308 K and perfect hydrogen selectivity. Compared to the Pd/TiO2–NH2 catalyst with a TOF of 1715.5 h−1, this is a significant improvement. The data implies that the addition of CQDs significantly increases light efficiency, aids in the separation of photogenerated charge carriers, and enhances hydrogen production. Ultimately, the experiments clarified how the combined action of Pd, CQDs, and TiO2–NH2 synergistically boosts the catalytic dehydrogenation of formic acid under visible light. The findings present an innovative approach to improving Pd/TiO2 schottky materials.
{"title":"Pd/CQDs/TiO2–NH2 composite schottky catalyst for efficient hydrogen production from formic acid dehydrogenation under visible light","authors":"Fengqiu Chen , Qiu Wang , Shengda Lin , Huanhu Luo , Wanjin Yu , Wucan Liu , Dang-guo Cheng","doi":"10.1016/j.ijhydene.2024.11.176","DOIUrl":"10.1016/j.ijhydene.2024.11.176","url":null,"abstract":"<div><div>The development of photocatalytic materials with good adsorption capacity and high visible light activity is essential for efficient and stable photocatalytic hydrogen production from formic acid dehydrogenation. The wide band gap of TiO<sub>2</sub> photocatalyst materials limits their application in the field of visible light catalysis. In this work, a new composite material, Pd/CQDs/TiO<sub>2</sub>–NH<sub>2</sub>, is developed. Here, Pd is attached to amine-functionalized mesoporous titanium dioxide modified with carbon quantum dots (CQDs). This configuration is designed to enhance the catalytic activity for formic acid dehydrogenation when exposed to visible light. The Pd/CQDs-1/TiO<sub>2</sub>–NH<sub>2</sub> catalyst exhibited outstanding performance under visible light, achieving a turnover frequency (TOF) of 2666.1 h<sup>−1</sup> at 308 K and perfect hydrogen selectivity. Compared to the Pd/TiO<sub>2</sub>–NH<sub>2</sub> catalyst with a TOF of 1715.5 h<sup>−1</sup>, this is a significant improvement. The data implies that the addition of CQDs significantly increases light efficiency, aids in the separation of photogenerated charge carriers, and enhances hydrogen production. Ultimately, the experiments clarified how the combined action of Pd, CQDs, and TiO<sub>2</sub>–NH<sub>2</sub> synergistically boosts the catalytic dehydrogenation of formic acid under visible light. The findings present an innovative approach to improving Pd/TiO<sub>2</sub> schottky materials.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1136-1145"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.035
Jiyu Li , Shaokang Liu , Haoran Ma , Binghan Wang , Ping Sun
Thermal conductivity of the coolant for liquid cooling fuel cell, which is one of the key factors determining the cooling performance of the cooling system. Nanofluid is considered as desirable coolant due to their high thermal conductivity property, but its electrical property also cause leakage current. In this study, the supersonic plasma spraying technique was used to spray Al2O3 on the inner wall of the cooling channels to make an insulating coating to eliminate leakage current. However, the rough coating surface possibly affect the flow and its thermal resistance also affect the heat transfer. Heat transfer characteristics and pump power of deionized water, alumina nanofluids, and graphene nanofluids were investigated. The results show that, before spraying insulation coating, graphene nanofluid has lowest maximum temperature and index of uniform temperature (IUT) at different pump power conditions, and it has the optimal cooling performance. As the pump power increasing, the effect of pump power on IUT gradually diminishes, the method of increasing pump power consumption to improve temperature uniformity is ineffective. The effective cooling coefficient of graphene nanofluid is highest at the same Re, and the convective heat transfer coefficient increases approximately linearly but not uniformly with increasing Re. After spraying the insulating coating, the maximum temperatures of the cooling plate are slightly reduced at different Re, the average reduction is 0.3 K, heat conduction from heat source by cooling channels slightly decreased, and the pump power of graphene nanofluid slightly increases, it increases by up to 2.7% at Re = 1500. It indicates that insulating coating do not have a significant effect on heat transfer and flow.
液冷燃料电池冷却液的导热性是决定冷却系统冷却性能的关键因素之一。纳米流体因其高导热性能而被认为是理想的冷却剂,但其电气特性也会导致泄漏电流。本研究采用超音速等离子喷涂技术在冷却通道内壁喷涂 Al2O3,以形成绝缘涂层来消除泄漏电流。然而,粗糙的涂层表面可能会影响流动,其热阻也会影响传热。研究了去离子水、氧化铝纳米流体和石墨烯纳米流体的传热特性和泵功率。结果表明,在喷涂隔热涂层之前,石墨烯纳米流体在不同泵功率条件下的最高温度和均匀温度指数(IUT)最低,具有最佳的冷却性能。随着泵功率的增加,泵功率对 IUT 的影响逐渐减小,增加泵功率消耗来提高温度均匀性的方法无效。在相同的 Re 值下,石墨烯纳米流体的有效冷却系数最高,对流换热系数近似线性增加,但随 Re 值的增加并不均匀。喷涂隔热涂层后,在不同的 Re 值下,冷却板的最高温度略有降低,平均降低 0.3 K,冷却通道从热源传导的热量略有减少,石墨烯纳米流体的泵功率略有增加,在 Re = 1500 时增加了 2.7%。这表明绝缘涂层对传热和流动的影响不大。
{"title":"Experimental investigation of heat transfer characteristic and pump power analysis on PEMFC cooling plate with insulating coatings","authors":"Jiyu Li , Shaokang Liu , Haoran Ma , Binghan Wang , Ping Sun","doi":"10.1016/j.ijhydene.2024.11.035","DOIUrl":"10.1016/j.ijhydene.2024.11.035","url":null,"abstract":"<div><div>Thermal conductivity of the coolant for liquid cooling fuel cell, which is one of the key factors determining the cooling performance of the cooling system. Nanofluid is considered as desirable coolant due to their high thermal conductivity property, but its electrical property also cause leakage current. In this study, the supersonic plasma spraying technique was used to spray Al<sub>2</sub>O<sub>3</sub> on the inner wall of the cooling channels to make an insulating coating to eliminate leakage current. However, the rough coating surface possibly affect the flow and its thermal resistance also affect the heat transfer. Heat transfer characteristics and pump power of deionized water, alumina nanofluids, and graphene nanofluids were investigated. The results show that, before spraying insulation coating, graphene nanofluid has lowest maximum temperature and index of uniform temperature (IUT) at different pump power conditions, and it has the optimal cooling performance. As the pump power increasing, the effect of pump power on IUT gradually diminishes, the method of increasing pump power consumption to improve temperature uniformity is ineffective. The effective cooling coefficient of graphene nanofluid is highest at the same Re, and the convective heat transfer coefficient increases approximately linearly but not uniformly with increasing Re. After spraying the insulating coating, the maximum temperatures of the cooling plate are slightly reduced at different Re, the average reduction is 0.3 K, heat conduction from heat source by cooling channels slightly decreased, and the pump power of graphene nanofluid slightly increases, it increases by up to 2.7% at Re = 1500. It indicates that insulating coating do not have a significant effect on heat transfer and flow.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 838-847"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.143
Waqad Ul Mulk , A. Rashid A. Aziz , Mhadi A. Ismael , Asghar Ali Ghoto , Syed Awais Ali , Mohammad Younas , Fausto Gallucci
Hydrogen (H2) is developing as a promising renewable energy carrier with the potential to reduce greenhouse gas emissions. Anion exchange membrane water electrolysis (AEMWE) provides a promising solution to the current human energy crisis by combining the advantages of both alkaline water electrolysis (AWE) and proton exchange membrane water electrolysis (PEMWE) and can be coupled with renewable energy sources to produce green H2. However, the AEMWE technology remains in the developmental stage and needs further research to compete with AWE, PEMWE, and solid oxide electrolysis cells (SOEC) regarding performance and durability. The current review discusses the recent progress of AWE, PEMWE, SOEC, and AEMWE with their associated challenges and drawbacks. A state-of-the-art critical analysis on anion exchange membranes (AEMs) with their mechanical properties, PGM and non-PGM based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the performance of different electrolytes with non-PGM electrocatalysts in the AEMWE and the effect of various operating parameters such as temperature, pressure, and electrolyte flow rate on the performance of the AEMWE system are presented in detail. The techno-economic and environmental assessment of AEMWE technology for H2 production indicates that composite mixed matrix AEMs which could work at high temperature and pressure will provide sustainable opportunities in the automobile industry.
{"title":"Electrochemical hydrogen production through anion exchange membrane water electrolysis (AEMWE): Recent progress and associated challenges in hydrogen production","authors":"Waqad Ul Mulk , A. Rashid A. Aziz , Mhadi A. Ismael , Asghar Ali Ghoto , Syed Awais Ali , Mohammad Younas , Fausto Gallucci","doi":"10.1016/j.ijhydene.2024.11.143","DOIUrl":"10.1016/j.ijhydene.2024.11.143","url":null,"abstract":"<div><div>Hydrogen (H<sub>2</sub>) is developing as a promising renewable energy carrier with the potential to reduce greenhouse gas emissions. Anion exchange membrane water electrolysis (AEMWE) provides a promising solution to the current human energy crisis by combining the advantages of both alkaline water electrolysis (AWE) and proton exchange membrane water electrolysis (PEMWE) and can be coupled with renewable energy sources to produce green H<sub>2</sub>. However, the AEMWE technology remains in the developmental stage and needs further research to compete with AWE, PEMWE, and solid oxide electrolysis cells (SOEC) regarding performance and durability. The current review discusses the recent progress of AWE, PEMWE, SOEC, and AEMWE with their associated challenges and drawbacks. A state-of-the-art critical analysis on anion exchange membranes (AEMs) with their mechanical properties, PGM and non-PGM based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the performance of different electrolytes with non-PGM electrocatalysts in the AEMWE and the effect of various operating parameters such as temperature, pressure, and electrolyte flow rate on the performance of the AEMWE system are presented in detail. The techno-economic and environmental assessment of AEMWE technology for H<sub>2</sub> production indicates that composite mixed matrix AEMs which could work at high temperature and pressure will provide sustainable opportunities in the automobile industry.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1174-1211"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.172
Jun Li , Zhengfu Ning , Jianhao Wang , Gang Wang , Qiming Huang , Kangbo Zhao
After the slickwater fracturing method is adopted, a portion of the slickwater remains in the reservoir, impacting shale gas production. To address this limitation, shale samples from the Longmaxi Formation were soaked and washed with varying concentration of polyacrylamide in slickwater under different pressures to simulate the flowback process following slickwater fracturing. The effects of slickwater on methane adsorption, desorption, and diffusion in shale were examined through isothermal adsorption experiments, while the evolution of shale pore structure was assessed using low-temperature nitrogen adsorption experiments. Results indicate that slickwater adheres to the surfaces of microcracks and macropores, creating new small pores and increasing the specific surface area and pore volume of macropores with sizes exceeding 5 nm. Slickwater may also block pore throats, causing some open or semi-open pores to become closed, thereby reducing the accessible specific surface area and pore volume and hindering the adsorption, desorption, and diffusion of methane. At a pressure of 9 MPa, treatment with 0.7% slickwater reduces the Langmuir volume to 40% of that of the original shale, while the diffusion coefficient decreases to 47% of its original value. Furthermore, as soaking pressure or concentration increases, the hysteresis of methane desorption in shale initially decreases before subsequently increasing. The findings of this research provide theoretical guidance for the further enhancement of shale gas development.
{"title":"Experimental investigation on the effect of slickwater on methane adsorption/desorption/diffusion and pore structure of shale","authors":"Jun Li , Zhengfu Ning , Jianhao Wang , Gang Wang , Qiming Huang , Kangbo Zhao","doi":"10.1016/j.ijhydene.2024.11.172","DOIUrl":"10.1016/j.ijhydene.2024.11.172","url":null,"abstract":"<div><div>After the slickwater fracturing method is adopted, a portion of the slickwater remains in the reservoir, impacting shale gas production. To address this limitation, shale samples from the Longmaxi Formation were soaked and washed with varying concentration of polyacrylamide in slickwater under different pressures to simulate the flowback process following slickwater fracturing. The effects of slickwater on methane adsorption, desorption, and diffusion in shale were examined through isothermal adsorption experiments, while the evolution of shale pore structure was assessed using low-temperature nitrogen adsorption experiments. Results indicate that slickwater adheres to the surfaces of microcracks and macropores, creating new small pores and increasing the specific surface area and pore volume of macropores with sizes exceeding 5 nm. Slickwater may also block pore throats, causing some open or semi-open pores to become closed, thereby reducing the accessible specific surface area and pore volume and hindering the adsorption, desorption, and diffusion of methane. At a pressure of 9 MPa, treatment with 0.7% slickwater reduces the Langmuir volume to 40% of that of the original shale, while the diffusion coefficient decreases to 47% of its original value. Furthermore, as soaking pressure or concentration increases, the hysteresis of methane desorption in shale initially decreases before subsequently increasing. The findings of this research provide theoretical guidance for the further enhancement of shale gas development.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 871-882"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.10.402
S.V. Myatezh, P.S. Lisitsyn
As part of solving the problem of creating an autonomous source of alternating current electrical energy based on hydrogen fuel cells, the possibilities of preliminary correction of voltage and current shapes of static inverters through the use of power multi-winding transformers are being explored. The value of such correction is further determined by the significant simplification of the selection of elements of filtering devices and pulse-width modulation algorithms necessary to achieve the required parameters of the quality of electrical energy and equalize the current load on stacks of hydrogen fuel cells used as the primary source of DC electrical energy. The advantage of multi-level inverters based on power multi-winding transformers with branched magnetic circuits and the feasibility of combining three single-phase inverters into one three-phase inverter based on three-rod transformers with amplitude modulation of magnetic fluxes and connection of secondary windings in a triangle are shown. An optimization problem of minimizing voltage harmonic coefficients has been formulated and solved, and a circuit solution for a multi-level power frequency inverter has been proposed to create a three-phase power source, which implements preliminary equalization of the current load to preserve the design service life of hydrogen fuel cells.
{"title":"Modernization of inverters for adaptation of hydrogen fuel cells","authors":"S.V. Myatezh, P.S. Lisitsyn","doi":"10.1016/j.ijhydene.2024.10.402","DOIUrl":"10.1016/j.ijhydene.2024.10.402","url":null,"abstract":"<div><div>As part of solving the problem of creating an autonomous source of alternating current electrical energy based on hydrogen fuel cells, the possibilities of preliminary correction of voltage and current shapes of static inverters through the use of power multi-winding transformers are being explored. The value of such correction is further determined by the significant simplification of the selection of elements of filtering devices and pulse-width modulation algorithms necessary to achieve the required parameters of the quality of electrical energy and equalize the current load on stacks of hydrogen fuel cells used as the primary source of DC electrical energy. The advantage of multi-level inverters based on power multi-winding transformers with branched magnetic circuits and the feasibility of combining three single-phase inverters into one three-phase inverter based on three-rod transformers with amplitude modulation of magnetic fluxes and connection of secondary windings in a triangle are shown. An optimization problem of minimizing voltage harmonic coefficients has been formulated and solved, and a circuit solution for a multi-level power frequency inverter has been proposed to create a three-phase power source, which implements preliminary equalization of the current load to preserve the design service life of hydrogen fuel cells.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1056-1063"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.013
Wan Guo , Fushou Xie , Yang Yu , Di Yang , Yanzhong Li
Freezing-thawing is one of the prevalent and pragmatic approach for the preparation of slush hydrogen. Understanding how production parameters affect the evolution of slush hydrogen particles is crucial for optimizing its efficiency. This study develops a two-dimensional Phase Field-Lattice Boltzmann Method (PF-LBM) to investigate the solidification and melting behavior of individual slush hydrogen particle under dynamic flow conditions. The proposed model integrates the Ginzburg-Landau theoretical phase-field model with a D2Q9 single-relaxation LBM. The variation of the phase and temperature fields of hydrogen particle during the freezing and melting process is investigated, and the role of vortices in shaping the profile of dendrites is found. Differences in dendrite growth at different flow rates and equilibrium temperatures are analyzed, and the variation in solid content is given. This study explores the mesoscopic mechanisms of slush hydrogen particle in a flowing field and provides theoretical guidance for the dynamic preparation of high-quality slush hydrogen.
{"title":"Phase field-lattice Boltzmann method investigation of particle morphology evolution in slush hydrogen during convective freezing and melting","authors":"Wan Guo , Fushou Xie , Yang Yu , Di Yang , Yanzhong Li","doi":"10.1016/j.ijhydene.2024.11.013","DOIUrl":"10.1016/j.ijhydene.2024.11.013","url":null,"abstract":"<div><div>Freezing-thawing is one of the prevalent and pragmatic approach for the preparation of slush hydrogen. Understanding how production parameters affect the evolution of slush hydrogen particles is crucial for optimizing its efficiency. This study develops a two-dimensional Phase Field-Lattice Boltzmann Method (PF-LBM) to investigate the solidification and melting behavior of individual slush hydrogen particle under dynamic flow conditions. The proposed model integrates the Ginzburg-Landau theoretical phase-field model with a D2Q9 single-relaxation LBM. The variation of the phase and temperature fields of hydrogen particle during the freezing and melting process is investigated, and the role of vortices in shaping the profile of dendrites is found. Differences in dendrite growth at different flow rates and equilibrium temperatures are analyzed, and the variation in solid content is given. This study explores the mesoscopic mechanisms of slush hydrogen particle in a flowing field and provides theoretical guidance for the dynamic preparation of high-quality slush hydrogen.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 650-663"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.152
Williams Dias , Cristian Mejia , Deane Roehl (Corresponding author)
Transitioning to cleaner energy sources is crucial for mitigating carbon dioxide emissions and addressing global energy challenges. Hydrogen has emerged as a solution, particularly due to its versatile applications in energy storage and generation. This research focuses on the hydrogen storage process in the Brazilian pre-salt caverns. It is motivated by its favorable characteristics, such as low permeability, creep behavior, self-healing, and competitive cost of salt caverns compared to other repositories. Hydrogen thermodynamics follows a diabatic solution that updates gas temperature and pressure in real time through a link between the CoolProp library and the in-house multiphysics and multiscale framework GeMA. Moreover, the research incorporates salt heterogeneities based on the well-log data from the Tupi field, providing a more accurate representation of Brazilian pre-salt field conditions and how different salt layers may affect the overall system. This approach allows for a comprehensive analysis of the cavern's response to hydrogen injection/discharge cycles, addressing both thermodynamic factors and geological variabilities often neglected by previous studies. The results demonstrated that salt rock heterogeneities may potentialize the extension of the zone with compromised integrity and induce significant permeability changes. It also offers valuable insights into the specific behavior of each type of salt rock during the hydrogen cyclic storage process.
{"title":"Cavern integrity under cyclic underground hydrogen storage in heterogeneous Brazilian pre-salt formations","authors":"Williams Dias , Cristian Mejia , Deane Roehl (Corresponding author)","doi":"10.1016/j.ijhydene.2024.11.152","DOIUrl":"10.1016/j.ijhydene.2024.11.152","url":null,"abstract":"<div><div>Transitioning to cleaner energy sources is crucial for mitigating carbon dioxide emissions and addressing global energy challenges. Hydrogen has emerged as a solution, particularly due to its versatile applications in energy storage and generation. This research focuses on the hydrogen storage process in the Brazilian pre-salt caverns. It is motivated by its favorable characteristics, such as low permeability, creep behavior, self-healing, and competitive cost of salt caverns compared to other repositories. Hydrogen thermodynamics follows a diabatic solution that updates gas temperature and pressure in real time through a link between the CoolProp library and the in-house multiphysics and multiscale framework GeMA. Moreover, the research incorporates salt heterogeneities based on the well-log data from the Tupi field, providing a more accurate representation of Brazilian pre-salt field conditions and how different salt layers may affect the overall system. This approach allows for a comprehensive analysis of the cavern's response to hydrogen injection/discharge cycles, addressing both thermodynamic factors and geological variabilities often neglected by previous studies. The results demonstrated that salt rock heterogeneities may potentialize the extension of the zone with compromised integrity and induce significant permeability changes. It also offers valuable insights into the specific behavior of each type of salt rock during the hydrogen cyclic storage process.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 922-933"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.113
Yang Zhang , Yuanyuan Bai , Jin Xu , Rufei Wei
La–Y–Ni-based hydrogen storage alloys, renowned for their high hydrogen capacity and chemical stability, show significant developmental potential. However, their development is heavily reliant on extensive and costly experimental work. This study established regression models to predict three key properties—electrochemical capacity (0.2C), cyclic stability (80%Age), and high-rate discharge performance (1C)—using Random Forest (RF), Extreme Gradient Boosting (XGB), and Ridge regression (Ridge) algorithms. The RF algorithm outperformed the others, with test set R2 values exceeding 0.8 for all properties. Using SHapley Additive exPlanations (SHAP) for model interpretation, this study quantitatively analyzed the optimal models. Under the constraint of the total mass ratio of elements on the A side and B side being fixed at 100, this study analyzed the optimal Mn + Al intervals for replacing Ni on the B side and the optimal Y and Y + Ce intervals for replacing La on the A side.
La-Y-Ni 基储氢合金以其高容量氢和化学稳定性而闻名,显示出巨大的发展潜力。然而,它们的开发在很大程度上依赖于大量昂贵的实验工作。本研究利用随机森林(RF)、极端梯度提升(XGB)和岭回归(Ridge)算法建立了回归模型,以预测三种关键性能--电化学容量(0.2C)、循环稳定性(80%Age)和高速放电性能(1C)。RF 算法的性能优于其他算法,所有属性的测试集 R2 值均超过 0.8。本研究使用 SHapley Additive exPlanations(SHAP)进行模型解释,对最优模型进行了定量分析。在 A 侧和 B 侧元素总质量比固定为 100 的约束条件下,本研究分析了在 B 侧替代 Ni 的最佳 Mn + Al 间隔,以及在 A 侧替代 La 的最佳 Y 和 Y + Ce 间隔。
{"title":"Prediction of electrochemical properties of La–Y–Ni-based hydrogen storage alloys based on machine learning","authors":"Yang Zhang , Yuanyuan Bai , Jin Xu , Rufei Wei","doi":"10.1016/j.ijhydene.2024.11.113","DOIUrl":"10.1016/j.ijhydene.2024.11.113","url":null,"abstract":"<div><div>La–Y–Ni-based hydrogen storage alloys, renowned for their high hydrogen capacity and chemical stability, show significant developmental potential. However, their development is heavily reliant on extensive and costly experimental work. This study established regression models to predict three key properties—electrochemical capacity (0.2C), cyclic stability (80%Age), and high-rate discharge performance (1C)—using Random Forest (RF), Extreme Gradient Boosting (XGB), and Ridge regression (Ridge) algorithms. The RF algorithm outperformed the others, with test set R<sup>2</sup> values exceeding 0.8 for all properties. Using SHapley Additive exPlanations (SHAP) for model interpretation, this study quantitatively analyzed the optimal models. Under the constraint of the total mass ratio of elements on the A side and B side being fixed at 100, this study analyzed the optimal Mn + Al intervals for replacing Ni on the B side and the optimal Y and Y + Ce intervals for replacing La on the A side.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 687-696"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ijhydene.2024.11.207
Tong Liang, Yujie Tang, Yunqi Song, Kemin Xie, Yan Ma, Yao Yao
Carbon-supported metal nanoparticles are indispensable catalysts to enabling catalytic water splitting technologies because of their unique size-dependent properties and strong metal-support interactions. Herein, we proposed a two-step synthesis strategy, using imine-type covalent organic frameworks (COFs) as a platform to synthesize nitrogen-doped carbon-supported Au with ultra-high specific surface area through the high-temperature pyrolysis. Thanks for the polarity of imine, the growth of Au NPs in Aux/NC are ultrafine, monodispersed, and the size of Au can be precisely controlled by adjusting the amount of the metal precursor during the carbothermal reaction. Such framework structure with numerous active sites provided by the COFs renders Aux/NC ultrahigh catalytic activity and durability for hydrogen evolution reaction (HER) in acid electrolyte. Most significantly, when illumination occurs, Au5nm/NC catalyst presents a reduced HER overpotential from 416 mV to 43 mV and a shrunken charge-transfer resistance from 258 to 17 Ω, making the Au5nm/NC a promising stable catalyst for the LSPR promoted hydrogen evolution reaction.
{"title":"Au nanoparticle-sensitized nitrogen-doped carbon applied for localized surface plasmon enhanced hydrogen evolution reaction","authors":"Tong Liang, Yujie Tang, Yunqi Song, Kemin Xie, Yan Ma, Yao Yao","doi":"10.1016/j.ijhydene.2024.11.207","DOIUrl":"10.1016/j.ijhydene.2024.11.207","url":null,"abstract":"<div><div>Carbon-supported metal nanoparticles are indispensable catalysts to enabling catalytic water splitting technologies because of their unique size-dependent properties and strong metal-support interactions. Herein, we proposed a two-step synthesis strategy, using imine-type covalent organic frameworks (COFs) as a platform to synthesize nitrogen-doped carbon-supported Au with ultra-high specific surface area through the high-temperature pyrolysis. Thanks for the polarity of imine, the growth of Au NPs in Au<sub>x</sub>/NC are ultrafine, monodispersed, and the size of Au can be precisely controlled by adjusting the amount of the metal precursor during the carbothermal reaction. Such framework structure with numerous active sites provided by the COFs renders Au<sub>x</sub>/NC ultrahigh catalytic activity and durability for hydrogen evolution reaction (HER) in acid electrolyte. Most significantly, when illumination occurs, Au<sub>5nm</sub>/NC catalyst presents a reduced HER overpotential from 416 mV to 43 mV and a shrunken charge-transfer resistance from 258 to 17 Ω, making the Au<sub>5nm</sub>/NC a promising stable catalyst for the LSPR promoted hydrogen evolution reaction.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"94 ","pages":"Pages 1106-1113"},"PeriodicalIF":8.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}