首页 > 最新文献

Joule最新文献

英文 中文
Metal-ligand redox in layered oxide cathodes for Li-ion batteries 锂离子电池层状氧化物阴极中的金属-配体氧化还原作用
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.10.007
Matthew J.W. Ogley , Ashok S. Menon , Gaurav C. Pandey , Galo J. Páez Fajardo , Beth J. Johnston , Innes McClelland , Veronika Majherova , Steven Huband , Debashis Tripathy , Israel Temprano , Stefano Agrestini , Veronica Celorrio , Gabriel E. Pérez , Samuel G. Booth , Clare P. Grey , Serena A. Cussen , Louis F.J. Piper
This study refutes the commonly used ionic-bonding model that demarcates transition metal (TM) and oxygen redox using an archetypal Ni-rich layered oxide cathode, LiNi0.8Mn0.1Co0.1O2. Here, charge compensation during delithiation occurs without formal (ionic) Ni oxidation. Instead, oxygen-dominated states control the redox process, facilitated by strong TM-O hybridization, forming bulk-stable 3d8L and 3d8L2 electronic states, where L is a ligand hole. Bulk O–O dimers are observed with O K-edge resonant inelastic X-ray scattering but, critically, without the long-range TM migration or void formation observed in Li-rich layered oxides. Above 4.34 V vs. Li+/Li, the cathode loses O, forming a resistive surface rock-salt layer that causes capacity fade. This highlights the importance of cathode engineering when attempting to achieve higher energy densities with layered oxide cathodes, especially in those where O dominates the charge compensation mechanism.
本研究利用典型的富镍层状氧化物阴极 LiNi0.8Mn0.1Co0.1O2,驳斥了划分过渡金属(TM)和氧氧化还原的常用离子键模型。在这里,脱硫过程中的电荷补偿是在没有正式(离子)镍氧化的情况下发生的。相反,氧主导态控制了氧化还原过程,并通过强 TM-O 杂化作用形成了大量稳定的 3d8L 和 3d8L2 电子态,其中 L 是配体空穴。通过 O K 边共振非弹性 X 射线散射可以观察到块状 O-O 二聚体,但重要的是,在富含锂的层状氧化物中没有观察到长程 TM 迁移或空隙形成。对 Li+/Li 的电压高于 4.34 V 时,阴极会失去 O,形成电阻性表面岩盐层,导致容量衰减。这凸显了在尝试使用层状氧化物阴极实现更高能量密度时阴极工程的重要性,尤其是在 O 主导电荷补偿机制的阴极中。
{"title":"Metal-ligand redox in layered oxide cathodes for Li-ion batteries","authors":"Matthew J.W. Ogley ,&nbsp;Ashok S. Menon ,&nbsp;Gaurav C. Pandey ,&nbsp;Galo J. Páez Fajardo ,&nbsp;Beth J. Johnston ,&nbsp;Innes McClelland ,&nbsp;Veronika Majherova ,&nbsp;Steven Huband ,&nbsp;Debashis Tripathy ,&nbsp;Israel Temprano ,&nbsp;Stefano Agrestini ,&nbsp;Veronica Celorrio ,&nbsp;Gabriel E. Pérez ,&nbsp;Samuel G. Booth ,&nbsp;Clare P. Grey ,&nbsp;Serena A. Cussen ,&nbsp;Louis F.J. Piper","doi":"10.1016/j.joule.2024.10.007","DOIUrl":"10.1016/j.joule.2024.10.007","url":null,"abstract":"<div><div>This study refutes the commonly used ionic-bonding model that demarcates transition metal (TM) and oxygen redox using an archetypal Ni-rich layered oxide cathode, LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>. Here, charge compensation during delithiation occurs without formal (ionic) Ni oxidation. Instead, oxygen-dominated states control the redox process, facilitated by strong TM-O hybridization, forming bulk-stable 3d<sup>8</sup><u>L</u> and 3d<sup>8</sup><u>L</u><sup>2</sup> electronic states, where <u>L</u> is a ligand hole. Bulk O–O dimers are observed with O K-edge resonant inelastic X-ray scattering but, critically, without the long-range TM migration or void formation observed in Li-rich layered oxides. Above 4.34 V vs. Li<sup>+</sup>/Li, the cathode loses O, forming a resistive surface rock-salt layer that causes capacity fade. This highlights the importance of cathode engineering when attempting to achieve higher energy densities with layered oxide cathodes, especially in those where O dominates the charge compensation mechanism.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101775"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial droplet-based triboelectric nanogenerator with optimized architecture for highly efficient vibrational energy conversion 基于界面液滴的三电纳米发电机,结构优化,可实现高效振动能量转换
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.09.010
Siqi Gong , Kaixian Li , Jianfeng Sun , Jie Chen , Hengyu Guo
Droplet-based nanogenerators, harnessing the dynamic interaction between droplets and tribo-layer surfaces for electricity generation, demonstrate substantial promise in nano-micro energy harvesting. However, conventional devices face limitations in charge and voltage outputs due to the constrained liquid-solid interface and intrinsic parasitic capacitance, resulting in comparatively low power density. Herein, regulated by heterogeneous wetting surfaces, the periodic squeezing of a 3D droplet to a 2D plate maximizes the effective interface for triboelectrification and electrostatic induction, leading to a remarkable charge density of ∼2.0 C m−3. Additionally, optimizing electrode configuration reduces parasitic capacitance and elevates output voltage by 80 folds. A recorded peak power density of 5,865 W m−3 is obtained, which is 48 times higher than previous works. Furthermore, the droplet’s non-Hookean elastic behavior extends the frequency response band by 89.3%, enabling small electronics to operate under micro-vibration conditions. This study offers valuable insights for efficient electric energy extraction from interfacial droplets.
基于液滴的纳米发电机利用液滴与三层表面之间的动态相互作用进行发电,在纳米微能量收集方面前景广阔。然而,由于液固界面的限制和固有寄生电容,传统设备在电荷和电压输出方面面临限制,导致功率密度相对较低。在这里,在异质润湿表面的调节下,三维液滴周期性地挤压到二维板上,使三电化和静电感应的有效界面最大化,从而使电荷密度达到 2.0 C m-3。此外,电极配置的优化降低了寄生电容,并将输出电压提高了 80 倍。所记录的峰值功率密度为 5,865 W m-3,比以前的研究成果高出 48 倍。此外,液滴的非胡肯弹性行为将频率响应带扩展了 89.3%,使小型电子设备能够在微振动条件下运行。这项研究为从界面液滴中高效提取电能提供了宝贵的见解。
{"title":"Interfacial droplet-based triboelectric nanogenerator with optimized architecture for highly efficient vibrational energy conversion","authors":"Siqi Gong ,&nbsp;Kaixian Li ,&nbsp;Jianfeng Sun ,&nbsp;Jie Chen ,&nbsp;Hengyu Guo","doi":"10.1016/j.joule.2024.09.010","DOIUrl":"10.1016/j.joule.2024.09.010","url":null,"abstract":"<div><div>Droplet-based nanogenerators, harnessing the dynamic interaction between droplets and tribo-layer surfaces for electricity generation, demonstrate substantial promise in nano-micro energy harvesting. However, conventional devices face limitations in charge and voltage outputs due to the constrained liquid-solid interface and intrinsic parasitic capacitance, resulting in comparatively low power density. Herein, regulated by heterogeneous wetting surfaces, the periodic squeezing of a 3D droplet to a 2D plate maximizes the effective interface for triboelectrification and electrostatic induction, leading to a remarkable charge density of ∼2.0 C m<sup>−3</sup>. Additionally, optimizing electrode configuration reduces parasitic capacitance and elevates output voltage by 80 folds. A recorded peak power density of 5,865 W m<sup>−3</sup> is obtained, which is 48 times higher than previous works. Furthermore, the droplet’s non-Hookean elastic behavior extends the frequency response band by 89.3%, enabling small electronics to operate under micro-vibration conditions. This study offers valuable insights for efficient electric energy extraction from interfacial droplets.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101763"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De-doping engineering for efficient and heat-stable perovskite solar cells 去掺杂工程实现高效、热稳定的过氧化物太阳能电池
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.10.011
Yun Seop Shin , Ji Won Song , Dong Gyu Lee , Jaehwi Lee , Jongdeuk Seo , Jina Roe , Gwang Yong Shin , Dongshin Kim , Jiwoo Yeop , Dongmin Lee , Minjin Kim , Yimhyun Jo , Hyungsu Jang , Jung Geon Son , Woojin Lee , Jeongmin Son , Sujung Park , Shinuk Cho , Tae Joo Shin , Gi-Hwan Kim , Dong Suk Kim
In conventional n-i-p perovskite solar cells, unsolved issues persist, particularly concerning notorious performance degradation under prolonged heat exposure at 85°C. By reducing the concentration of 4-tert-butylpyridine (tBP) and lithium bis(trifluoromethanesulfonyl)imide and adjusting their molar ratio to one, we achieved a dramatic increase in the heat stability of the PSC while boosting its power conversion efficiency (PCE). The formation of a 1:1 Li+-tBP complex was crucial for preventing free tBP molecules in the hole-transporting layer (HTL), suppressing the de-doping of the p-type HTL by tBP and the release of tBP vapor under heat stress. Consequently, the PSCs accomplished a PCE of 26.18% (certified 26.00%) while demonstrating remarkable resilience to heat exposure at 85°C due to the raised glass transition temperature of the HTL. Furthermore, a perovskite solar mini-module with an aperture area of 25 cm2 achieved a PCE of 23.29%, highlighting their potential for commercial PSC deployment.
在传统的n-i-p包晶太阳能电池中,仍存在一些尚未解决的问题,尤其是在85°C高温下长时间暴露时性能下降的问题。通过降低 4-叔丁基吡啶(tBP)和双(三氟甲磺酰基)亚胺锂的浓度并将它们的摩尔比调整为 1,我们显著提高了 PSC 的热稳定性,同时提高了其功率转换效率(PCE)。1:1 Li+-tBP 复合物的形成对于防止空穴传输层(HTL)中出现游离的 tBP 分子、抑制 tBP 对 p 型 HTL 的去掺杂以及热应力下 tBP 蒸汽的释放至关重要。因此,PSCs 的 PCE 达到了 26.18%(认证值为 26.00%),同时由于 HTL 玻璃化转变温度的提高,在 85°C 的高温下表现出了卓越的耐热性。此外,孔径面积为 25 平方厘米的过氧化物太阳能微型模块的 PCE 达到了 23.29%,这突出表明了它们在商用 PCSC 部署方面的潜力。
{"title":"De-doping engineering for efficient and heat-stable perovskite solar cells","authors":"Yun Seop Shin ,&nbsp;Ji Won Song ,&nbsp;Dong Gyu Lee ,&nbsp;Jaehwi Lee ,&nbsp;Jongdeuk Seo ,&nbsp;Jina Roe ,&nbsp;Gwang Yong Shin ,&nbsp;Dongshin Kim ,&nbsp;Jiwoo Yeop ,&nbsp;Dongmin Lee ,&nbsp;Minjin Kim ,&nbsp;Yimhyun Jo ,&nbsp;Hyungsu Jang ,&nbsp;Jung Geon Son ,&nbsp;Woojin Lee ,&nbsp;Jeongmin Son ,&nbsp;Sujung Park ,&nbsp;Shinuk Cho ,&nbsp;Tae Joo Shin ,&nbsp;Gi-Hwan Kim ,&nbsp;Dong Suk Kim","doi":"10.1016/j.joule.2024.10.011","DOIUrl":"10.1016/j.joule.2024.10.011","url":null,"abstract":"<div><div>In conventional n-i-p perovskite solar cells, unsolved issues persist, particularly concerning notorious performance degradation under prolonged heat exposure at 85°C. By reducing the concentration of 4-<em>tert</em>-butylpyridine (<em>t</em>BP) and lithium bis(trifluoromethanesulfonyl)imide and adjusting their molar ratio to one, we achieved a dramatic increase in the heat stability of the PSC while boosting its power conversion efficiency (PCE). The formation of a 1:1 Li<sup>+</sup>-<em>t</em>BP complex was crucial for preventing free <em>t</em>BP molecules in the hole-transporting layer (HTL), suppressing the de-doping of the p-type HTL by <em>t</em>BP and the release of <em>t</em>BP vapor under heat stress. Consequently, the PSCs accomplished a PCE of 26.18% (certified 26.00%) while demonstrating remarkable resilience to heat exposure at 85°C due to the raised glass transition temperature of the HTL. Furthermore, a perovskite solar mini-module with an aperture area of 25 cm<sup>2</sup> achieved a PCE of 23.29%, highlighting their potential for commercial PSC deployment.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101779"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
System impacts of wind energy developments: Key research challenges and opportunities 风能发展的系统影响:关键研究的挑战和机遇
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.11.016
Russell McKenna , Johan Lilliestam , Heidi U. Heinrichs , Jann Weinand , Johannes Schmidt , Iain Staffell , Andrea N. Hahmann , Peter Burgherr , Arne Burdack , Monika Bucha , Ruihong Chen , Michael Klingler , Paul Lehmann , Jens Lowitzsch , Riccardo Novo , James Price , Romain Sacchi , Patrick Scherhaufer , Eva M. Schöll , Piero Visconti , Luis Ramirez Camargo
Wind power accounted for 8% of global electricity generation in 2023 and is one of the cheapest forms of low-carbon electricity. Although fully commercial, many challenges remain in achieving the required scale-up, relating to integrating wind farms into wider technical, economic, social, and natural systems. We review the main challenges, outline existing solutions, and propose future research needed to overcome existing problems. Although the techno-economic challenges of grid and market integration are seen as significant obstacles to scaling up wind power, the field is replete with solutions. In many countries, planning and permitting are immediate barriers to wind-power deployment; although solutions are emerging in the EU and several countries, the effectiveness and long-term acceptance of fast-track permissions and go-to areas remains to be seen. Environmental impacts on wildlife and recycling challenges are rising issues for which tested and scalable solutions are often still lacking, pointing to large remaining research requirements.
2023年,风力发电占全球发电量的8%,是最便宜的低碳电力形式之一。虽然完全商业化,但在实现所需的规模方面仍存在许多挑战,涉及将风电场整合到更广泛的技术、经济、社会和自然系统中。我们回顾了主要的挑战,概述了现有的解决方案,并提出了克服现有问题所需的未来研究。尽管电网和市场整合的技术经济挑战被视为扩大风力发电的重大障碍,但该领域充满了解决方案。在许多国家,规划和许可是风力发电部署的直接障碍;尽管欧盟和一些国家正在出现解决方案,但快速通道许可和首选领域的有效性和长期接受程度仍有待观察。对野生动物的环境影响和回收挑战是日益严重的问题,但通常仍然缺乏经过测试和可扩展的解决方案,这表明仍有大量的研究需求。
{"title":"System impacts of wind energy developments: Key research challenges and opportunities","authors":"Russell McKenna ,&nbsp;Johan Lilliestam ,&nbsp;Heidi U. Heinrichs ,&nbsp;Jann Weinand ,&nbsp;Johannes Schmidt ,&nbsp;Iain Staffell ,&nbsp;Andrea N. Hahmann ,&nbsp;Peter Burgherr ,&nbsp;Arne Burdack ,&nbsp;Monika Bucha ,&nbsp;Ruihong Chen ,&nbsp;Michael Klingler ,&nbsp;Paul Lehmann ,&nbsp;Jens Lowitzsch ,&nbsp;Riccardo Novo ,&nbsp;James Price ,&nbsp;Romain Sacchi ,&nbsp;Patrick Scherhaufer ,&nbsp;Eva M. Schöll ,&nbsp;Piero Visconti ,&nbsp;Luis Ramirez Camargo","doi":"10.1016/j.joule.2024.11.016","DOIUrl":"10.1016/j.joule.2024.11.016","url":null,"abstract":"<div><div>Wind power accounted for 8% of global electricity generation in 2023 and is one of the cheapest forms of low-carbon electricity. Although fully commercial, many challenges remain in achieving the required scale-up, relating to integrating wind farms into wider technical, economic, social, and natural systems. We review the main challenges, outline existing solutions, and propose future research needed to overcome existing problems. Although the techno-economic challenges of grid and market integration are seen as significant obstacles to scaling up wind power, the field is replete with solutions. In many countries, planning and permitting are immediate barriers to wind-power deployment; although solutions are emerging in the EU and several countries, the effectiveness and long-term acceptance of fast-track permissions and go-to areas remains to be seen. Environmental impacts on wildlife and recycling challenges are rising issues for which tested and scalable solutions are often still lacking, pointing to large remaining research requirements.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101799"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing heterointerfaces for superionic conductivity 利用异质界面实现超离子导电性
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.101819
Xiaona Li
Solid-state electrolytes are essential for enabling safe, high-performance all-solid-state batteries by providing a stable, non-flammable ionic pathway for lithium-ion transport while also improving overall battery safety and energy density. Recently in Joule, Ohta et al. combined nonconductive lithium chloride and iron oxychloride to form a [Li1+δCl]δ+/[FeOCl]δ− heterointerface composite with ionic conductivities exceeding 1 mS cm−1, offering a new methodology to design solid-state electrolyte materials.
固态电解质通过为锂离子传输提供稳定、不易燃的离子通道,同时提高电池的整体安全性和能量密度,对于实现安全、高性能的全固态电池至关重要。最近在Joule上,Ohta等人将不导电的氯化锂和氯化铁结合形成离子电导率超过1 mS cm−1的[Li1+δ cl]δ+/[FeOCl]δ−异质界面复合材料,为设计固态电解质材料提供了一种新的方法。
{"title":"Harnessing heterointerfaces for superionic conductivity","authors":"Xiaona Li","doi":"10.1016/j.joule.2024.101819","DOIUrl":"10.1016/j.joule.2024.101819","url":null,"abstract":"<div><div>Solid-state electrolytes are essential for enabling safe, high-performance all-solid-state batteries by providing a stable, non-flammable ionic pathway for lithium-ion transport while also improving overall battery safety and energy density. Recently in <em>Joule</em>, Ohta et al. combined nonconductive lithium chloride and iron oxychloride to form a [Li<sub>1+δ</sub>Cl]<sup>δ+</sup>/[FeOCl]<sup>δ−</sup> heterointerface composite with ionic conductivities exceeding 1 mS cm<sup>−1</sup>, offering a new methodology to design solid-state electrolyte materials.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101819"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient blade-coated perovskite/silicon tandems via interface engineering 通过界面工程实现高效的叶片涂层过氧化物/硅串联系统
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.09.014
Anand Selvin Subbiah , Subhashri Mannar , Vladyslav Hnapovskyi , Anil Reddy Pininti , Badri Vishal , Luis Victor Torres Merino , Oleksandr Matiash , Orestis Karalis , Hannes Hempel , Adi Prasetio , Bumin Yildirim , Pia Dally , Diego Rosas Villalva , Maxime Babics , Lujia Xu , Arsalan Razzaq , Randi Azmi , Fuzong Xu , Helen L. Bristow , Esma Ugur , Stefaan De Wolf
Monolithic perovskite/silicon tandem solar cells have recently reached a certified record power conversion efficiency (PCE) of 34.6%. However, most of the high-efficiency tandems rely on spin coating to fabricate the perovskite absorber, which generally has limited scope for mass production. To address this, we demonstrate the potential of linear printing techniques, systematically improving 1.66 eV wide-band-gap (WBG) perovskites in single-junction perovskite solar cells (PSCs) via blade coating. Also, we enhance defect passivation and energy alignment between adjacent contacts, thus improving charge extraction in such blade-coated PSCs by introducing 2D/3D perovskite heterojunctions at their electron- and hole-collecting interfaces. Translating the 2D integrated blade-coated PSCs to our monolithic perovskite/silicon tandems significantly improved their performance, enabling an independently certified PCE of 31.2% for blade-coated tandems. Importantly, the encapsulated tandems retain 80% of their initial PCE for ∼1,700 h under ∼1-sun continuous illumination, demonstrating their durability and potential toward long-term deployment.
最近,单片透辉石/硅串联太阳能电池的功率转换效率(PCE)达到了 34.6% 的认证纪录。然而,大多数高效串联电池都依赖于旋涂来制造包晶石吸收器,这通常限制了大规模生产的范围。为了解决这个问题,我们展示了线性印刷技术的潜力,通过叶片涂层系统地改进了单结包晶体太阳能电池(PSCs)中的 1.66 eV 宽带隙(WBG)包晶体。此外,我们还通过在其电子和空穴收集界面上引入二维/三维包晶异质结,增强了相邻触点之间的缺陷钝化和能量对准,从而改善了这种叶片涂层 PSC 中的电荷提取。将二维集成的叶片涂层 PSC 转换为我们的单片包晶/硅串联器件,可显著提高其性能,经独立认证,叶片涂层串联器件的 PCE 为 31.2%。重要的是,在 1 个太阳的连续光照下,封装串联在 1,700 小时内仍能保持其初始 PCE 的 80%,这证明了它们的耐用性和长期部署的潜力。
{"title":"Efficient blade-coated perovskite/silicon tandems via interface engineering","authors":"Anand Selvin Subbiah ,&nbsp;Subhashri Mannar ,&nbsp;Vladyslav Hnapovskyi ,&nbsp;Anil Reddy Pininti ,&nbsp;Badri Vishal ,&nbsp;Luis Victor Torres Merino ,&nbsp;Oleksandr Matiash ,&nbsp;Orestis Karalis ,&nbsp;Hannes Hempel ,&nbsp;Adi Prasetio ,&nbsp;Bumin Yildirim ,&nbsp;Pia Dally ,&nbsp;Diego Rosas Villalva ,&nbsp;Maxime Babics ,&nbsp;Lujia Xu ,&nbsp;Arsalan Razzaq ,&nbsp;Randi Azmi ,&nbsp;Fuzong Xu ,&nbsp;Helen L. Bristow ,&nbsp;Esma Ugur ,&nbsp;Stefaan De Wolf","doi":"10.1016/j.joule.2024.09.014","DOIUrl":"10.1016/j.joule.2024.09.014","url":null,"abstract":"<div><div>Monolithic perovskite/silicon tandem solar cells have recently reached a certified record power conversion efficiency (PCE) of 34.6%. However, most of the high-efficiency tandems rely on spin coating to fabricate the perovskite absorber, which generally has limited scope for mass production. To address this, we demonstrate the potential of linear printing techniques, systematically improving 1.66 eV wide-band-gap (WBG) perovskites in single-junction perovskite solar cells (PSCs) via blade coating. Also, we enhance defect passivation and energy alignment between adjacent contacts, thus improving charge extraction in such blade-coated PSCs by introducing 2D/3D perovskite heterojunctions at their electron- and hole-collecting interfaces. Translating the 2D integrated blade-coated PSCs to our monolithic perovskite/silicon tandems significantly improved their performance, enabling an independently certified PCE of 31.2% for blade-coated tandems. Importantly, the encapsulated tandems retain 80% of their initial PCE for ∼1,700 h under ∼1-sun continuous illumination, demonstrating their durability and potential toward long-term deployment.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101767"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design 通过更好的电解质设计,向实用 Zn/MnO2 水电池迈出关键一步
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.joule.2024.11.001
Ivette Aguilar , John Brown , Louis Godeffroy , Florian Dorchies , Véronique Balland , Frédéric Kanoufi , Jean-Marie Tarascon
Rechargeable aqueous devices, such as alkaline Zn/MnO2 batteries, hold strong potential for large-scale energy storage. However, they face limitations related to zinc and electrolyte degradation. Here, in the spirit of practicality, we have addressed these limitations by developing strategies aiming at resolving issues with the electrolyte, anode, and cathode independently at first, and then in synergy. We propose innovative electrolyte designs that incorporate select organic molecules to leverage hydrogen bonding interactions, reducing Zn nuclei reactivity via the formation of a stable solid electrolyte interphase (SEI). Our optimized Zn/MnO2 batteries demonstrate high stability, achieving a gravimetric capacity of ∼450 mAh/g (MnO2) and 90% capacity retention. Furthermore, we systematically show the scalability of our methods, moving from a Swagelok cell prototype (3–6 mg/cm2 of mass loading) to cylindrical-type cell (30 mg/cm2). These batteries can operate at unprecedentedly high temperatures of up to 55°C, while offering an energy density of 150 Wh/kg.
碱性锌/二氧化锰电池等可充电水性设备在大规模能源储存方面具有巨大潜力。然而,它们面临着与锌和电解质降解有关的限制。在此,我们本着务实的精神,针对这些限制,制定了旨在解决电解质、阳极和阴极问题的策略,首先是独立解决,然后是协同解决。我们提出了创新的电解质设计方案,将精选的有机分子纳入其中,利用氢键相互作用,通过形成稳定的固体电解质间相(SEI)来降低锌核的反应性。我们优化的 Zn/MnO2 电池表现出很高的稳定性,重量计量容量达到 ∼450 mAh/g(MnO2),容量保持率达到 90%。此外,我们系统地展示了我们方法的可扩展性,从世伟洛克电池原型(3-6 毫克/平方厘米的质量负载)到圆柱型电池(30 毫克/平方厘米)。这些电池可以在高达 55°C 的前所未有的高温下工作,同时提供 150 Wh/kg 的能量密度。
{"title":"A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design","authors":"Ivette Aguilar ,&nbsp;John Brown ,&nbsp;Louis Godeffroy ,&nbsp;Florian Dorchies ,&nbsp;Véronique Balland ,&nbsp;Frédéric Kanoufi ,&nbsp;Jean-Marie Tarascon","doi":"10.1016/j.joule.2024.11.001","DOIUrl":"10.1016/j.joule.2024.11.001","url":null,"abstract":"<div><div>Rechargeable aqueous devices, such as alkaline Zn/MnO<sub>2</sub> batteries, hold strong potential for large-scale energy storage. However, they face limitations related to zinc and electrolyte degradation. Here, in the spirit of practicality, we have addressed these limitations by developing strategies aiming at resolving issues with the electrolyte, anode, and cathode independently at first, and then in synergy. We propose innovative electrolyte designs that incorporate select organic molecules to leverage hydrogen bonding interactions, reducing Zn nuclei reactivity via the formation of a stable solid electrolyte interphase (SEI). Our optimized Zn/MnO<sub>2</sub> batteries demonstrate high stability, achieving a gravimetric capacity of ∼450 mAh/g (MnO<sub>2</sub>) and 90% capacity retention. Furthermore, we systematically show the scalability of our methods, moving from a Swagelok cell prototype (3–6 mg/cm<sup>2</sup> of mass loading) to cylindrical-type cell (30 mg/cm<sup>2</sup>). These batteries can operate at unprecedentedly high temperatures of up to 55°C, while offering an energy density of 150 Wh/kg.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":"Article 101784"},"PeriodicalIF":38.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous conversion of flue gas into syngas by a bipolar membrane-integrated single-cell cyclic system 通过双极膜集成单细胞循环系统将烟气连续转化为合成气
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-10 DOI: 10.1016/j.joule.2024.12.007
Dayin He, Xianhui Ma, Huang Zhou, Yu Zhang, Yuen Wu
Electrochemical CO2 reduction reaction (ECO2RR) usually requires high-purity CO2 gas feeding. However, capturing CO2 from flue gas is still a cost- and energy-intensive process. Here, we design a bipolar membrane-integrated single-cell cyclic system that directly converts simulated flue gas into syngas. The system features a circulating gas-liquid mixed flow between the anode and cathode in an integrated cell, enabling it to simultaneously absorb CO2 from flue gas and convert captured CO2 into syngas. At an industrial current density of 250 mA/cm2, we successfully decrease the CO2 concentration in flue gas from 15% to 4.3% (with a 61.7% CO2 capture efficiency) and obtain high-selectivity (up to 100%) syngas (H2:CO = 3:1). Moreover, this cell has excellent tolerance to SOx and NOx due to the Ni single-atom catalyst in the cathode compared with previous studies. These results pave the way for low-concentration carbon dioxide conversion and promote the application of ECO2RR technology.
电化学CO2还原反应(ECO2RR)通常需要高纯CO2供气。然而,从烟气中捕获二氧化碳仍然是一个成本和能源密集型的过程。在这里,我们设计了一个双极膜集成单细胞循环系统,直接将模拟烟气转化为合成气。该系统的特点是在集成电池的阳极和阴极之间循环气液混合流动,使其能够同时从烟气中吸收二氧化碳并将捕获的二氧化碳转化为合成气。在250毫安/平方厘米的工业电流密度下,我们成功地将烟气中的二氧化碳浓度从15%降低到4.3%(二氧化碳捕获效率为61.7%),并获得高选择性(高达100%)合成气(H2:CO = 3:1)。此外,与以往的研究相比,由于阴极中使用了Ni单原子催化剂,该电池对SOx和NOx具有优异的耐受性。这些结果为低浓度二氧化碳转化铺平了道路,促进了ECO2RR技术的应用。
{"title":"Continuous conversion of flue gas into syngas by a bipolar membrane-integrated single-cell cyclic system","authors":"Dayin He, Xianhui Ma, Huang Zhou, Yu Zhang, Yuen Wu","doi":"10.1016/j.joule.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.joule.2024.12.007","url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR) usually requires high-purity CO<sub>2</sub> gas feeding. However, capturing CO<sub>2</sub> from flue gas is still a cost- and energy-intensive process. Here, we design a bipolar membrane-integrated single-cell cyclic system that directly converts simulated flue gas into syngas. The system features a circulating gas-liquid mixed flow between the anode and cathode in an integrated cell, enabling it to simultaneously absorb CO<sub>2</sub> from flue gas and convert captured CO<sub>2</sub> into syngas. At an industrial current density of 250 mA/cm<sup>2</sup>, we successfully decrease the CO<sub>2</sub> concentration in flue gas from 15% to 4.3% (with a 61.7% CO<sub>2</sub> capture efficiency) and obtain high-selectivity (up to 100%) syngas (H<sub>2</sub>:CO = 3:1). Moreover, this cell has excellent tolerance to SO<sub>x</sub> and NO<sub>x</sub> due to the Ni single-atom catalyst in the cathode compared with previous studies. These results pave the way for low-concentration carbon dioxide conversion and promote the application of ECO<sub>2</sub>RR technology.","PeriodicalId":343,"journal":{"name":"Joule","volume":"22 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation hardness of organic photovoltaics 有机光伏的辐射硬度
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-09 DOI: 10.1016/j.joule.2024.12.001
Yongxi Li, Karthik Kamaraj, Yogita Silori, Haonan Zhao, Claire Arneson, Bin Liu, Jennifer Ogilvie, Stephen R. Forrest
We investigate the resilience of organic photovoltaic (OPV) cells to proton irradiation at doses equivalent to that experienced by spacecraft in low earth orbit. The OPVs, with their inherent flexibility, light weight, low temperature processing, and potential to achieve high specific power of 40 W/g, are promising candidates for energy production in space. However, their ability to withstand irradiation by high-energy incident radiation and subatomic particles characteristic of harsh space environments is yet unproven. We find that small-molecule OPVs grown by vacuum thermal evaporation are resistant to degradation by 30 keV proton irradiation, in contrast to polymer-based OPVs that suffer a 50% efficiency loss under similar conditions. Thermal annealing at low temperatures significantly restores the polymer-based OPV power conversion efficiency. The loss of efficiency is attributed to cleavage of pendant alkyl groups on the polymers, resulting in cross-linking and the subsequent formation of deep electronic traps.
我们研究了有机光伏(OPV)电池在质子辐照下的弹性,辐照剂量相当于低地球轨道航天器所经历的辐照剂量。opv具有固有的灵活性、重量轻、低温加工和实现40 W/g高比功率的潜力,是空间能源生产的有希望的候选者。然而,它们承受高能入射辐射和恶劣空间环境亚原子粒子辐射的能力尚未得到证实。我们发现,通过真空热蒸发生长的小分子OPVs可以抵抗30 keV质子照射的降解,而在类似条件下,聚合物基OPVs的效率损失为50%。低温热退火可显著恢复聚合物基OPV的功率转换效率。效率的损失是由于聚合物上的垂坠烷基的裂解,导致交联和随后形成的深电子陷阱。
{"title":"Radiation hardness of organic photovoltaics","authors":"Yongxi Li, Karthik Kamaraj, Yogita Silori, Haonan Zhao, Claire Arneson, Bin Liu, Jennifer Ogilvie, Stephen R. Forrest","doi":"10.1016/j.joule.2024.12.001","DOIUrl":"https://doi.org/10.1016/j.joule.2024.12.001","url":null,"abstract":"We investigate the resilience of organic photovoltaic (OPV) cells to proton irradiation at doses equivalent to that experienced by spacecraft in low earth orbit. The OPVs, with their inherent flexibility, light weight, low temperature processing, and potential to achieve high specific power of 40 W/g, are promising candidates for energy production in space. However, their ability to withstand irradiation by high-energy incident radiation and subatomic particles characteristic of harsh space environments is yet unproven. We find that small-molecule OPVs grown by vacuum thermal evaporation are resistant to degradation by 30 keV proton irradiation, in contrast to polymer-based OPVs that suffer a 50% efficiency loss under similar conditions. Thermal annealing at low temperatures significantly restores the polymer-based OPV power conversion efficiency. The loss of efficiency is attributed to cleavage of pendant alkyl groups on the polymers, resulting in cross-linking and the subsequent formation of deep electronic traps.","PeriodicalId":343,"journal":{"name":"Joule","volume":"20 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxyl-functionalized perovskite enables ALD growth of a compact and uniform ion migration barrier 羧基官能化钙钛矿使ALD生长成致密均匀的离子迁移屏障
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-09 DOI: 10.1016/j.joule.2024.12.002
Deokjae Choi, Donghoon Shin, Chongwen Li, Yuan Liu, Abdulaziz S.R. Bati, Dana E. Kachman, Yi Yang, Jiachen Li, Yoon Jung Lee, Muzhi Li, Saivineeth Penukula, Da Bin Kim, Heejong Shin, Chiung-Han Chen, So Min Park, Cheng Liu, Aidan Maxwell, Haoyue Wan, Nicholas Rolston, Edward H. Sargent, Bin Chen
Mixed-halide wide-band-gap perovskites are critical components of highly efficient tandem cells, but their operating stability is limited by halide migration. Metal oxides deposited via atomic layer deposition (ALD) have been shown to block halide migration; however, previously pursued methods result in inhomogeneous nucleation and growth. We hypothesized that functionalizing the perovskite surface with ALD-active carboxyl groups could promote nucleation and enable higher-temperature metal oxide growth. We find that 5-ammonium valeric acid iodide (5-AVAI) facilitates the formation of a compact and uniform aluminum oxide (Al2O3) layer and allows growth at 100°C compared with the previous limit of 75°C. We demonstrate that halide migration into the C60 electron transport layer is reduced by a factor of 10 compared with the reference case. Al2O3-capped perovskite solar cells with a band gap of 1.78 eV retain 90% of their initial power conversion efficiency after 1,000 h of continuous operation under 1-sun illumination at 55°C.
混合卤化物宽带隙钙钛矿是高效串联电池的重要组成部分,但其工作稳定性受到卤化物迁移的限制。通过原子层沉积(ALD)沉积的金属氧化物已被证明可以阻止卤化物的迁移;然而,以前追求的方法导致不均匀的成核和生长。我们假设用ald活性羧基功能化钙钛矿表面可以促进成核并使高温金属氧化物生长。我们发现,5-戊酸碘化铵(5-AVAI)有利于形成致密均匀的氧化铝(Al2O3)层,并允许在100℃下生长,而之前的极限为75℃。我们证明了卤化物向C60电子传输层的迁移比参考情况减少了10倍。带隙为1.78 eV的al2o3封顶钙钛矿太阳能电池在55°C的1个太阳照射下连续工作1,000 h后,其初始功率转换效率仍保持90%。
{"title":"Carboxyl-functionalized perovskite enables ALD growth of a compact and uniform ion migration barrier","authors":"Deokjae Choi, Donghoon Shin, Chongwen Li, Yuan Liu, Abdulaziz S.R. Bati, Dana E. Kachman, Yi Yang, Jiachen Li, Yoon Jung Lee, Muzhi Li, Saivineeth Penukula, Da Bin Kim, Heejong Shin, Chiung-Han Chen, So Min Park, Cheng Liu, Aidan Maxwell, Haoyue Wan, Nicholas Rolston, Edward H. Sargent, Bin Chen","doi":"10.1016/j.joule.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.joule.2024.12.002","url":null,"abstract":"Mixed-halide wide-band-gap perovskites are critical components of highly efficient tandem cells, but their operating stability is limited by halide migration. Metal oxides deposited via atomic layer deposition (ALD) have been shown to block halide migration; however, previously pursued methods result in inhomogeneous nucleation and growth. We hypothesized that functionalizing the perovskite surface with ALD-active carboxyl groups could promote nucleation and enable higher-temperature metal oxide growth. We find that 5-ammonium valeric acid iodide (5-AVAI) facilitates the formation of a compact and uniform aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) layer and allows growth at 100°C compared with the previous limit of 75°C. We demonstrate that halide migration into the C<sub>60</sub> electron transport layer is reduced by a factor of 10 compared with the reference case. Al<sub>2</sub>O<sub>3</sub>-capped perovskite solar cells with a band gap of 1.78 eV retain 90% of their initial power conversion efficiency after 1,000 h of continuous operation under 1-sun illumination at 55°C.","PeriodicalId":343,"journal":{"name":"Joule","volume":"27 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1