首页 > 最新文献

Joule最新文献

英文 中文
Multi-frequency excitation enables one-second battery diagnostics across life cycle chain 多频率激励可实现跨生命周期链的一秒电池诊断
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-17 DOI: 10.1016/j.joule.2025.102230
Shengyu Tao , Guannan He , Changfu Zou
Zhou et al. introduce a multi-channel, multi-frequency electrical response (MMER) method that diagnoses hundreds of lithium-ion cells within 1 s. By replacing sequential impedance sweeps with parallel time-domain excitation, MMER bridges laboratory precision and factory-scale speed, enabling real-time, sustainable battery field testing across massive manufacturing, second-life reuse, and end-of-life recycling.
Zhou等人介绍了一种多通道、多频率电响应(MMER)方法,可在1秒内诊断数百个锂离子电池。通过用并行时域激励取代顺序阻抗扫描,MMER在实验室精度和工厂规模速度之间架起了桥梁,实现了大规模制造、二次使用和报废回收过程中实时、可持续的电池现场测试。
{"title":"Multi-frequency excitation enables one-second battery diagnostics across life cycle chain","authors":"Shengyu Tao ,&nbsp;Guannan He ,&nbsp;Changfu Zou","doi":"10.1016/j.joule.2025.102230","DOIUrl":"10.1016/j.joule.2025.102230","url":null,"abstract":"<div><div>Zhou et al. introduce a multi-channel, multi-frequency electrical response (MMER) method that diagnoses hundreds of lithium-ion cells within 1 s. By replacing sequential impedance sweeps with parallel time-domain excitation, MMER bridges laboratory precision and factory-scale speed, enabling real-time, sustainable battery field testing across massive manufacturing, second-life reuse, and end-of-life recycling.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 12","pages":"Article 102230"},"PeriodicalIF":35.4,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145766029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-mediated solid-state doping of Spiro-OMeTAD for efficient and robust perovskite photovoltaics 氧化还原介导的Spiro-OMeTAD固态掺杂用于高效和稳健的钙钛矿光伏发电
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-17 DOI: 10.1016/j.joule.2025.102217
Cuiping Zhang , Li Yang , Yufan Wu , Kun Wei , Dachang Liu , Jianfei Hu , Wanhai Wang , Shuping Pang , Bo Xu , Jinbao Zhang
High-efficiency n-i-p perovskite solar cells (PSCs) inherently rely on doped 2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (Spiro-OMeTAD) as hole transport layers (HTLs). Yet, dopants (tert-butylpyridine [tBP] and lithium bis(trifluoromethanesulfonyl)imide [LiTFSI]) instigate energy-level disorder and morphological degradation in HTLs, hampering technological advancement. Herein, we propose a redox-mediated nanoscale solid-state doping strategy using multifunctional CuInS2/ZnS quantum dots (CISQDs) to enhance the performance and operational stability of HTLs. The Cu2+/Cu+ redox-active centers in CISQD promote Spiro-OMeTAD⋅+ cation formation, facilitating efficient charge collection. Additionally, uncoordinated sulfur sites on the ZnS shell act as ionic traps, effectively immobilizing Li+ ions to further fortify the structural stability of HTLs. Based on this non-volatile solid-state doping strategy, tBP-free devices have achieved a record certified power conversion efficiency of 26.34% and demonstrate unprecedented operational reliability. The devices retain over 90% of initial performance after 2,000 h of continuous 1-sun illumination. This study presents a universal approach for reliable doping of organic materials in optoelectronic devices.
高效的N- i-p钙钛矿太阳能电池(PSCs)固有地依赖于掺杂2,2 ',7,7 ' -四基[N,N-二(4-甲氧基苯基)氨基]-9,9-螺双芴(Spiro-OMeTAD)作为空穴传输层(HTLs)。然而,掺杂剂(叔丁基吡啶[tBP]和锂二(三氟甲烷磺酰)亚胺[LiTFSI])引发HTLs中的能级紊乱和形态降解,阻碍了技术进步。在此,我们提出了一种氧化还原介导的纳米固体掺杂策略,使用多功能CuInS2/ZnS量子点(CISQDs)来提高HTLs的性能和工作稳定性。CISQD中的Cu2+/Cu+氧化还原活性中心促进了Spiro-OMeTAD⋅+阳离子的形成,促进了高效的电荷收集。此外,ZnS壳层上的非配位硫位点作为离子陷阱,有效地固定了Li+离子,进一步增强了HTLs的结构稳定性。基于这种非易失性固态掺杂策略,无tbp器件实现了创纪录的26.34%的认证功率转换效率,并表现出前所未有的运行可靠性。在连续照射2000小时后,器件保持了超过90%的初始性能。本研究为光电器件中有机材料的可靠掺杂提供了一种通用的方法。
{"title":"Redox-mediated solid-state doping of Spiro-OMeTAD for efficient and robust perovskite photovoltaics","authors":"Cuiping Zhang ,&nbsp;Li Yang ,&nbsp;Yufan Wu ,&nbsp;Kun Wei ,&nbsp;Dachang Liu ,&nbsp;Jianfei Hu ,&nbsp;Wanhai Wang ,&nbsp;Shuping Pang ,&nbsp;Bo Xu ,&nbsp;Jinbao Zhang","doi":"10.1016/j.joule.2025.102217","DOIUrl":"10.1016/j.joule.2025.102217","url":null,"abstract":"<div><div>High-efficiency n-i-p perovskite solar cells (PSCs) inherently rely on doped 2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (Spiro-OMeTAD) as hole transport layers (HTLs). Yet, dopants (tert-butylpyridine [tBP] and lithium bis(trifluoromethanesulfonyl)imide [LiTFSI]) instigate energy-level disorder and morphological degradation in HTLs, hampering technological advancement. Herein, we propose a redox-mediated nanoscale solid-state doping strategy using multifunctional CuInS<sub>2</sub>/ZnS quantum dots (CISQDs) to enhance the performance and operational stability of HTLs. The Cu<sup>2+</sup>/Cu<sup>+</sup> redox-active centers in CISQD promote Spiro-OMeTAD<sup>⋅+</sup> cation formation, facilitating efficient charge collection. Additionally, uncoordinated sulfur sites on the ZnS shell act as ionic traps, effectively immobilizing Li<sup>+</sup> ions to further fortify the structural stability of HTLs. Based on this non-volatile solid-state doping strategy, tBP-free devices have achieved a record certified power conversion efficiency of 26.34% and demonstrate unprecedented operational reliability. The devices retain over 90% of initial performance after 2,000 h of continuous 1-sun illumination. This study presents a universal approach for reliable doping of organic materials in optoelectronic devices.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 12","pages":"Article 102217"},"PeriodicalIF":35.4,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145560624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backward-evaporating solar distillation: From efficiency promotion to practical application 逆向蒸发太阳能蒸馏:从效率提升到实际应用
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-17 DOI: 10.1016/j.joule.2025.102193
Ziye Zhu , Yanjie Zheng , Hongfei Zheng , Jianyin Xiong
Solar distillation with backward-evaporating structures has recently exhibited promising freshwater-production performance and attractive application prospects for alleviating global water scarcity using solar energy. Although sustainably efficient distillation approaches have been developed, extensive potential still exists in its efficiency promotion and sustainable operation, and specific pathways need to be explored toward practical applications. In this perspective, we discuss the theoretical limits of solar-to-water energy conversion efficiency and identify key approaches to improve the distillation process. We reveal the underlying mechanism of salt-ion movement of current effective anti-salt-precipitation approaches, and we illustrate how to accelerate or inhibit salt removal through tailored driving-force combinations. In addition, we highlight the balance between brine discharge and energy efficiency under brine conditions for sustainable and efficient distillation. Toward a wide application level, we summarize the integrated applications of backward-evaporating solar distillation in energy-resource co-production. We also propose scalable water-production operation modes and indicate the realistic challenges for scaled-up deployment. Finally, we conduct an economic assessment and technology comparison with other solar thermal desalination technologies, and we propose a cost evaluation method for guiding multistage system design, aiming to move this technology forward to practical applications.
采用后向蒸发结构的太阳能蒸馏法近年来在淡水生产方面表现出了良好的性能,在利用太阳能缓解全球水资源短缺方面具有广阔的应用前景。虽然可持续高效的蒸馏方法已经被开发出来,但其效率提升和可持续运行仍有很大的潜力,需要探索具体的实际应用途径。从这个角度来看,我们讨论了太阳能到水的能量转换效率的理论限制,并确定了改进蒸馏过程的关键方法。我们揭示了当前有效的抗盐沉淀方法中盐离子运动的潜在机制,并说明了如何通过量身定制的驱动力组合来加速或抑制盐的去除。此外,我们强调在盐水条件下,为了可持续和高效的蒸馏,在盐水排放和能源效率之间取得平衡。从广泛的应用层面,总结了逆向蒸发太阳能蒸馏法在能源联产中的综合应用。我们还提出了可扩展的采水操作模式,并指出了大规模部署的现实挑战。最后,与其他太阳能热脱盐技术进行了经济评估和技术比较,并提出了指导多级系统设计的成本评估方法,旨在将该技术推向实际应用。
{"title":"Backward-evaporating solar distillation: From efficiency promotion to practical application","authors":"Ziye Zhu ,&nbsp;Yanjie Zheng ,&nbsp;Hongfei Zheng ,&nbsp;Jianyin Xiong","doi":"10.1016/j.joule.2025.102193","DOIUrl":"10.1016/j.joule.2025.102193","url":null,"abstract":"<div><div>Solar distillation with backward-evaporating structures has recently exhibited promising freshwater-production performance and attractive application prospects for alleviating global water scarcity using solar energy. Although sustainably efficient distillation approaches have been developed, extensive potential still exists in its efficiency promotion and sustainable operation, and specific pathways need to be explored toward practical applications. In this perspective, we discuss the theoretical limits of solar-to-water energy conversion efficiency and identify key approaches to improve the distillation process. We reveal the underlying mechanism of salt-ion movement of current effective anti-salt-precipitation approaches, and we illustrate how to accelerate or inhibit salt removal through tailored driving-force combinations. In addition, we highlight the balance between brine discharge and energy efficiency under brine conditions for sustainable and efficient distillation. Toward a wide application level, we summarize the integrated applications of backward-evaporating solar distillation in energy-resource co-production. We also propose scalable water-production operation modes and indicate the realistic challenges for scaled-up deployment. Finally, we conduct an economic assessment and technology comparison with other solar thermal desalination technologies, and we propose a cost evaluation method for guiding multistage system design, aiming to move this technology forward to practical applications.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 12","pages":"Article 102193"},"PeriodicalIF":35.4,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145442075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechano-electrochemical impedance spectroscopy: Experimentation, interpretation, and application 机械-电化学阻抗谱:实验、解释和应用
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-17 DOI: 10.1016/j.joule.2025.102177
Ruqing Fang , Junning Jiao , Wei Li , Royal C. Ihuaenyi , Martin Z. Bazant , Juner Zhu
We introduce mechano-electrochemical impedance spectroscopy (MEIS) as a technique that complements electrochemical impedance spectroscopy (EIS) by probing coupled mechanical-electrochemical dynamics in batteries. MEIS leverages electrode expansion and contraction during ion intercalation, which induces measurable pressure fluctuations under mechanical constraint. By applying a small sinusoidal current and recording the pressure response, MEIS defines its spectrum as the frequency-domain ratio of pressure to current. Experiments across multiple chemistries reveal distinct MEIS features that depend strongly on state of charge (SOC) and are sensitive to state of health (SOH), underscoring its diagnostic potential. An idealized analytical model links semicircles to mechanical stiffness and vertical features to intercalation-induced pseudo-damping, while a porous-electrode model incorporating a poro-viscoelastic bridge explains counterintuitive behaviors such as phase reversals and quadrant shifts. By connecting particle-scale deformation to electrode-level responses, MEIS opens new avenues for SOC estimation, degradation analysis, and health diagnostics in energy storage systems.
本文介绍了机械-电化学阻抗谱(MEIS)作为电化学阻抗谱(EIS)的补充技术,通过探测电池中耦合的机械-电化学动力学。MEIS利用离子插入过程中电极的膨胀和收缩,在机械约束下引起可测量的压力波动。通过施加一个小的正弦电流并记录压力响应,MEIS将其频谱定义为压力与电流的频域之比。多种化学实验揭示了MEIS的不同特征,这些特征强烈依赖于荷电状态(SOC),并对健康状态(SOH)敏感,强调了其诊断潜力。理想的分析模型将半圆与机械刚度联系起来,将垂直特征与插层引起的伪阻尼联系起来,而结合孔隙粘弹性桥的多孔电极模型则解释了相反转和象限偏移等反直觉行为。通过将颗粒级变形与电极级响应联系起来,MEIS为储能系统的SOC估算、退化分析和健康诊断开辟了新的途径。
{"title":"Mechano-electrochemical impedance spectroscopy: Experimentation, interpretation, and application","authors":"Ruqing Fang ,&nbsp;Junning Jiao ,&nbsp;Wei Li ,&nbsp;Royal C. Ihuaenyi ,&nbsp;Martin Z. Bazant ,&nbsp;Juner Zhu","doi":"10.1016/j.joule.2025.102177","DOIUrl":"10.1016/j.joule.2025.102177","url":null,"abstract":"<div><div>We introduce mechano-electrochemical impedance spectroscopy (MEIS) as a technique that complements electrochemical impedance spectroscopy (EIS) by probing coupled mechanical-electrochemical dynamics in batteries. MEIS leverages electrode expansion and contraction during ion intercalation, which induces measurable pressure fluctuations under mechanical constraint. By applying a small sinusoidal current and recording the pressure response, MEIS defines its spectrum as the frequency-domain ratio of pressure to current. Experiments across multiple chemistries reveal distinct MEIS features that depend strongly on state of charge (SOC) and are sensitive to state of health (SOH), underscoring its diagnostic potential. An idealized analytical model links semicircles to mechanical stiffness and vertical features to intercalation-induced pseudo-damping, while a porous-electrode model incorporating a poro-viscoelastic bridge explains counterintuitive behaviors such as phase reversals and quadrant shifts. By connecting particle-scale deformation to electrode-level responses, MEIS opens new avenues for SOC estimation, degradation analysis, and health diagnostics in energy storage systems.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 12","pages":"Article 102177"},"PeriodicalIF":35.4,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking the activity-stability trade-off with a high-entropy perovskite oxygen electrode for sustainable solid oxide cells 利用高熵钙钛矿氧电极打破了可持续性固体氧化物电池的活性-稳定性权衡
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-17 DOI: 10.1016/j.joule.2025.102198
Yucun Zhou , Xueyu Hu , Weilin Zhang , Zheyu Luo , Yuechao Yao , Tongtong Li , Yong Ding , Yu Chen , Meilin Liu
Reversible solid oxide cells (RSOCs) represent a promising technology for efficient, long-term, and large-scale co-generation of power and fuel. However, commercializing RSOCs has been hindered by the inadequate electrocatalytic activity and stability of conventional oxygen (or air) electrode materials. In this work, we demonstrate that a high-entropy strategy effectively overcomes the classic activity-stability trade-off in perovskite-based air electrode materials. The developed Pr0.25Nd0.25Gd0.25Sm0.25Ba0.25La0.25Sr0.25Ca0.25Co2O5+δ (HE-PBC) air electrode exhibits exceptional electrocatalytic activity and stability under realistic operating conditions. When integrated into oxygen ion-conducting RSOCs, the HE-PBC electrode nearly doubles the cell performance compared with the conventional electrode while reducing the degradation rate by more than an order of magnitude. Furthermore, proton-conducting RSOCs with the HE-PBC electrode exhibit outstanding performance, achieving a peak power density of 1.13 W cm−2 in fuel cell mode and a current density of 2.56 A cm−2 at 1.3 V in electrolysis mode at 600°C while maintaining excellent stability for over 1,000 h.
可逆固体氧化物电池(rsoc)是一种很有前途的高效、长期和大规模热电联产技术。然而,由于传统氧(或空气)电极材料的电催化活性和稳定性不足,rsoc的商业化一直受到阻碍。在这项工作中,我们证明了高熵策略有效地克服了钙钛矿基空气电极材料中经典的活性-稳定性权衡。所研制的Pr0.25Nd0.25Gd0.25Sm0.25Ba0.25La0.25Sr0.25Ca0.25Co2O5+δ (HE-PBC)空气电极在实际操作条件下表现出优异的电催化活性和稳定性。当集成到氧离子导电rsoc中时,HE-PBC电极的电池性能几乎是传统电极的两倍,同时将降解率降低了一个数量级以上。此外,具有HE-PBC电极的质子导电rsoc表现出出色的性能,在燃料电池模式下实现了1.13 W cm - 2的峰值功率密度,在600°C电解模式下在1.3 V下实现了2.56 a cm - 2的电流密度,同时保持了1000小时以上的优异稳定性。
{"title":"Breaking the activity-stability trade-off with a high-entropy perovskite oxygen electrode for sustainable solid oxide cells","authors":"Yucun Zhou ,&nbsp;Xueyu Hu ,&nbsp;Weilin Zhang ,&nbsp;Zheyu Luo ,&nbsp;Yuechao Yao ,&nbsp;Tongtong Li ,&nbsp;Yong Ding ,&nbsp;Yu Chen ,&nbsp;Meilin Liu","doi":"10.1016/j.joule.2025.102198","DOIUrl":"10.1016/j.joule.2025.102198","url":null,"abstract":"<div><div>Reversible solid oxide cells (RSOCs) represent a promising technology for efficient, long-term, and large-scale co-generation of power and fuel. However, commercializing RSOCs has been hindered by the inadequate electrocatalytic activity and stability of conventional oxygen (or air) electrode materials. In this work, we demonstrate that a high-entropy strategy effectively overcomes the classic activity-stability trade-off in perovskite-based air electrode materials. The developed Pr<sub>0.25</sub>Nd<sub>0.25</sub>Gd<sub>0.25</sub>Sm<sub>0.25</sub>Ba<sub>0.25</sub>La<sub>0.25</sub>Sr<sub>0.25</sub>Ca<sub>0.25</sub>Co<sub>2</sub>O<sub>5+δ</sub> (HE-PBC) air electrode exhibits exceptional electrocatalytic activity and stability under realistic operating conditions. When integrated into oxygen ion-conducting RSOCs, the HE-PBC electrode nearly doubles the cell performance compared with the conventional electrode while reducing the degradation rate by more than an order of magnitude. Furthermore, proton-conducting RSOCs with the HE-PBC electrode exhibit outstanding performance, achieving a peak power density of 1.13 W cm<sup>−2</sup> in fuel cell mode and a current density of 2.56 A cm<sup>−2</sup> at 1.3 V in electrolysis mode at 600°C while maintaining excellent stability for over 1,000 h.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 12","pages":"Article 102198"},"PeriodicalIF":35.4,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145478123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confined crystallization strategy enabling high-quality perovskite film for advanced photovoltaics 限制结晶策略使高质量的钙钛矿薄膜用于先进的光伏
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-16 DOI: 10.1016/j.joule.2025.102228
Xiaopeng Feng, Fuzong Xu, Cheng Peng, Zhipeng Shao, Zaiwei Wang, Chongwen Li, Qichao Meng, Bingqian Zhang, Hongguang Meng, Yaliang Han, Lin Han, Boyang Lu, Changcheng Cui, Hao Wei, Yimeng Li, Hongpei Ji, Qiangqiang Zhao, Kaiyu Wang, Xiaofan Du, Chaojie Chen, Guanglei Cui
Spray coating offers great potential for optoelectronic devices with complex geometries, but uniform crystallization remains challenging because of limited control over the process. Herein, we present a localized high-concentration (LHC) precursor strategy that enables homogeneous and confined bulk-phase pre-nucleation within droplets during spraying, effectively addressing spatiotemporal inconsistencies in nucleation. The LHC approach employs weak ligand solvents to restrict the diffusion of A-site cations while enhancing their interaction with [PbIx]2x complexes, thereby suppressing the formation of solvated intermediate phases and achieving direct α-phase perovskite with high crystallographic orientation and low defect-state density (∼1014 cm−3). This work also established a correlation between solvent-related parameters and device performance, using machine learning. The spray-coated devices achieved power conversion efficiencies (PCEs) of 25.5% (0.09 cm2 small cells), 22.5% (14 cm2 mini-modules), and 23.2% (curved cells). The strategy has been proven to have versatile applications, including in high-humidity environments (relative humidity [(R.H.] ∼80%, 23.1%), complex surfaces, and mask-assisted patterning.
喷涂为具有复杂几何形状的光电器件提供了巨大的潜力,但由于对工艺的控制有限,均匀结晶仍然具有挑战性。在此,我们提出了一种局部高浓度(LHC)前体策略,该策略可以在喷雾过程中在液滴内实现均匀和受限的体相预成核,有效地解决了成核的时空不一致性。LHC方法采用弱配体溶剂来限制a位阳离子的扩散,同时增强它们与[PbIx]2−x配合物的相互作用,从而抑制溶剂化中间相的形成,从而获得具有高结晶取向和低缺陷态密度(~ 1014 cm−3)的α-相钙钛矿。这项工作还利用机器学习建立了溶剂相关参数与设备性能之间的相关性。喷涂器件的功率转换效率(pce)分别为25.5% (0.09 cm2的小电池)、22.5% (14 cm2的迷你模块)和23.2%(弯曲电池)。该策略已被证明具有广泛的应用,包括在高湿度环境中(相对湿度[(R.H.)] ~ 80%, 23.1%),复杂表面和掩模辅助图案化。
{"title":"Confined crystallization strategy enabling high-quality perovskite film for advanced photovoltaics","authors":"Xiaopeng Feng, Fuzong Xu, Cheng Peng, Zhipeng Shao, Zaiwei Wang, Chongwen Li, Qichao Meng, Bingqian Zhang, Hongguang Meng, Yaliang Han, Lin Han, Boyang Lu, Changcheng Cui, Hao Wei, Yimeng Li, Hongpei Ji, Qiangqiang Zhao, Kaiyu Wang, Xiaofan Du, Chaojie Chen, Guanglei Cui","doi":"10.1016/j.joule.2025.102228","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102228","url":null,"abstract":"Spray coating offers great potential for optoelectronic devices with complex geometries, but uniform crystallization remains challenging because of limited control over the process. Herein, we present a localized high-concentration (LHC) precursor strategy that enables homogeneous and confined bulk-phase pre-nucleation within droplets during spraying, effectively addressing spatiotemporal inconsistencies in nucleation. The LHC approach employs weak ligand solvents to restrict the diffusion of A-site cations while enhancing their interaction with [PbI<sub>x</sub>]<sup>2</sup><sup>−</sup><sup>x</sup> complexes, thereby suppressing the formation of solvated intermediate phases and achieving direct <em>α</em>-phase perovskite with high crystallographic orientation and low defect-state density (∼10<sup>14</sup> cm<sup>−3</sup>). This work also established a correlation between solvent-related parameters and device performance, using machine learning. The spray-coated devices achieved power conversion efficiencies (PCEs) of 25.5% (0.09 cm<sup>2</sup> small cells), 22.5% (14 cm<sup>2</sup> mini-modules), and 23.2% (curved cells). The strategy has been proven to have versatile applications, including in high-humidity environments (relative humidity [(R.H.] ∼80%, 23.1%), complex surfaces, and mask-assisted patterning.","PeriodicalId":343,"journal":{"name":"Joule","volume":"12 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendrite suppression in garnet electrolytes via thermally induced compressive stress 通过热诱导压应力抑制石榴石电解质中的枝晶
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-15 DOI: 10.1016/j.joule.2025.102232
Zikang Yu, Chenjie Gan, Siyuan Song, Pradeep Guduru, Kyung-Suk Kim, Brian W. Sheldon
Lithium dendrite penetration remains a critical challenge for solid-state batteries. In this study, we provide direct experimental evidence that compressive residual stress alone, without any chemical modification, can suppress lithium dendrite propagation and improve electrochemical performance. These stresses were generated by imposing sustained through-thickness thermal gradients across Li₆.₄La₃Zr₁.₅Ta₀.₅O₁₂ (LLZTO), leading to a consistent 3-fold increase in critical current density (CCD) compared with respective isothermal controls. The magnitude of the generated stresses in the solid electrolyte was independently verified through strain-gauge and optical curvature measurements. Finite element analysis (FEA) was also conducted to interpret these stress results and to provide a broader analysis of the relationship between compressive stress and dendrite suppression. Together, these results isolate mechanical contributions of residual compressive stress as a dominant factor in dendrite resistance, establishing a mechanically driven strategy for stress engineering in solid-state batteries and providing a general design principle for robust, dendrite-free operation.
锂枝晶渗透仍然是固态电池面临的关键挑战。在本研究中,我们提供了直接的实验证据,证明在不进行任何化学修饰的情况下,单独的压缩残余应力可以抑制锂枝晶的扩展,提高电化学性能。这些应力是通过在Li₆.₄La₃Zr₁.₅Ta₀上施加持续的全厚度热梯度产生的。₅O₁2 (LLZTO),与各自的等温控制相比,导致临界电流密度(CCD)一致增加3倍。通过应变计和光学曲率测量,独立验证了固体电解质中产生的应力的大小。还进行了有限元分析(FEA)来解释这些应力结果,并对压应力和枝晶抑制之间的关系提供了更广泛的分析。总之,这些结果分离了残余压应力作为枝晶阻力的主要因素的机械贡献,为固态电池的应力工程建立了机械驱动策略,并为坚固,无枝晶的工作提供了一般设计原则。
{"title":"Dendrite suppression in garnet electrolytes via thermally induced compressive stress","authors":"Zikang Yu, Chenjie Gan, Siyuan Song, Pradeep Guduru, Kyung-Suk Kim, Brian W. Sheldon","doi":"10.1016/j.joule.2025.102232","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102232","url":null,"abstract":"Lithium dendrite penetration remains a critical challenge for solid-state batteries. In this study, we provide direct experimental evidence that compressive residual stress alone, without any chemical modification, can suppress lithium dendrite propagation and improve electrochemical performance. These stresses were generated by imposing sustained through-thickness thermal gradients across Li₆.₄La₃Zr₁.₅Ta₀.₅O₁₂ (LLZTO), leading to a consistent 3-fold increase in critical current density (CCD) compared with respective isothermal controls. The magnitude of the generated stresses in the solid electrolyte was independently verified through strain-gauge and optical curvature measurements. Finite element analysis (FEA) was also conducted to interpret these stress results and to provide a broader analysis of the relationship between compressive stress and dendrite suppression. Together, these results isolate mechanical contributions of residual compressive stress as a dominant factor in dendrite resistance, establishing a mechanically driven strategy for stress engineering in solid-state batteries and providing a general design principle for robust, dendrite-free operation.","PeriodicalId":343,"journal":{"name":"Joule","volume":"166 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring cobalt gradient distribution toward practical Ni95 cathode for high-energy-density lithium-ion battery 高能量密度锂离子电池实用Ni95正极的钴梯度分布调整
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-12 DOI: 10.1016/j.joule.2025.102229
Yucen Yan, Zhangyi Xu, Gui Luo, Duo Deng, Wenjie Peng, Zhixing Wang, Wang Hay Kan, Odiljon Abdurakhmonov, Utkirjon Sharopov, Yiman Feng, Guochun Yan, Huajun Guo, Hui Duan, Guangchao Li, Xinhai Li, Xing Ou, Junchao Zheng, Jiexi Wang
{"title":"Tailoring cobalt gradient distribution toward practical Ni95 cathode for high-energy-density lithium-ion battery","authors":"Yucen Yan, Zhangyi Xu, Gui Luo, Duo Deng, Wenjie Peng, Zhixing Wang, Wang Hay Kan, Odiljon Abdurakhmonov, Utkirjon Sharopov, Yiman Feng, Guochun Yan, Huajun Guo, Hui Duan, Guangchao Li, Xinhai Li, Xing Ou, Junchao Zheng, Jiexi Wang","doi":"10.1016/j.joule.2025.102229","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102229","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"39 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steel-stencil printing and local polysilicon contacts enable 26.09%-efficient industrial-grade tunnel oxide passivating contact solar cells 钢模板印刷和局部多晶硅触点使26.09%的效率的工业级隧道氧化物钝化接触太阳能电池
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-12 DOI: 10.1016/j.joule.2025.102231
Haojiang Du, Weiming Lu, Xinrui An, Sheshicheng Chen, Zunke Liu, Shicheng Guo, Xun Fan, Mingming Zhang, Shaojian Fu, Wei Liu, Jing Qiu, Chuanxiao Xiao, Zhiqin Ying, Xi Yang, Zhenhai Yang, Yuheng Zeng, Jichun Ye
Tunnel oxide passivating contact (TOPCon) solar cells (SCs) have emerged as the dominant crystalline silicon technology in the photovoltaic industry. However, further improving efficiency while simultaneously reducing silver consumption for TOPCon SCs remains a significant challenge. Here, we propose a synergistic strategy integrating high-precision steel-stencil printing technology and a local polysilicon contact design, achieving a certified efficiency of 26.09% on industrial-grade M10 silicon wafers. Specifically, transitioning from conventional screen printing to steel-stencil printing enables the fabrication of ultra-narrow fingers and a substantial reduction in silver consumption. The optimized silver paste formulation facilitates the formation of densely packed silver nanoparticles at the silver/silicon interface, resulting in lower contact resistivity. Additionally, our laser-patterned local polysilicon contact design effectively optimizes the trade-off between carrier transport and parasitic absorption losses while achieving high bifaciality (∼90%) that is beneficial for practical energy yield.
隧道氧化钝化接触(TOPCon)太阳能电池(SCs)已成为光伏产业中占主导地位的晶体硅技术。然而,进一步提高效率,同时降低TOPCon sc的银消耗仍然是一个重大挑战。在此,我们提出了一种整合高精度钢模板印刷技术和本地多晶硅触点设计的协同策略,在工业级M10硅片上实现了26.09%的认证效率。具体来说,从传统的丝网印刷过渡到钢模板印刷可以制造超窄的手指,并大大减少银的消耗。优化后的银浆配方有助于在银/硅界面形成致密堆积的银纳米颗粒,从而降低接触电阻率。此外,我们的激光图案局部多晶硅接触设计有效地优化了载流子输运和寄生吸收损失之间的权衡,同时实现了高双面性(约90%),这有利于实际的能量产量。
{"title":"Steel-stencil printing and local polysilicon contacts enable 26.09%-efficient industrial-grade tunnel oxide passivating contact solar cells","authors":"Haojiang Du, Weiming Lu, Xinrui An, Sheshicheng Chen, Zunke Liu, Shicheng Guo, Xun Fan, Mingming Zhang, Shaojian Fu, Wei Liu, Jing Qiu, Chuanxiao Xiao, Zhiqin Ying, Xi Yang, Zhenhai Yang, Yuheng Zeng, Jichun Ye","doi":"10.1016/j.joule.2025.102231","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102231","url":null,"abstract":"Tunnel oxide passivating contact (TOPCon) solar cells (SCs) have emerged as the dominant crystalline silicon technology in the photovoltaic industry. However, further improving efficiency while simultaneously reducing silver consumption for TOPCon SCs remains a significant challenge. Here, we propose a synergistic strategy integrating high-precision steel-stencil printing technology and a local polysilicon contact design, achieving a certified efficiency of 26.09% on industrial-grade M10 silicon wafers. Specifically, transitioning from conventional screen printing to steel-stencil printing enables the fabrication of ultra-narrow fingers and a substantial reduction in silver consumption. The optimized silver paste formulation facilitates the formation of densely packed silver nanoparticles at the silver/silicon interface, resulting in lower contact resistivity. Additionally, our laser-patterned local polysilicon contact design effectively optimizes the trade-off between carrier transport and parasitic absorption losses while achieving high bifaciality (∼90%) that is beneficial for practical energy yield.","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced charge extraction in textured perovskite-silicon tandem solar cells via molecular contact functionalization 通过分子接触功能化增强钙钛矿硅串联太阳能电池的电荷提取
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-12-11 DOI: 10.1016/j.joule.2025.102227
Jian Huang, Letian Zhang, Cem Yilmaz, Geping Qu, Ido Zemer, Rik Hooijer, Siyuan Cai, Ali Buyruk, Hao Zhu, Meriem Bouraoui, Achim Hartschuh, Ryota Mishima, Kenji Yamamoto, Caner Deger, Ilhan Yavuz, Alex K.-Y. Jen, Esma Ugur, Stefaan De Wolf, Igal Levine, Zong-Xiang Xu, Erkan Aydin
{"title":"Enhanced charge extraction in textured perovskite-silicon tandem solar cells via molecular contact functionalization","authors":"Jian Huang, Letian Zhang, Cem Yilmaz, Geping Qu, Ido Zemer, Rik Hooijer, Siyuan Cai, Ali Buyruk, Hao Zhu, Meriem Bouraoui, Achim Hartschuh, Ryota Mishima, Kenji Yamamoto, Caner Deger, Ilhan Yavuz, Alex K.-Y. Jen, Esma Ugur, Stefaan De Wolf, Igal Levine, Zong-Xiang Xu, Erkan Aydin","doi":"10.1016/j.joule.2025.102227","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102227","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"166 1","pages":"102227"},"PeriodicalIF":39.8,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1