首页 > 最新文献

Joule最新文献

英文 中文
Recycling of perovskite solar cells 钙钛矿太阳能电池的回收利用
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102221
Xinyi Lyu , Pu Hong , Meiyu Guo , Yuanyuan Zhou
Perovskite solar cells (PSCs) offer high efficiency and low-cost manufacturing but face challenges of lead management and limited operational lifetimes. This work reviews the material, device, and process characteristics that enable efficient recycling of PSCs. We summarize technoeconomic analysis and life cycle assessments that demonstrate substantial reductions in cost and environmental impacts through multi-round material recovery and compare recycling pathways across device architectures and functional layers. We further discuss practical barriers to scaling laboratory methods to industrial systems, including solvent management and regulatory compliance, and highlight emerging strategies such as design for recycling, automation, and data-driven process optimization. These insights illustrate how closed-loop recycling can support the sustainable deployment of PSC technology and advance a circular photovoltaic economy.
钙钛矿太阳能电池(PSCs)具有高效率和低成本的优点,但面临着铅管理和使用寿命有限的挑战。这项工作回顾了材料、设备和工艺特性,使psc有效回收。我们总结了技术经济分析和生命周期评估,证明了通过多轮材料回收大大降低了成本和环境影响,并比较了不同设备架构和功能层的回收途径。我们进一步讨论了将实验室方法扩展到工业系统的实际障碍,包括溶剂管理和法规遵从性,并强调了诸如回收设计,自动化和数据驱动过程优化等新兴策略。这些见解说明了闭环回收如何支持PSC技术的可持续部署,并推动循环光伏经济。
{"title":"Recycling of perovskite solar cells","authors":"Xinyi Lyu ,&nbsp;Pu Hong ,&nbsp;Meiyu Guo ,&nbsp;Yuanyuan Zhou","doi":"10.1016/j.joule.2025.102221","DOIUrl":"10.1016/j.joule.2025.102221","url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) offer high efficiency and low-cost manufacturing but face challenges of lead management and limited operational lifetimes. This work reviews the material, device, and process characteristics that enable efficient recycling of PSCs. We summarize technoeconomic analysis and life cycle assessments that demonstrate substantial reductions in cost and environmental impacts through multi-round material recovery and compare recycling pathways across device architectures and functional layers. We further discuss practical barriers to scaling laboratory methods to industrial systems, including solvent management and regulatory compliance, and highlight emerging strategies such as design for recycling, automation, and data-driven process optimization. These insights illustrate how closed-loop recycling can support the sustainable deployment of PSC technology and advance a circular photovoltaic economy.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102221"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steel-stencil printing and local polysilicon contacts enable 26.09%-efficient industrial-grade tunnel oxide passivating contact solar cells 钢模板印刷和局部多晶硅触点使26.09%的效率的工业级隧道氧化物钝化接触太阳能电池
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102231
Haojiang Du , Weiming Lu , Xinrui An , Sheshicheng Chen , Zunke Liu , Shicheng Guo , Xun Fan , Mingming Zhang , Shaojian Fu , Wei Liu , Jing Qiu , Chuanxiao Xiao , Zhiqin Ying , Xi Yang , Zhenhai Yang , Yuheng Zeng , Jichun Ye
Tunnel oxide passivating contact (TOPCon) solar cells (SCs) have emerged as the dominant crystalline silicon technology in the photovoltaic industry. However, further improving efficiency while simultaneously reducing silver consumption for TOPCon SCs remains a significant challenge. Here, we propose a synergistic strategy integrating high-precision steel-stencil printing technology and a local polysilicon contact design, achieving a certified efficiency of 26.09% on industrial-grade M10 silicon wafers. Specifically, transitioning from conventional screen printing to steel-stencil printing enables the fabrication of ultra-narrow fingers and a substantial reduction in silver consumption. The optimized silver paste formulation facilitates the formation of densely packed silver nanoparticles at the silver/silicon interface, resulting in lower contact resistivity. Additionally, our laser-patterned local polysilicon contact design effectively optimizes the trade-off between carrier transport and parasitic absorption losses while achieving high bifaciality (∼90%) that is beneficial for practical energy yield.
隧道氧化钝化接触(TOPCon)太阳能电池(SCs)已成为光伏产业中占主导地位的晶体硅技术。然而,进一步提高效率,同时降低TOPCon sc的银消耗仍然是一个重大挑战。在此,我们提出了一种整合高精度钢模板印刷技术和本地多晶硅触点设计的协同策略,在工业级M10硅片上实现了26.09%的认证效率。具体来说,从传统的丝网印刷过渡到钢模板印刷可以制造超窄的手指,并大大减少银的消耗。优化后的银浆配方有助于在银/硅界面形成致密堆积的银纳米颗粒,从而降低接触电阻率。此外,我们的激光图案局部多晶硅接触设计有效地优化了载流子输运和寄生吸收损失之间的权衡,同时实现了高双面性(约90%),这有利于实际的能量产量。
{"title":"Steel-stencil printing and local polysilicon contacts enable 26.09%-efficient industrial-grade tunnel oxide passivating contact solar cells","authors":"Haojiang Du ,&nbsp;Weiming Lu ,&nbsp;Xinrui An ,&nbsp;Sheshicheng Chen ,&nbsp;Zunke Liu ,&nbsp;Shicheng Guo ,&nbsp;Xun Fan ,&nbsp;Mingming Zhang ,&nbsp;Shaojian Fu ,&nbsp;Wei Liu ,&nbsp;Jing Qiu ,&nbsp;Chuanxiao Xiao ,&nbsp;Zhiqin Ying ,&nbsp;Xi Yang ,&nbsp;Zhenhai Yang ,&nbsp;Yuheng Zeng ,&nbsp;Jichun Ye","doi":"10.1016/j.joule.2025.102231","DOIUrl":"10.1016/j.joule.2025.102231","url":null,"abstract":"<div><div>Tunnel oxide passivating contact (TOPCon) solar cells (SCs) have emerged as the dominant crystalline silicon technology in the photovoltaic industry. However, further improving efficiency while simultaneously reducing silver consumption for TOPCon SCs remains a significant challenge. Here, we propose a synergistic strategy integrating high-precision steel-stencil printing technology and a local polysilicon contact design, achieving a certified efficiency of 26.09% on industrial-grade M10 silicon wafers. Specifically, transitioning from conventional screen printing to steel-stencil printing enables the fabrication of ultra-narrow fingers and a substantial reduction in silver consumption. The optimized silver paste formulation facilitates the formation of densely packed silver nanoparticles at the silver/silicon interface, resulting in lower contact resistivity. Additionally, our laser-patterned local polysilicon contact design effectively optimizes the trade-off between carrier transport and parasitic absorption losses while achieving high bifaciality (∼90%) that is beneficial for practical energy yield.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102231"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring cobalt gradient distribution toward practical Ni95 cathode for high-energy-density lithium-ion battery 高能量密度锂离子电池实用Ni95正极的钴梯度分布调整
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102229
Yucen Yan , Zhangyi Xu , Gui Luo , Duo Deng , Wenjie Peng , Zhixing Wang , Wang Hay Kan , Odiljon Abdurakhmonov , Utkirjon Sharopov , Yiman Feng , Guochun Yan , Huajun Guo , Hui Duan , Guangchao Li , Xinhai Li , Xing Ou , Junchao Zheng , Jiexi Wang
Improving electric vehicle range and safety is a key focus in new energy research. Nickel (Ni)-rich cathodes (≥200 mA h g−1) are vital for next-generation high-energy lithium (Li)-ion batteries, but their widespread use in polycrystalline forms is hindered by microcracks, irreversible phase transitions, and lattice oxygen release. This study successfully synthesizes single-crystal, low-cobalt, ultrahigh-Ni cathode materials (C-Ni95), which exhibit exceptional cycling stability stemming from an optimized distribution of cobalt element. Particularly, the cobalt surface gradient doping structure plays a crucial role in enhancing the interfacial transport of Li ions, mitigating volume expansion/contraction, stabilizing the crystal structure, and suppressing harmful parasitic side reactions. Consequently, a high-loading C-Ni95 pouch cell (28.2 mg cm²) retains 85.1% capacity after 800 cycles. Moreover, boron injection further improves performance, achieving 87.1% retention after 2,000 cycles. This work offers an effective strategy for the practical synthesis and interfacial modification of high-performance Ni-rich, cobalt-free, single-crystal cathodes.
提高电动汽车的续航里程和安全性是新能源研究的重点。富镍阴极(≥200 mA h g−1)对于下一代高能锂离子电池至关重要,但其在多晶形式中的广泛应用受到微裂纹、不可逆相变和晶格氧释放的阻碍。本研究成功合成了单晶、低钴、超高镍阴极材料(C-Ni95),该材料由于钴元素的优化分布而表现出优异的循环稳定性。特别是钴表面梯度掺杂结构在增强Li离子的界面输运、减轻体积膨胀/收缩、稳定晶体结构、抑制有害寄生副反应等方面起着至关重要的作用。因此,高负载C-Ni95袋电池(28.2 mg cm−²)在800次循环后保持85.1%的容量。此外,注入硼进一步提高了性能,在2000次循环后,保留率达到87.1%。这项工作为高性能富镍无钴单晶阴极的实际合成和界面改性提供了一种有效的策略。
{"title":"Tailoring cobalt gradient distribution toward practical Ni95 cathode for high-energy-density lithium-ion battery","authors":"Yucen Yan ,&nbsp;Zhangyi Xu ,&nbsp;Gui Luo ,&nbsp;Duo Deng ,&nbsp;Wenjie Peng ,&nbsp;Zhixing Wang ,&nbsp;Wang Hay Kan ,&nbsp;Odiljon Abdurakhmonov ,&nbsp;Utkirjon Sharopov ,&nbsp;Yiman Feng ,&nbsp;Guochun Yan ,&nbsp;Huajun Guo ,&nbsp;Hui Duan ,&nbsp;Guangchao Li ,&nbsp;Xinhai Li ,&nbsp;Xing Ou ,&nbsp;Junchao Zheng ,&nbsp;Jiexi Wang","doi":"10.1016/j.joule.2025.102229","DOIUrl":"10.1016/j.joule.2025.102229","url":null,"abstract":"<div><div>Improving electric vehicle range and safety is a key focus in new energy research. Nickel (Ni)-rich cathodes (≥200 mA h g<sup>−1</sup>) are vital for next-generation high-energy lithium (Li)-ion batteries, but their widespread use in polycrystalline forms is hindered by microcracks, irreversible phase transitions, and lattice oxygen release. This study successfully synthesizes single-crystal, low-cobalt, ultrahigh-Ni cathode materials (C-Ni95), which exhibit exceptional cycling stability stemming from an optimized distribution of cobalt element. Particularly, the cobalt surface gradient doping structure plays a crucial role in enhancing the interfacial transport of Li ions, mitigating volume expansion/contraction, stabilizing the crystal structure, and suppressing harmful parasitic side reactions. Consequently, a high-loading C-Ni95 pouch cell (28.2 mg cm<sup>−</sup>²) retains 85.1% capacity after 800 cycles. Moreover, boron injection further improves performance, achieving 87.1% retention after 2,000 cycles. This work offers an effective strategy for the practical synthesis and interfacial modification of high-performance Ni-rich, cobalt-free, single-crystal cathodes.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102229"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstrating black-diamond-based high-temperature solar cells 展示黑钻石基高温太阳能电池
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102223
Alessandro Bellucci , Marco Girolami , Matteo Mastellone , Alessio Mezzi , Valerio Serpente , Stefano Orlando , Antonio Santagata , Riccardo Polini , Abraham Kribus , Daniele M. Trucchi
Efficient high-temperature solar cells are feasible through the photon-enhanced thermionic emission (PETE) mechanism. The development of defect-engineered black-diamond layers, combined with micro-graphitized electrodes fabricated within p-type/intrinsic structures, represents the key technology for sunlight interaction of 0.3-eV electron-affinity PETE diamond cathodes, characterized by excellent electron emission. The resulting PETE converters demonstrate energy generation under concentrated radiation. At operating temperatures ranging from 600 to 900 K, the PETE operational regime is revealed, whereas photoemission and thermionic emission are found to be predominant at lower and higher temperatures, respectively. Cathode thickness emerges as the primary factor limiting the present performance of black-diamond technology. The generation-recombination analytical model applied to the device allows predicting a quantum efficiency of 30.3% for a 300-nm-thick black-diamond cathode operating at 700 K, today attainable with advanced diamond membrane technologies, and a solar-to-electric conversion efficiency of 14.5% for the resulting PETE converter.
通过光子增强热离子发射(PETE)机制,实现高效高温太阳能电池是可行的。缺陷工程黑金刚石层的开发,结合p型/本构结构内的微石墨化电极,代表了具有优异电子发射性能的0.3 ev电子亲和PETE金刚石阴极与阳光相互作用的关键技术。由此产生的PETE转换器演示了在集中辐射下的能量产生。在600 ~ 900 K的工作温度范围内,揭示了PETE的工作状态,而在较低和较高的温度下,分别发现光发射和热离子发射占主导地位。阴极厚度是制约黑金刚石技术性能的主要因素。应用于该装置的生成-重组分析模型可以预测,在700 K下,300纳米厚的黑金刚石阴极的量子效率为30.3%,目前先进的金刚石膜技术可以实现,所得PETE转换器的太阳能到电力转换效率为14.5%。
{"title":"Demonstrating black-diamond-based high-temperature solar cells","authors":"Alessandro Bellucci ,&nbsp;Marco Girolami ,&nbsp;Matteo Mastellone ,&nbsp;Alessio Mezzi ,&nbsp;Valerio Serpente ,&nbsp;Stefano Orlando ,&nbsp;Antonio Santagata ,&nbsp;Riccardo Polini ,&nbsp;Abraham Kribus ,&nbsp;Daniele M. Trucchi","doi":"10.1016/j.joule.2025.102223","DOIUrl":"10.1016/j.joule.2025.102223","url":null,"abstract":"<div><div>Efficient high-temperature solar cells are feasible through the photon-enhanced thermionic emission (PETE) mechanism. The development of defect-engineered black-diamond layers, combined with micro-graphitized electrodes fabricated within p-type/intrinsic structures, represents the key technology for sunlight interaction of 0.3-eV electron-affinity PETE diamond cathodes, characterized by excellent electron emission. The resulting PETE converters demonstrate energy generation under concentrated radiation. At operating temperatures ranging from 600 to 900 K, the PETE operational regime is revealed, whereas photoemission and thermionic emission are found to be predominant at lower and higher temperatures, respectively. Cathode thickness emerges as the primary factor limiting the present performance of black-diamond technology. The generation-recombination analytical model applied to the device allows predicting a quantum efficiency of 30.3% for a 300-nm-thick black-diamond cathode operating at 700 K, today attainable with advanced diamond membrane technologies, and a solar-to-electric conversion efficiency of 14.5% for the resulting PETE converter.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102223"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating SWCNT to bridge the stability divide in scalable and manufacturable flexible perovskite solar modules 集成swcnts以弥合可扩展和可制造的柔性钙钛矿太阳能组件的稳定性鸿沟
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102225
Jing Zhang , Yu Meng , An-Ping Wu , Chengkai Jin , Peng-Xiang Hou , Weidong Xu , Dimitar I. Kutsarov , Zhiheng Wu , Dongtao Liu , Yonglong Shen , Samuel D. Stranks , Guosheng Shao , Sai Bai , Tongle Bu , Hui-Ming Cheng , S. Ravi P. Silva , Wei Zhang
Flexible perovskite solar modules (f-PSMs) represent a pivotal innovation in current renewable energy technologies, offering a pathway toward sustainable and efficient energy solutions. However, achieving operational stability without compromising efficiency or escalating material costs remains a critical challenge. This study explores the application of single-walled carbon nanotubes (SWCNTs) as window electrodes in fabricating scalable f-PSMs, achieving a remarkable power conversion efficiency (PCE) surpassing 20%. The exceptional stability of SWCNT films enables the resultant f-PSMs to withstand various external stresses while maintaining high performance. Simulating real-world conditions, including day/night cycles, SWCNT-based f-PSMs exhibit superior stability compared with conventional counterparts employing indium tin oxide (ITO) electrodes. By replacing scarce and costly ITO with readily available alternatives, this work underscores the potential of SWCNTs to enhance both the sustainability and scalability of flexible solar technologies. These findings bridge the gap between laboratory research and practical manufacturable applications, advancing the commercialization of flexible photovoltaics.
柔性钙钛矿太阳能组件(f- psm)代表了当前可再生能源技术的关键创新,为实现可持续和高效的能源解决方案提供了途径。然而,在不影响效率或增加材料成本的情况下实现操作稳定性仍然是一个关键挑战。本研究探索了单壁碳纳米管(SWCNTs)作为窗口电极在可扩展f- pms制造中的应用,实现了超过20%的显著功率转换效率(PCE)。swcnts薄膜的优异稳定性使所得的f- psm能够承受各种外部应力,同时保持高性能。模拟现实世界条件,包括昼/夜循环,基于swcnts的f- psm与使用氧化铟锡(ITO)电极的传统同行相比,具有优越的稳定性。通过用现成的替代品取代稀缺且昂贵的ITO,这项工作强调了SWCNTs在增强柔性太阳能技术的可持续性和可扩展性方面的潜力。这些发现弥合了实验室研究和实际可制造应用之间的差距,推动了柔性光伏的商业化。
{"title":"Integrating SWCNT to bridge the stability divide in scalable and manufacturable flexible perovskite solar modules","authors":"Jing Zhang ,&nbsp;Yu Meng ,&nbsp;An-Ping Wu ,&nbsp;Chengkai Jin ,&nbsp;Peng-Xiang Hou ,&nbsp;Weidong Xu ,&nbsp;Dimitar I. Kutsarov ,&nbsp;Zhiheng Wu ,&nbsp;Dongtao Liu ,&nbsp;Yonglong Shen ,&nbsp;Samuel D. Stranks ,&nbsp;Guosheng Shao ,&nbsp;Sai Bai ,&nbsp;Tongle Bu ,&nbsp;Hui-Ming Cheng ,&nbsp;S. Ravi P. Silva ,&nbsp;Wei Zhang","doi":"10.1016/j.joule.2025.102225","DOIUrl":"10.1016/j.joule.2025.102225","url":null,"abstract":"<div><div>Flexible perovskite solar modules (f-PSMs) represent a pivotal innovation in current renewable energy technologies, offering a pathway toward sustainable and efficient energy solutions. However, achieving operational stability without compromising efficiency or escalating material costs remains a critical challenge. This study explores the application of single-walled carbon nanotubes (SWCNTs) as window electrodes in fabricating scalable f-PSMs, achieving a remarkable power conversion efficiency (PCE) surpassing 20%. The exceptional stability of SWCNT films enables the resultant f-PSMs to withstand various external stresses while maintaining high performance. Simulating real-world conditions, including day/night cycles, SWCNT-based f-PSMs exhibit superior stability compared with conventional counterparts employing indium tin oxide (ITO) electrodes. By replacing scarce and costly ITO with readily available alternatives, this work underscores the potential of SWCNTs to enhance both the sustainability and scalability of flexible solar technologies. These findings bridge the gap between laboratory research and practical manufacturable applications, advancing the commercialization of flexible photovoltaics.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102225"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward multimodal AI copilots for self-driving electrochemical labs 面向自动驾驶电化学实验室的多模态人工智能副驾驶
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102277
Joel A. Paulson , Madhav Muthyala , You Peng
In a recent Nature article, Zhang et al. describe CRESt, a multimodal AI copilot that, when integrated with a robotic electrochemistry platform, explored more than 900 catalyst chemistries in 3 months and discovered an octonary catalyst with a 9.3-fold improvement in cost-specific performance for formate oxidation.
在《自然》杂志最近的一篇文章中,Zhang等人描述了CRESt,这是一种多模态人工智能副驾驶仪,与机器人电化学平台集成后,在3个月内探索了900多种催化剂化学反应,发现了一种八元催化剂,其甲酸氧化的成本比性能提高了9.3倍。
{"title":"Toward multimodal AI copilots for self-driving electrochemical labs","authors":"Joel A. Paulson ,&nbsp;Madhav Muthyala ,&nbsp;You Peng","doi":"10.1016/j.joule.2025.102277","DOIUrl":"10.1016/j.joule.2025.102277","url":null,"abstract":"<div><div>In a recent <em>Nature</em> article, Zhang et al. describe CRESt, a multimodal AI copilot that, when integrated with a robotic electrochemistry platform, explored more than 900 catalyst chemistries in 3 months and discovered an octonary catalyst with a 9.3-fold improvement in cost-specific performance for formate oxidation.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102277"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146006725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for direct lithium extraction from alkali metal cations in brine mixtures using thermally switchable solvents 利用热切换溶剂从盐水混合物中的碱金属阳离子中直接提取锂的新方法
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102265
Elizabeth Dach, Juliana Marston, Sara Abu-Obaid, Allison Peng, Ngai Yin Yip
{"title":"A novel approach for direct lithium extraction from alkali metal cations in brine mixtures using thermally switchable solvents","authors":"Elizabeth Dach, Juliana Marston, Sara Abu-Obaid, Allison Peng, Ngai Yin Yip","doi":"10.1016/j.joule.2025.102265","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102265","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"46 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146014742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-solvating additives for high-voltage sodium metal batteries 高压钠金属电池用非溶剂化添加剂
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102219
Dong Guo , Simil Thomas , Zixiong Shi , Yongjiu Lei , Zhiming Zhao , Yaping Zhang , Christian G. Canlas , Fangwang Ming , Jehad K. El-Demellawi , Mohamed Nejib Hedhili , Yunpei Zhu , Omar F. Mohammed , Osman M. Bakr , Husam N. Alshareef
High-voltage additives play a crucial role in stabilizing high-energy alkali metal batteries. However, the prevailing additives, typically strongly solvating solvents (e.g., esters, sulfones, and nitriles), face challenges in simultaneously stabilizing highly reactive metal anodes and high-voltage cathodes. Here, we introduce a new concept in additive design by proposing non-solvating additives (NSAs), which selectively solvate anions while barely coordinating to cations. This “anti-solvation” effect brings notable improvement in antioxidation and kinetic enrichment of NSAs at the cathode during charging while preserving high-quality metal deposition. A model electrolyte demonstrates exceptional resilience against high-voltage Na3V2(PO4)2F3 (NVPF3) cathode and Na anode, as evidenced by the decent shelf-storage Coulombic efficiency for Na||Cu after 100 days and capacity retention for Na||NVPF3 after aging for 60 days. This paradigm shift from strongly solvating additives to NSAs suggests that, by prioritizing kinetic anion-additive distribution over traditional cationic solvation-centric approaches/anion aggregates, interfacial stability of opposing electrodes can be simultaneously obtained.
高压添加剂在稳定高能碱金属电池中起着至关重要的作用。然而,目前常用的添加剂,通常是强溶剂溶剂(如酯类、砜类和腈类),在同时稳定高活性金属阳极和高压阴极方面面临挑战。在这里,我们通过提出非溶剂化添加剂(NSAs)来引入添加剂设计的新概念,非溶剂化添加剂选择性地溶剂化阴离子,而几乎不与阳离子配位。这种“反溶剂化”效应显著提高了nsa在充电过程中的抗氧化和动力学富集,同时保持了高质量的金属沉积。模型电解质对高电压Na3V2(PO4)2F3 (NVPF3)阴极和Na阳极表现出优异的弹性,证明了Na||Cu在100天后具有良好的货架储存库仑效率,Na||NVPF3在老化60天后具有良好的容量保持。这种从强溶剂化添加剂到NSAs的范式转变表明,通过优先考虑阴离子添加剂的动力学分布,而不是传统的以阳离子溶剂为中心的方法/阴离子聚集,可以同时获得相对电极的界面稳定性。
{"title":"Non-solvating additives for high-voltage sodium metal batteries","authors":"Dong Guo ,&nbsp;Simil Thomas ,&nbsp;Zixiong Shi ,&nbsp;Yongjiu Lei ,&nbsp;Zhiming Zhao ,&nbsp;Yaping Zhang ,&nbsp;Christian G. Canlas ,&nbsp;Fangwang Ming ,&nbsp;Jehad K. El-Demellawi ,&nbsp;Mohamed Nejib Hedhili ,&nbsp;Yunpei Zhu ,&nbsp;Omar F. Mohammed ,&nbsp;Osman M. Bakr ,&nbsp;Husam N. Alshareef","doi":"10.1016/j.joule.2025.102219","DOIUrl":"10.1016/j.joule.2025.102219","url":null,"abstract":"<div><div>High-voltage additives play a crucial role in stabilizing high-energy alkali metal batteries. However, the prevailing additives, typically strongly solvating solvents (e.g., esters, sulfones, and nitriles), face challenges in simultaneously stabilizing highly reactive metal anodes and high-voltage cathodes. Here, we introduce a new concept in additive design by proposing non-solvating additives (NSAs), which selectively solvate anions while barely coordinating to cations. This “anti-solvation” effect brings notable improvement in antioxidation and kinetic enrichment of NSAs at the cathode during charging while preserving high-quality metal deposition. A model electrolyte demonstrates exceptional resilience against high-voltage Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF<sub>3</sub>) cathode and Na anode, as evidenced by the decent shelf-storage Coulombic efficiency for Na||Cu after 100 days and capacity retention for Na||NVPF<sub>3</sub> after aging for 60 days. This paradigm shift from strongly solvating additives to NSAs suggests that, by prioritizing kinetic anion-additive distribution over traditional cationic solvation-centric approaches/anion aggregates, interfacial stability of opposing electrodes can be simultaneously obtained.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102219"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145650939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-exchange membranes based on framework materials for hydrogen-electrical energy interconversion 基于框架材料的氢-电能量互转换离子交换膜
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102215
Junfeng Zhang , Runfei Yue , Kaihan Yang , Xinyi Cao , Yang Xiao , Shan Guan , Kaijia Yang , Lianqin Wang , Haifeng Liu , Yan Yin , Michael D. Guiver
Ion-exchange membranes (IEMs) are essential in hydrogen-electrical energy interconversion systems. Despite decades of progress with conventional polymer-based IEMs, their practical use is limited due to inherent challenges such as chemical and mechanical degradation during operation, sensitivity to water/temperature fluctuations, and high manufacturing costs. These challenges highlight the urgent need for innovative IEMs. Recently, numerous framework materials have been developed for ion conduction, showing remarkable performance. This review examines covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and hydrogen-bonded organic frameworks (HOFs), exploring their ion transport mechanisms, properties, membrane fabrication methods, and applications in practical devices. It also summarizes their performance as ionomers in electrode design. However, key challenges persist, including membrane fabrication techniques, limited practicability, and long-term stability validation. This review is dedicated to providing guidance for the practical application of framework-based IEMs, aiming to foster greater innovation.
离子交换膜(IEMs)在氢-电能量转换系统中是必不可少的。尽管传统聚合物基IEMs已经取得了几十年的进展,但由于其固有的挑战,如操作过程中的化学和机械降解、对水/温度波动的敏感性以及高昂的制造成本,其实际应用受到限制。这些挑战凸显了对创新型集成管理系统的迫切需求。近年来,许多用于离子传导的框架材料被开发出来,表现出了令人瞩目的性能。本文综述了共价有机框架(COFs)、金属有机框架(MOFs)和氢键有机框架(HOFs),探讨了它们的离子传输机制、性能、膜制备方法及其在实际器件中的应用。总结了它们作为离子单体在电极设计中的性能。然而,关键的挑战仍然存在,包括膜制造技术、有限的实用性和长期稳定性验证。本综述致力于为基于框架的集成制造系统的实际应用提供指导,旨在促进更大的创新。
{"title":"Ion-exchange membranes based on framework materials for hydrogen-electrical energy interconversion","authors":"Junfeng Zhang ,&nbsp;Runfei Yue ,&nbsp;Kaihan Yang ,&nbsp;Xinyi Cao ,&nbsp;Yang Xiao ,&nbsp;Shan Guan ,&nbsp;Kaijia Yang ,&nbsp;Lianqin Wang ,&nbsp;Haifeng Liu ,&nbsp;Yan Yin ,&nbsp;Michael D. Guiver","doi":"10.1016/j.joule.2025.102215","DOIUrl":"10.1016/j.joule.2025.102215","url":null,"abstract":"<div><div>Ion-exchange membranes (IEMs) are essential in hydrogen-electrical energy interconversion systems. Despite decades of progress with conventional polymer-based IEMs, their practical use is limited due to inherent challenges such as chemical and mechanical degradation during operation, sensitivity to water/temperature fluctuations, and high manufacturing costs. These challenges highlight the urgent need for innovative IEMs. Recently, numerous framework materials have been developed for ion conduction, showing remarkable performance. This review examines covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and hydrogen-bonded organic frameworks (HOFs), exploring their ion transport mechanisms, properties, membrane fabrication methods, and applications in practical devices. It also summarizes their performance as ionomers in electrode design. However, key challenges persist, including membrane fabrication techniques, limited practicability, and long-term stability validation. This review is dedicated to providing guidance for the practical application of framework-based IEMs, aiming to foster greater innovation.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102215"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendrite suppression in garnet electrolytes via thermally induced compressive stress 通过热诱导压应力抑制石榴石电解质中的枝晶
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102232
Zikang Yu , Chenjie Gan , Siyuan Song , Pradeep Guduru , Kyung-Suk Kim , Brian W. Sheldon
Lithium dendrite penetration remains a critical challenge for solid-state batteries. In this study, we provide direct experimental evidence that compressive residual stress alone, without any chemical modification, can suppress lithium dendrite propagation and improve electrochemical performance. These stresses were generated by imposing sustained through-thickness thermal gradients across Li₆.₄La₃Zr₁.₅Ta₀.₅O₁₂ (LLZTO), leading to a consistent 3-fold increase in critical current density (CCD) compared with respective isothermal controls. The magnitude of the generated stresses in the solid electrolyte was independently verified through strain-gauge and optical curvature measurements. Finite element analysis (FEA) was also conducted to interpret these stress results and to provide a broader analysis of the relationship between compressive stress and dendrite suppression. Together, these results isolate mechanical contributions of residual compressive stress as a dominant factor in dendrite resistance, establishing a mechanically driven strategy for stress engineering in solid-state batteries and providing a general design principle for robust, dendrite-free operation.
锂枝晶渗透仍然是固态电池面临的关键挑战。在本研究中,我们提供了直接的实验证据,证明在不进行任何化学修饰的情况下,单独的压缩残余应力可以抑制锂枝晶的扩展,提高电化学性能。这些应力是通过在Li₆.₄La₃Zr₁.₅Ta₀上施加持续的全厚度热梯度产生的。₅O₁2 (LLZTO),与各自的等温控制相比,导致临界电流密度(CCD)一致增加3倍。通过应变计和光学曲率测量,独立验证了固体电解质中产生的应力的大小。还进行了有限元分析(FEA)来解释这些应力结果,并对压应力和枝晶抑制之间的关系提供了更广泛的分析。总之,这些结果分离了残余压应力作为枝晶阻力的主要因素的机械贡献,为固态电池的应力工程建立了机械驱动策略,并为坚固,无枝晶的工作提供了一般设计原则。
{"title":"Dendrite suppression in garnet electrolytes via thermally induced compressive stress","authors":"Zikang Yu ,&nbsp;Chenjie Gan ,&nbsp;Siyuan Song ,&nbsp;Pradeep Guduru ,&nbsp;Kyung-Suk Kim ,&nbsp;Brian W. Sheldon","doi":"10.1016/j.joule.2025.102232","DOIUrl":"10.1016/j.joule.2025.102232","url":null,"abstract":"<div><div>Lithium dendrite penetration remains a critical challenge for solid-state batteries. In this study, we provide direct experimental evidence that compressive residual stress alone, without any chemical modification, can suppress lithium dendrite propagation and improve electrochemical performance. These stresses were generated by imposing sustained through-thickness thermal gradients across Li₆.₄La₃Zr₁.₅Ta₀.₅O₁₂ (LLZTO), leading to a consistent 3-fold increase in critical current density (CCD) compared with respective isothermal controls. The magnitude of the generated stresses in the solid electrolyte was independently verified through strain-gauge and optical curvature measurements. Finite element analysis (FEA) was also conducted to interpret these stress results and to provide a broader analysis of the relationship between compressive stress and dendrite suppression. Together, these results isolate mechanical contributions of residual compressive stress as a dominant factor in dendrite resistance, establishing a mechanically driven strategy for stress engineering in solid-state batteries and providing a general design principle for robust, dendrite-free operation.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102232"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1