首页 > 最新文献

Joule最新文献

英文 中文
Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells 空穴收集界面价带能量排列对宽带隙过氧化物太阳能电池光稳定性的影响
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.017
Luis Victor Torres Merino , Christopher E. Petoukhoff , Oleksandr Matiash , Anand Selvin Subbiah , Carolina Villamil Franco , Pia Dally , Badri Vishal , Sofiia Kosar , Diego Rosas Villalva , Vladyslav Hnapovskyi , Esma Ugur , Sahil Shah , Francisco Peña Camargo , Orestis Karalis , Hannes Hempel , Igal Levine , Rakesh R. Pradhan , Suzana Kralj , Nikhil Kalasariya , Maxime Babics , Stefaan De Wolf

This work discusses the need to enhance charge carrier collection to minimize halide segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of valence band maximum (VBM) offsets and energetic barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on perovskite solar cell (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence’s evolution and transient surface photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.

这项研究讨论了在宽带隙(WBG)过氧化物中加强电荷载流子收集以减少卤化物偏析的必要性。在这里,我们系统地阐明了价带最大值(VBM)偏移和在空穴传输层(HTL)/过氧化物界面上形成的能级势垒对电荷积累的影响、对卤化物偏析的影响以及最终对过氧化物太阳能电池(PSC)长期光稳定性的影响。为此,我们采用自组装单层(SAMs;MeO-2PACz 和 Br-2PACz)混合物精确调整了 VBM-HTL 的能级,为 PSC 制作了定制的 HTL,并在各种串联配置中常用三种不同的 WBG 包晶石光吸收剂(1.69、1.81 和 2.00 eV)。我们发现,在 SAM HTL/过氧化物界面上优化的能量排列能显著提高 WBG PSCs 的长期光稳定性。我们的研究结果表明,利用半堆栈(玻璃/金属氧化物/HTL/过氧化物)的光致发光演化和瞬态表面光电压光谱与卤化物偏析的相关性来比较 HTL/过氧化物界面,可以预测器件的光稳定性。
{"title":"Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells","authors":"Luis Victor Torres Merino ,&nbsp;Christopher E. Petoukhoff ,&nbsp;Oleksandr Matiash ,&nbsp;Anand Selvin Subbiah ,&nbsp;Carolina Villamil Franco ,&nbsp;Pia Dally ,&nbsp;Badri Vishal ,&nbsp;Sofiia Kosar ,&nbsp;Diego Rosas Villalva ,&nbsp;Vladyslav Hnapovskyi ,&nbsp;Esma Ugur ,&nbsp;Sahil Shah ,&nbsp;Francisco Peña Camargo ,&nbsp;Orestis Karalis ,&nbsp;Hannes Hempel ,&nbsp;Igal Levine ,&nbsp;Rakesh R. Pradhan ,&nbsp;Suzana Kralj ,&nbsp;Nikhil Kalasariya ,&nbsp;Maxime Babics ,&nbsp;Stefaan De Wolf","doi":"10.1016/j.joule.2024.06.017","DOIUrl":"10.1016/j.joule.2024.06.017","url":null,"abstract":"<div><p><span>This work discusses the need to enhance charge carrier collection to minimize halide<span> segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of </span></span>valence band<span> maximum (VBM) offsets and energetic<span><span><span> barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on </span>perovskite solar cell<span> (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence’s evolution and transient surface </span></span>photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.</span></span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2585-2606"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature excavation to boost machine learning battery thermochemical predictions 温度挖掘促进机器学习电池热化学预测
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.07.002
Yu Wang , Xuning Feng , Dongxu Guo , Hungjen Hsu , Junxian Hou , Fangshu Zhang , Chengshan Xu , Xiang Chen , Li Wang , Qiang Zhang , Minggao Ouyang

Advancing battery technologies requires precise predictions of thermochemical reactions among multiple components to efficiently exploit the stored energy and conduct thermal management. Recently, machine learning (ML) promised to address this complex thermochemical prediction task; however, it failed due to the huge gap between high problem complexity and extremely limited experimental data available for model training. Here, we innovate and validate the temperature excavation (TE) method that interprets the kinetic preferences of thermochemical reactions within minimal experiments into millions of training data. With the help of the TE method, we build the first universally applicable battery thermal runaway model, which achieves high prediction accuracy across a 500°C range on 15 distinct commercial and advanced chemistries with different battery formats and covers all normal working conditions. The TE method also demonstrates broad adaptability and training stability on various ML algorithms, opening new interdisciplinary opportunities for ML in thermochemistry and all thermal-related studies.

电池技术的发展需要对多个组件之间的热化学反应进行精确预测,以便有效利用存储的能量并进行热管理。最近,机器学习(ML)有望解决这一复杂的热化学预测任务;然而,由于问题复杂性高,而可用于模型训练的实验数据极其有限,两者之间存在巨大差距,机器学习(ML)失败了。在此,我们创新并验证了温度挖掘(TE)方法,该方法能在数百万个训练数据中,以最少的实验解释热化学反应的动力学偏好。在 TE 方法的帮助下,我们建立了第一个普遍适用的电池热失控模型,该模型在 500°C 范围内对 15 种不同的商业和先进化学物质以及不同的电池格式实现了高预测精度,并涵盖了所有正常工作条件。TE 方法还展示了对各种 ML 算法的广泛适应性和训练稳定性,为热化学和所有热相关研究中的 ML 开辟了新的跨学科机会。
{"title":"Temperature excavation to boost machine learning battery thermochemical predictions","authors":"Yu Wang ,&nbsp;Xuning Feng ,&nbsp;Dongxu Guo ,&nbsp;Hungjen Hsu ,&nbsp;Junxian Hou ,&nbsp;Fangshu Zhang ,&nbsp;Chengshan Xu ,&nbsp;Xiang Chen ,&nbsp;Li Wang ,&nbsp;Qiang Zhang ,&nbsp;Minggao Ouyang","doi":"10.1016/j.joule.2024.07.002","DOIUrl":"10.1016/j.joule.2024.07.002","url":null,"abstract":"<div><p>Advancing battery technologies requires precise predictions of thermochemical reactions among multiple components to efficiently exploit the stored energy and conduct thermal management. Recently, machine learning (ML) promised to address this complex thermochemical prediction task; however, it failed due to the huge gap between high problem complexity and extremely limited experimental data available for model training. Here, we innovate and validate the temperature excavation (TE) method that interprets the kinetic preferences of thermochemical reactions within minimal experiments into millions of training data. With the help of the TE method, we build the first universally applicable battery thermal runaway model, which achieves high prediction accuracy across a 500°C range on 15 distinct commercial and advanced chemistries with different battery formats and covers all normal working conditions. The TE method also demonstrates broad adaptability and training stability on various ML algorithms, opening new interdisciplinary opportunities for ML in thermochemistry and all thermal-related studies.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2639-2651"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermochromic polymer blends 热致变色聚合物混合物
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.07.020
Sreehari K. Saju , Anand B. Puthirath , Shancheng Wang , Thierry Tsafack , Lucas K. Beagle , Andrey Baydin , Nithya Chakingal , Natsumi Komatsu , Fuyang Tay , Arvin Sharma , Rohini Sreenivasan , Junichiro Kono , Robert Vajtai , Nicholas R. Glavin , Yi Long , Pulickel M. Ajayan

Smart windows using thermochromic materials provide an excellent thermal management system over broad temperature ranges, leading to significant energy savings. Existing thermochromic materials face challenges, including difficulty in application, degradation during use, and limited durability. Here, we report a simple salted polymer blend system, consisting of poly(dimethylsiloxane), poly(ethylene oxide), and lithium perchlorate, that shows excellent thermochromic properties across an accessible temperature window and remarkable durability. The reversible temperature dependence of optical transmittance of the films arises due to the miscibility of the constituent polymers at room temperature, leading to high transparency, and the gradual phase separation and opaqueness with temperature rise. The easy-to-fabricate, stable polymer system can be a viable and cost-effective alternative to inorganic thermochromic materials such as vanadium dioxide for many applications.

使用热致变色材料的智能窗户可在宽广的温度范围内提供出色的热管理系统,从而显著节约能源。现有的热致变色材料面临着应用困难、使用过程中降解和耐用性有限等挑战。在此,我们报告了一种由聚(二甲基硅氧烷)、聚(环氧乙烷)和高氯酸锂组成的简单加盐聚合物混合物系统,该系统在可到达的温度窗口内显示出卓越的热致变色特性和显著的耐久性。薄膜的光学透射率随温度变化而可逆,这是因为组成聚合物在室温下具有混溶性,因而具有高透明度,而随着温度的升高,则会逐渐发生相分离而变得不透明。在许多应用中,这种易于制造、稳定的聚合物系统可以成为无机热致变色材料(如二氧化钒)的可行且具有成本效益的替代品。
{"title":"Thermochromic polymer blends","authors":"Sreehari K. Saju ,&nbsp;Anand B. Puthirath ,&nbsp;Shancheng Wang ,&nbsp;Thierry Tsafack ,&nbsp;Lucas K. Beagle ,&nbsp;Andrey Baydin ,&nbsp;Nithya Chakingal ,&nbsp;Natsumi Komatsu ,&nbsp;Fuyang Tay ,&nbsp;Arvin Sharma ,&nbsp;Rohini Sreenivasan ,&nbsp;Junichiro Kono ,&nbsp;Robert Vajtai ,&nbsp;Nicholas R. Glavin ,&nbsp;Yi Long ,&nbsp;Pulickel M. Ajayan","doi":"10.1016/j.joule.2024.07.020","DOIUrl":"10.1016/j.joule.2024.07.020","url":null,"abstract":"<div><p>Smart windows using thermochromic materials provide an excellent thermal management system over broad temperature ranges, leading to significant energy savings. Existing thermochromic materials face challenges, including difficulty in application, degradation during use, and limited durability. Here, we report a simple salted polymer blend system, consisting of poly(dimethylsiloxane), poly(ethylene oxide), and lithium perchlorate, that shows excellent thermochromic properties across an accessible temperature window and remarkable durability. The reversible temperature dependence of optical transmittance of the films arises due to the miscibility of the constituent polymers at room temperature, leading to high transparency, and the gradual phase separation and opaqueness with temperature rise. The easy-to-fabricate, stable polymer system can be a viable and cost-effective alternative to inorganic thermochromic materials such as vanadium dioxide for many applications.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2696-2714"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelength-selective solar photovoltaic systems to enhance spectral sharing of sunlight in agrivoltaics 波长选择性太阳能光伏系统,提高农业光伏领域的太阳光光谱共享水平
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.08.006
Silvia Ma Lu , Stefano Amaducci , Shiva Gorjian , Matthew Haworth , Carl Hägglund , Tao Ma , Sebastian Zainali , Pietro Elia Campana

Agrivoltaic systems offer a solution to the debate over using agricultural land for food production or energy conversion. Conventional silicon solar panels often shade plants excessively, impacting growth. Wavelength-selective photovoltaic (WSPV) technologies address this by allowing the transmission of beneficial wavelengths for photosynthesis while converting less useful ones into electricity. Wavelength selectivity can be achieved through various methods, such as by tuning photoactive layers, applying colored semi-transparent layers, utilizing mirrors and lenses, or designing spectrally selective luminophores. While evidence suggests that these technologies effectively share sunlight, many of them are yet to be fully implemented and evaluated. This review covers current WSPV technologies, discussing their classification, status, and future prospects. It also provides appropriate PV performance metrics for WSPV technologies in agricultural applications and advocates for standardized reporting practices in crop experiments conducted under WSPV systems, accompanied by practical suggestions. Solar cell efficiency limits under spectral sharing for crop production and the optimal band gap under varying levels of photosynthetically active radiation for crop growth are further examined as guidance for future development.

农业光伏系统为利用农业用地进行粮食生产或能源转换的争论提供了一种解决方案。传统的硅太阳能电池板通常会过度遮蔽植物,影响生长。波长选择性光伏(WSPV)技术可以解决这一问题,它允许传输对光合作用有益的波长,同时将不太有用的波长转化为电能。波长选择性可通过各种方法实现,如调整光活性层、应用彩色半透明层、利用镜子和透镜或设计光谱选择性发光体。虽然有证据表明这些技术可以有效地分享阳光,但其中许多技术仍有待全面实施和评估。本综述涵盖了当前的 WSPV 技术,讨论了它们的分类、现状和未来前景。它还为农业应用中的 WSPV 技术提供了适当的光伏性能指标,并倡导在 WSPV 系统下进行的作物实验中采用标准化报告方法,同时提出了实用建议。还进一步研究了作物生产光谱共享下的太阳能电池效率限制,以及作物生长所需的不同水平光合有效辐射下的最佳带隙,为未来发展提供指导。
{"title":"Wavelength-selective solar photovoltaic systems to enhance spectral sharing of sunlight in agrivoltaics","authors":"Silvia Ma Lu ,&nbsp;Stefano Amaducci ,&nbsp;Shiva Gorjian ,&nbsp;Matthew Haworth ,&nbsp;Carl Hägglund ,&nbsp;Tao Ma ,&nbsp;Sebastian Zainali ,&nbsp;Pietro Elia Campana","doi":"10.1016/j.joule.2024.08.006","DOIUrl":"10.1016/j.joule.2024.08.006","url":null,"abstract":"<div><p>Agrivoltaic systems offer a solution to the debate over using agricultural land for food production or energy conversion. Conventional silicon solar panels often shade plants excessively, impacting growth. Wavelength-selective photovoltaic (WSPV) technologies address this by allowing the transmission of beneficial wavelengths for photosynthesis while converting less useful ones into electricity. Wavelength selectivity can be achieved through various methods, such as by tuning photoactive layers, applying colored semi-transparent layers, utilizing mirrors and lenses, or designing spectrally selective luminophores. While evidence suggests that these technologies effectively share sunlight, many of them are yet to be fully implemented and evaluated. This review covers current WSPV technologies, discussing their classification, status, and future prospects. It also provides appropriate PV performance metrics for WSPV technologies in agricultural applications and advocates for standardized reporting practices in crop experiments conducted under WSPV systems, accompanied by practical suggestions. Solar cell efficiency limits under spectral sharing for crop production and the optimal band gap under varying levels of photosynthetically active radiation for crop growth are further examined as guidance for future development.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2483-2522"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435124003726/pdfft?md5=f2b70c9d9b6b8fc129bca38df8c001c7&pid=1-s2.0-S2542435124003726-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells 用于高效稳定有机太阳能电池的聚合物双层空穴传输层结构
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.013

All-solution-processed organic photovoltaic (OPV) cells allow cost- and energy-effective fabrication methods for large-area devices. Despite significant progress on laboratory-scale devices, there is still a lack of interface materials that can be solution processed on top of the active layer, are compatible with novel non-fullerene acceptors (NFAs), and also provide sufficient long-term stability. We developed a novel interface layer concept, where alcohol-based organic polymer nanoparticles can be processed on top of a polymer-NFA active layer and doped to achieve a quasi-Ohmic hole contact. Moreover, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is processed as a second layer, forming a bilayer solution-processed hole transporting layer (HTL), providing an industrially relevant inverted architecture with a protective PEDOT:PSS layer on top. Most importantly, exceptional stability is observed. PM6:Y6 devices with the bilayer HTL are demonstrated to maintain 93% of their initial efficiency for 1,800 h under continuous solar cell operation at 60°C.

全溶液处理有机光伏(OPV)电池可为大面积设备提供具有成本和能源效益的制造方法。尽管在实验室规模的设备上取得了重大进展,但仍然缺乏可在活性层上进行溶液处理、与新型非富勒烯受体(NFA)兼容并能提供足够长期稳定性的界面材料。我们提出了一种新颖的界面层概念,即在聚合物-NFA 活性层上加工醇基有机聚合物纳米粒子并掺杂,以实现准欧姆空穴接触。此外,聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)被加工为第二层,形成了双层溶液加工空穴传输层(HTL),提供了一种具有工业相关性的倒置结构,上面还有一层 PEDOT:PSS 保护层。最重要的是,这种器件具有卓越的稳定性。在 60°C 温度条件下连续运行 1,800 小时后,带有双层 HTL 的 PM6:Y6 器件仍能保持 93% 的初始效率。
{"title":"A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells","authors":"","doi":"10.1016/j.joule.2024.06.013","DOIUrl":"10.1016/j.joule.2024.06.013","url":null,"abstract":"<div><p>All-solution-processed organic photovoltaic (OPV) cells allow cost- and energy-effective fabrication methods for large-area devices. Despite significant progress on laboratory-scale devices, there is still a lack of interface materials that can be solution processed on top of the active layer, are compatible with novel non-fullerene acceptors (NFAs), and also provide sufficient long-term stability. We developed a novel interface layer concept, where alcohol-based organic polymer nanoparticles can be processed on top of a polymer-NFA active layer and doped to achieve a quasi-Ohmic hole contact. Moreover, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is processed as a second layer, forming a bilayer solution-processed hole transporting layer (HTL), providing an industrially relevant inverted architecture with a protective PEDOT:PSS layer on top. Most importantly, exceptional stability is observed. PM6:Y6 devices with the bilayer HTL are demonstrated to maintain 93% of their initial efficiency for 1,800 h under continuous solar cell operation at 60°C.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2570-2584"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435124002897/pdfft?md5=cf339e8642c2fba921a3f5cf7b1f77a4&pid=1-s2.0-S2542435124002897-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultralow thermal conductivity and high ZT of Cu2Se-based thermoelectric materials mediated by TiO2−n nanoclusters 以 TiO2-n 纳米团簇为介质的 Cu2Se 基热电材料的超低热导率和高 ZT
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.007

Cu2Se is a promising p-type thermoelectric material for energy harvesting due to its intrinsically low thermal conductivity arising from the liquid-like Cu ions, leaving very limited room for regulation of phonon propagation. Herein, the thermal conductivity of superionic Cu2Se is efficiently mediated by titanium oxide nanoclusters, leading to an exceptionally high thermoelectric figure of merit (ZT) at high temperatures. By controlling the oxygen deficiency, the sophisticated TiO2−n architectures can be constructed with optimized phase composition and electrical properties. The presence of p-n junctions helps to reduce carrier concentration without degrading mobility, and the complex heterogeneous interfaces generated by TiO2−n nanoclusters give rise to huge interfacial thermal resistance. Benefiting from the suppressed electrical transport and enhanced phonon scattering, the total thermal conductivity shows a reduction of at least 36%, contributing to a high ZT value of 2.8 at 973 K. This work demonstrates a paradigm of modulating thermal transport through the self-assembly design.

Cu2Se 是一种用于能量收集的前景广阔的 p 型热电材料,这是因为液态 Cu 离子具有固有的低热导率,使得声子传播的调节空间非常有限。在这里,超离子 Cu2Se 的热导率由氧化钛纳米团簇有效调解,从而在高温下实现了极高的热电功勋值 (ZT)。通过控制缺氧,可以构建具有优化相组成和电性能的复杂 TiO2-n 结构。p-n 结的存在有助于在不降低迁移率的情况下降低载流子浓度,而 TiO2-n 纳米团簇产生的复杂异质界面则会产生巨大的界面热阻。得益于被抑制的电传输和增强的声子散射,总热导率降低了至少 36%,从而在 973 K 时实现了 2.8 的高 ZT 值。
{"title":"Ultralow thermal conductivity and high ZT of Cu2Se-based thermoelectric materials mediated by TiO2−n nanoclusters","authors":"","doi":"10.1016/j.joule.2024.06.007","DOIUrl":"10.1016/j.joule.2024.06.007","url":null,"abstract":"<div><p>Cu<sub>2</sub><span><span><span>Se is a promising p-type thermoelectric material for energy harvesting due to its intrinsically low </span>thermal conductivity arising from the liquid-like </span>Cu ions, leaving very limited room for regulation of phonon propagation. Herein, the thermal conductivity of superionic Cu</span><sub>2</sub><span>Se is efficiently mediated by titanium oxide nanoclusters, leading to an exceptionally high thermoelectric figure of merit (</span><em>ZT</em>) at high temperatures. By controlling the oxygen deficiency, the sophisticated TiO<sub>2−n</sub> architectures can be constructed with optimized phase composition and electrical properties. The presence of p-n junctions helps to reduce carrier concentration without degrading mobility, and the complex heterogeneous interfaces generated by TiO<sub>2−n</sub> nanoclusters give rise to huge interfacial thermal resistance. Benefiting from the suppressed electrical transport and enhanced phonon scattering, the total thermal conductivity shows a reduction of at least 36%, contributing to a high <em>ZT</em> value of 2.8 at 973 K. This work demonstrates a paradigm of modulating thermal transport through the self-assembly design.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2652-2666"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gigantic triboelectric power generation overcoming acoustic energy barrier using metal-liquid coupling 利用金属-液体耦合克服声能障碍的巨型三发电装置
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.016
Youngwook Chung , Jang-Mook Jeong , Joon-Ha Hwang , Young-Jun Kim , Byung-Joon Park , Daniel S. Cho , Youngmin Cho , Su-Jeong Suh , Byung-Ok Choi , Hyun-moon Park , Hong-Joon Yoon , Sang-Woo Kim

Hermetically sealed titanium (Ti) packaging provides protection for implantable medical devices, but it hinders reliable wireless power transfer to these devices. We present a miniaturized device that utilizes ultrasound-induced vibrations in Ti, mediated by liquid space, for efficient triboelectric energy harvesting. Unlike the conventional ultrasound-driven triboelectric nanogenerator, which induces contact electrification through multiple modes, the Ti-packaged device generates vibrations of the triboelectric membrane in a single mode, facilitating effective energy transfer. The incorporation of the Ti packaging leads to a significant increase in power density, up to 310% compared with the absence of it when measured under a tissue-mimicking material, and it enables long-term stability and Bluetooth communication in vivo. These findings represent the first technology that enhances power transmission characteristics through a Ti layer. We believe that this technology will accelerate the development of smaller, multifunctional, and long-lasting implantable medical devices.

密封钛(Ti)包装为植入式医疗设备提供了保护,但却阻碍了这些设备可靠的无线电力传输。我们介绍了一种利用超声波诱导钛振动的微型装置,该装置由液态空间介导,可实现高效的三电能采集。传统的超声波驱动三电纳米发生器通过多种模式诱导接触通电,与之不同的是,钛封装器件只通过单一模式产生三电膜振动,从而促进了有效的能量传输。加入钛封装后,功率密度显著增加,在组织模拟材料下测量时,功率密度比未加入钛封装时增加了 310%,并实现了长期稳定性和体内蓝牙通信。这些发现代表了首个通过钛层增强功率传输特性的技术。我们相信,这项技术将加速小型、多功能和长效植入式医疗设备的开发。
{"title":"Gigantic triboelectric power generation overcoming acoustic energy barrier using metal-liquid coupling","authors":"Youngwook Chung ,&nbsp;Jang-Mook Jeong ,&nbsp;Joon-Ha Hwang ,&nbsp;Young-Jun Kim ,&nbsp;Byung-Joon Park ,&nbsp;Daniel S. Cho ,&nbsp;Youngmin Cho ,&nbsp;Su-Jeong Suh ,&nbsp;Byung-Ok Choi ,&nbsp;Hyun-moon Park ,&nbsp;Hong-Joon Yoon ,&nbsp;Sang-Woo Kim","doi":"10.1016/j.joule.2024.06.016","DOIUrl":"10.1016/j.joule.2024.06.016","url":null,"abstract":"<div><p><span><span>Hermetically sealed titanium (Ti) packaging provides protection for implantable medical devices, but it hinders reliable </span>wireless power transfer<span> to these devices. We present a miniaturized device that utilizes ultrasound-induced vibrations in Ti, mediated by liquid space, for efficient triboelectric energy harvesting<span>. Unlike the conventional ultrasound-driven triboelectric nanogenerator, which induces contact electrification through multiple modes, the Ti-packaged device generates vibrations of the triboelectric membrane in a single mode, facilitating effective energy transfer. The incorporation of the Ti packaging leads to a significant increase in power density, up to 310% compared with the absence of it when measured under a tissue-mimicking material, and it enables long-term stability and Bluetooth communication </span></span></span><em>in vivo</em><span>. These findings represent the first technology that enhances power transmission characteristics through a Ti layer. We believe that this technology will accelerate the development of smaller, multifunctional, and long-lasting implantable medical devices.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2681-2695"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost-efficient recycling of organic photovoltaic devices 具有成本效益的有机光伏设备回收利用
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.006

The vast majority of research on organic photovoltaics (OPVs) has focused on improving device efficiency and stability and reducing material costs. However, if one could refurbish OPVs, their stability might not be so demanding, and the reuse of valuable OPV components can reduce the price per watt of solar modules. Herein, we present a dismantling procedure for reusing the active-layer materials without causing performance losses and for recovering the silver electrode and indium tin oxide (ITO)-electrode substrate via chemical and physical processes. Combined with the developed physical mixing methodology, the OPVs fabricated from recycled components also show comparable performance to that of fresh devices. The potential economic analysis points out that this recycling protocol can save 14.24 $ m−2 in industrial scenarios, strongly demonstrating the possibility of recycling OPVs. This work represents a significant step toward cost-effective, high-yield recycling of waste OPVs while also demonstrating the prospects of no material supply constraints for OPV manufacturing shortly.

有机光伏(OPV)方面的绝大多数研究都集中在提高设备效率和稳定性以及降低材料成本上。然而,如果能够翻新 OPV,对其稳定性的要求可能就不那么高了,而且重新利用有价值的 OPV 组件可以降低太阳能组件的每瓦价格。在此,我们介绍了一种在不造成性能损失的情况下重复使用活性层材料的拆卸程序,以及通过化学和物理过程回收银电极和氧化铟锡(ITO)电极基板的拆卸程序。结合所开发的物理混合方法,利用回收组件制造的 OPV 还显示出与新器件相当的性能。潜在的经济分析表明,在工业应用场景中,这种循环利用方案可节省 14.24 美元 m-2,有力地证明了循环利用 OPV 的可能性。这项工作标志着向高性价比、高产出地回收利用废旧 OPV 迈出了重要一步,同时也展示了短期内 OPV 制造不会受到材料供应限制的前景。
{"title":"Cost-efficient recycling of organic photovoltaic devices","authors":"","doi":"10.1016/j.joule.2024.06.006","DOIUrl":"10.1016/j.joule.2024.06.006","url":null,"abstract":"<div><p><span><span>The vast majority of research on organic photovoltaics<span><span> (OPVs) has focused on improving device efficiency and stability and reducing material costs. However, if one could refurbish OPVs, their stability might not be so demanding, and the reuse of valuable </span>OPV components can reduce the price per watt of solar modules. Herein, we present a dismantling procedure for reusing the active-layer materials without causing performance losses and for recovering the silver electrode and </span></span>indium tin oxide (ITO)-electrode substrate via chemical and physical processes. Combined with the developed physical mixing methodology, the OPVs fabricated from recycled components also show comparable performance to that of fresh devices. The potential economic analysis points out that this recycling protocol can save 14.24 $ m</span><sup>−2</sup> in industrial scenarios, strongly demonstrating the possibility of recycling OPVs. This work represents a significant step toward cost-effective, high-yield recycling of waste OPVs while also demonstrating the prospects of no material supply constraints for OPV manufacturing shortly.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2523-2538"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules 半月板调制叶片涂层可实现高质量的α相甲脒三碘化铅晶体和高效的过氧化物小模块
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.008

Meniscus coating technique is extensively employed for fabricating large-area perovskite films. Based on this technique, there are still challenges of formamidinium lead triiodide (FAPbI3) nucleation and crystallization in the film-forming process, which significantly hinders the device performance of perovskite solar cell (PSC) modules. Here, we developed a kind of meniscus-modulated blade coating method combined with solvent engineering to realize scalable, high-quality α-phase FAPbI3 films with larger grain sizes, preferred crystal orientation, excellent uniformity, and controllable thickness. On this basis, a notable 25.31% power conversion efficiency (PCE) for small-area cells (0.09 cm2) and 23.34% PCE for minimodules (aperture area: 12.4 cm2) with a certified PCE of 23.09% have been achieved. Besides, this minimodule exhibited exceptional device stabilities by remaining above 93% of the initial value after 2,000 h outdoor aging testing. This work provides a very promising meniscus coating fabrication method to realize high-performance FAPbI3 perovskite solar cells and photovoltaic modules.

半月板镀膜技术被广泛用于制造大面积的过氧化物薄膜。基于这种技术,在成膜过程中仍存在甲脒三碘化铅(FAPbI3)成核和结晶的难题,这极大地阻碍了包光体太阳能电池(PSC)组件的器件性能。在此,我们开发了一种结合溶剂工程的半月板调制刀片镀膜方法,以实现可扩展的高质量α相 FAPbI3 薄膜,这种薄膜具有较大的晶粒尺寸、优选的晶体取向、优异的均匀性和可控的厚度。在此基础上,小面积电池(0.09 平方厘米)实现了 25.31% 的显著功率转换效率 (PCE),微型模块(开孔面积:12.4 平方厘米)实现了 23.34% 的显著功率转换效率 (PCE),经认证的 PCE 为 23.09%。此外,这种微模块还表现出卓越的器件稳定性,在经过 2,000 小时的室外老化测试后,仍能保持 93% 以上的初始值。这项工作为实现高性能 FAPbI3 包晶太阳能电池和光伏模块提供了一种非常有前景的半月板涂层制造方法。
{"title":"Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules","authors":"","doi":"10.1016/j.joule.2024.06.008","DOIUrl":"10.1016/j.joule.2024.06.008","url":null,"abstract":"<div><p><span>Meniscus coating technique<span> is extensively employed for fabricating large-area perovskite films. Based on this technique, there are still challenges of formamidinium lead triiodide (FAPbI</span></span><sub>3</sub><span>) nucleation and crystallization in the film-forming process, which significantly hinders the device performance of perovskite solar cell (PSC) modules. Here, we developed a kind of meniscus-modulated blade coating method combined with solvent engineering to realize scalable, high-quality α-phase FAPbI</span><sub>3</sub><span> films with larger grain sizes, preferred crystal orientation<span>, excellent uniformity, and controllable thickness. On this basis, a notable 25.31% power conversion efficiency (PCE) for small-area cells (0.09 cm</span></span><sup>2</sup>) and 23.34% PCE for minimodules (aperture area: 12.4 cm<sup>2</sup><span><span>) with a certified PCE of 23.09% have been achieved. Besides, this minimodule exhibited exceptional device stabilities by remaining above 93% of the initial value after 2,000 h outdoor aging testing. This work provides a very promising meniscus coating </span>fabrication method to realize high-performance FAPbI</span><sub>3</sub> perovskite solar cells and photovoltaic modules.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2539-2553"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid solar energy device for simultaneous electric power generation and molecular solar thermal energy storage 同时发电和分子太阳能热能储存的混合太阳能装置
IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-18 DOI: 10.1016/j.joule.2024.06.012
Zhihang Wang , Helen Hölzel , Lorette Fernandez , Adil S. Aslam , Paulius Baronas , Jessica Orrego-Hernández , Shima Ghasemi , Mariano Campoy-Quiles , Kasper Moth-Poulsen

The performance of photovoltaic (PV) solar cells can be adversely affected by the heat generated from solar irradiation. To address this issue, a hybrid device featuring a solar energy storage and cooling layer integrated with a silicon-based PV cell has been developed. This layer employs a molecular solar thermal (MOST) energy storage system to convert and store high-energy photons—typically underutilized by solar cells due to thermalization losses—into chemical energy. Simultaneously, it effectively cools the PV cell through both optical effects and thermal conductivity. Herein, it was demonstrated that up to 2.3% of solar energy could be stored as chemical energy. Additionally, the integration of the MOST system with the PV cell resulted in a notable decrease in the cell’s surface temperature by approximately 8°C under standard solar irradiation conditions. The hybrid system demonstrated a solar utilization efficiency of 14.9%, underscoring its potential to achieve even greater efficiencies in forthcoming advanced hybrid PV solar energy systems.

太阳辐照产生的热量会对光伏太阳能电池的性能产生不利影响。为解决这一问题,我们开发了一种混合装置,其特点是将太阳能储存和冷却层与硅基光伏电池集成在一起。该层采用分子太阳能热(MOST)储能系统,将高能光子(由于热化损失,太阳能电池通常无法充分利用)转化为化学能并加以储存。同时,它还能通过光学效应和导热性能有效冷却光伏电池。实验证明,多达 2.3% 的太阳能可以作为化学能储存起来。此外,将 MOST 系统与光伏电池集成后,在标准太阳辐照条件下,电池表面温度明显降低了约 8°C。该混合系统的太阳能利用效率为 14.9%,这表明它有潜力在即将推出的先进混合光伏太阳能系统中实现更高的效率。
{"title":"Hybrid solar energy device for simultaneous electric power generation and molecular solar thermal energy storage","authors":"Zhihang Wang ,&nbsp;Helen Hölzel ,&nbsp;Lorette Fernandez ,&nbsp;Adil S. Aslam ,&nbsp;Paulius Baronas ,&nbsp;Jessica Orrego-Hernández ,&nbsp;Shima Ghasemi ,&nbsp;Mariano Campoy-Quiles ,&nbsp;Kasper Moth-Poulsen","doi":"10.1016/j.joule.2024.06.012","DOIUrl":"10.1016/j.joule.2024.06.012","url":null,"abstract":"<div><p>The performance of photovoltaic (PV) solar cells can be adversely affected by the heat generated from solar irradiation. To address this issue, a hybrid device featuring a solar energy storage and cooling layer integrated with a silicon-based PV cell has been developed. This layer employs a molecular solar thermal (MOST) energy storage system to convert and store high-energy photons—typically underutilized by solar cells due to thermalization losses—into chemical energy. Simultaneously, it effectively cools the PV cell through both optical effects and thermal conductivity. Herein, it was demonstrated that up to 2.3% of solar energy could be stored as chemical energy. Additionally, the integration of the MOST system with the PV cell resulted in a notable decrease in the cell’s surface temperature by approximately 8°C under standard solar irradiation conditions. The hybrid system demonstrated a solar utilization efficiency of 14.9%, underscoring its potential to achieve even greater efficiencies in forthcoming advanced hybrid PV solar energy systems.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2607-2622"},"PeriodicalIF":38.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435124002885/pdfft?md5=3b8aae74bae38092cfffcc7c8844aa89&pid=1-s2.0-S2542435124002885-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1