首页 > 最新文献

Joule最新文献

英文 中文
A p-type Cu2O photoanode for solar water oxidation 用于太阳水氧化的p型Cu2O光阳极
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102172
Sanghyun Bae , Thomas Moehl , David Yong , Peng Zeng , S. David Tilley
The development of efficient, stable, and earth-abundant photoanodes for solar water oxidation is critical to advancing photoelectrochemical and photocatalytic systems for large-scale renewable fuel production. Here, we demonstrate that p-type Cu2O, typically studied as a photocathode material, can be used as a high-performance photoanode through judicious engineering of charge carrier-selective contacts on thermally oxidized Cu2O sheets. The introduction of Ga2O3, TiO2, and indium tin oxide (ITO) layers as an electron-selective back contact, combined with Al2O3, Au, and Ni front layers, significantly enhanced charge separation and electron transfer. The champion Cu2O photoanode exhibited a photocurrent density of 8.65 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in alkaline media, which is the highest reported for metal oxide photoanodes. These findings highlight the pivotal role of charge carrier-selective interface engineering in broadening the scope of available semiconductor materials for photo(electro)catalytic oxidation reactions, irrespective of the doping type of the light-absorbing material.
开发高效、稳定、资源丰富的太阳能水氧化光阳极对于推进大规模可再生燃料生产的光电化学和光催化系统至关重要。在这里,我们证明了通常作为光电阴极材料研究的p型Cu2O,可以通过在热氧化Cu2O片上明智地设计电荷载流子选择接触来用作高性能的光阳极。引入Ga2O3、TiO2和铟锡氧化物(ITO)层作为电子选择的后接触层,结合Al2O3、Au和Ni前缘层,显著增强了电荷分离和电子转移。与碱性介质中可逆氢电极相比,冠军Cu2O光阳极在1.23 V下的光电流密度为8.65 mA cm−2,是目前报道的金属氧化物光阳极中最高的。这些发现强调了电荷载流子选择界面工程在扩大光(电)催化氧化反应可用半导体材料的范围方面的关键作用,而不考虑光吸收材料的掺杂类型。
{"title":"A p-type Cu2O photoanode for solar water oxidation","authors":"Sanghyun Bae ,&nbsp;Thomas Moehl ,&nbsp;David Yong ,&nbsp;Peng Zeng ,&nbsp;S. David Tilley","doi":"10.1016/j.joule.2025.102172","DOIUrl":"10.1016/j.joule.2025.102172","url":null,"abstract":"<div><div>The development of efficient, stable, and earth-abundant photoanodes for solar water oxidation is critical to advancing photoelectrochemical and photocatalytic systems for large-scale renewable fuel production. Here, we demonstrate that p-type Cu<sub>2</sub>O, typically studied as a photocathode material, can be used as a high-performance photoanode through judicious engineering of charge carrier-selective contacts on thermally oxidized Cu<sub>2</sub>O sheets. The introduction of Ga<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and indium tin oxide (ITO) layers as an electron-selective back contact, combined with Al<sub>2</sub>O<sub>3</sub>, Au, and Ni front layers, significantly enhanced charge separation and electron transfer. The champion Cu<sub>2</sub>O photoanode exhibited a photocurrent density of 8.65 mA cm<sup>−2</sup> at 1.23 V vs. the reversible hydrogen electrode in alkaline media, which is the highest reported for metal oxide photoanodes. These findings highlight the pivotal role of charge carrier-selective interface engineering in broadening the scope of available semiconductor materials for photo(electro)catalytic oxidation reactions, irrespective of the doping type of the light-absorbing material.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102172"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite solar cells remain stable under realistic day-night cycling conditions 钙钛矿太阳能电池在现实的昼夜循环条件下保持稳定
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102222
Shanshan Gao , Ah Hyun Shin , Seong Sik Shin
While perovskite solar cells (PSCs) continue to break records in efficiency, their commercialization has been hampered by limitations in long-term stability. In a recent issue of Nature Energy, Zhao et al. revealed a new degradation mechanism under realistic dynamic cycling and proposed an innovative solution to improve stability.
虽然钙钛矿太阳能电池(PSCs)的效率不断打破记录,但其商业化受到长期稳定性的限制。在最近一期的Nature Energy中,Zhao等人揭示了现实动态循环下的一种新的降解机制,并提出了一种提高稳定性的创新解决方案。
{"title":"Perovskite solar cells remain stable under realistic day-night cycling conditions","authors":"Shanshan Gao ,&nbsp;Ah Hyun Shin ,&nbsp;Seong Sik Shin","doi":"10.1016/j.joule.2025.102222","DOIUrl":"10.1016/j.joule.2025.102222","url":null,"abstract":"<div><div>While perovskite solar cells (PSCs) continue to break records in efficiency, their commercialization has been hampered by limitations in long-term stability. In a recent issue of <em>Nature Energy</em>, Zhao et al. revealed a new degradation mechanism under realistic dynamic cycling and proposed an innovative solution to improve stability.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102222"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145545817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of transparent conducting electrodes on tandem solar cell efficiency 透明导电电极对串联太阳能电池效率的影响
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102211
Ruy Sebastian Bonilla
  1. Download: Download high-res image (295KB)
  2. Download: Download full-size image
Sebastian Bonilla is an associate professor of materials at the University of Oxford, recognized for his work on silicon-based solar energy. He completed his doctorate at Oxford in 2015 and has held prestigious fellowships from EPSRC and the Royal Academy of Engineering. In 2022, he received the Philip Leverhulme Prize for Engineering. His research focuses on functional thin-film materials for photovoltaics, with major contributions to interface engineering, silicon passivation, hydrogen incorporation, and device reliability. His work bridges fundamental science and industrial application, advancing the performance and durability of solar and optoelectronic devices.
塞巴斯蒂安·博尼拉(bastian Bonilla)是牛津大学材料系副教授,因其在硅基太阳能方面的研究而闻名。他于2015年在牛津大学获得博士学位,并获得了EPSRC和皇家工程院的著名奖学金。2022年,他获得了菲利普·莱弗休姆工程奖。他的研究重点是用于光伏的功能薄膜材料,在界面工程、硅钝化、氢掺入和器件可靠性方面做出了重大贡献。他的工作是基础科学和工业应用的桥梁,提高了太阳能和光电子器件的性能和耐用性。
{"title":"The impact of transparent conducting electrodes on tandem solar cell efficiency","authors":"Ruy Sebastian Bonilla","doi":"10.1016/j.joule.2025.102211","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102211","url":null,"abstract":"<span><figure><span><img alt=\"\" height=\"243\" src=\"https://ars.els-cdn.com/content/image/1-s2.0-S2542435125003927-fx1.jpg\"/><ol><li><span><span>Download: <span>Download high-res image (295KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span>Sebastian Bonilla is an associate professor of materials at the University of Oxford, recognized for his work on silicon-based solar energy. He completed his doctorate at Oxford in 2015 and has held prestigious fellowships from EPSRC and the Royal Academy of Engineering. In 2022, he received the Philip Leverhulme Prize for Engineering. His research focuses on functional thin-film materials for photovoltaics, with major contributions to interface engineering, silicon passivation, hydrogen incorporation, and device reliability. His work bridges fundamental science and industrial application, advancing the performance and durability of solar and optoelectronic devices.","PeriodicalId":343,"journal":{"name":"Joule","volume":"70 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145545747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevating dielectric constant via additive engineering: Achieving 19.23% certified efficiency in thick-film binary organic solar cells 通过添加剂工程提高介电常数:在厚膜二元有机太阳能电池中实现19.23%的认证效率
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102135
Xinkang Wang , Jifa Wu , Siyu Zhao , Mingqing Chen , Tianyuan Shi , Xianglun Xie , Qingqing Bai , Jialong Xie , Lianjie Zhang , Dongge Ma , Junwu Chen
The realization of highly efficient thick-film organic solar cells (OSCs) is a key path to reaching high-throughput organic photovoltaics. Herein, we demonstrate an additive strategy mediated by tribromopyrimidine (TBP) for optimizing of dielectric constant (εr) of organic semiconductor materials along with prolonged exciton diffusion length (LD) and enhanced vertical phase separation morphology. Based on 100-, 300-, and 500-nm-thick D18:L8-BO active layers, the TBP-treated binary OSCs showed power conversion efficiencies (PCEs) of 20.87%, 19.23%, and 17.82%, respectively, remarkably higher than those of 18.25%, 16.69%, and 13.52% of the corresponding control devices. A certified PCE of 19.23%, a record efficiency, and an exceptional high fill factor of 78.02% were achieved with the TBP-treated 300-nm-thick OSCs. Furthermore, enhanced device stabilities were demonstrated with the TBP-treated devices, retaining 87.9%, 79.4%, and 93.7% of the initial under continuous operational illumination (1,000 h), thermal aging (85°C, 720 h), and storage in air (720 h), respectively.
实现高效厚膜有机太阳能电池是实现高通量有机光伏发电的关键途径。在此,我们展示了三溴嘧啶(TBP)介导的添加剂策略,用于优化有机半导体材料的介电常数(εr),延长激子扩散长度(LD)和增强垂直相分离形态。基于100、300和500 nm厚的D18:L8-BO有源层,经过tbp处理的二元osc的功率转换效率(pce)分别为20.87%、19.23%和17.82%,显著高于相应控制器件的18.25%、16.69%和13.52%。经过tbp处理的300纳米厚osc的PCE认证值为19.23%,效率创纪录,填充系数高达78.02%。此外,经过tbp处理的器件在连续工作照明(1,000 h)、热老化(85°C, 720 h)和空气储存(720 h)下的稳定性分别提高了87.9%、79.4%和93.7%。
{"title":"Elevating dielectric constant via additive engineering: Achieving 19.23% certified efficiency in thick-film binary organic solar cells","authors":"Xinkang Wang ,&nbsp;Jifa Wu ,&nbsp;Siyu Zhao ,&nbsp;Mingqing Chen ,&nbsp;Tianyuan Shi ,&nbsp;Xianglun Xie ,&nbsp;Qingqing Bai ,&nbsp;Jialong Xie ,&nbsp;Lianjie Zhang ,&nbsp;Dongge Ma ,&nbsp;Junwu Chen","doi":"10.1016/j.joule.2025.102135","DOIUrl":"10.1016/j.joule.2025.102135","url":null,"abstract":"<div><div>The realization of highly efficient thick-film organic solar cells (OSCs) is a key path to reaching high-throughput organic photovoltaics. Herein, we demonstrate an additive strategy mediated by tribromopyrimidine (TBP) for optimizing of dielectric constant (ε<sub>r</sub>) of organic semiconductor materials along with prolonged exciton diffusion length (<em>L</em><sub>D</sub>) and enhanced vertical phase separation morphology. Based on 100-, 300-, and 500-nm-thick D18:L8-BO active layers, the TBP-treated binary OSCs showed power conversion efficiencies (PCEs) of 20.87%, 19.23%, and 17.82%, respectively, remarkably higher than those of 18.25%, 16.69%, and 13.52% of the corresponding control devices. A certified PCE of 19.23%, a record efficiency, and an exceptional high fill factor of 78.02% were achieved with the TBP-treated 300-nm-thick OSCs. Furthermore, enhanced device stabilities were demonstrated with the TBP-treated devices, retaining 87.9%, 79.4%, and 93.7% of the initial under continuous operational illumination (1,000 h), thermal aging (85°C, 720 h), and storage in air (720 h), respectively.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102135"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145103671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-optimal energy planning strategies with modeling to generate alternatives to flexibly explore practically desirable options 近乎最优的能源规划策略与建模,以产生备选方案,灵活地探索实际理想的选择
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102144
Francesco Lombardi , Koen van Greevenbroek , Aleksander Grochowicz , Michael Lau , Fabian Neumann , Neha Patankar , Oskar Vågerö
Cost-optimizing energy planning models are widespread in supporting energy transition planning decisions. Nonetheless, finding a “cost-optimal” planning strategy provides only a false sense of certainty. Stakeholders may prefer other economically comparable alternatives due to unaccounted-for features. Multi-objective or robust optimization, among others, can efficiently explore alternatives whose desired secondary features are well defined. “Modeling to generate alternatives” (MGA) explores alternatives systematically, including alternatives whose features, such as social viability, are hard to model, albeit key to practical implementation. Computational and interpretation barriers hindered past MGA usage and integration with other methods, but recent developments enable going beyond such barriers. We synthesize such developments and provide practical recommendations for applying MGA in five levels of increasing benefit. Even the simplest levels, requiring little computational effort, can substantially improve the quality of energy planning analyses. At the highest level of integration, MGA can facilitate identifying consensus strategies, accelerating the energy transition.
成本优化能源规划模型广泛用于支持能源转型规划决策。尽管如此,寻找“成本最优”的规划策略只能提供一种错误的确定性。由于未考虑的特性,利益相关者可能更喜欢其他经济上可比较的替代方案。多目标优化或鲁棒优化可以有效地探索次要特征定义良好的备选方案。“建模生成备选方案”(MGA)系统地探索备选方案,包括其特征(如社会可行性)难以建模的备选方案,尽管这是实际实现的关键。计算和解释障碍阻碍了过去MGA的使用和与其他方法的集成,但最近的发展使这些障碍得以超越。我们综合了这些发展,并提出了在五个水平上应用MGA增加效益的实际建议。即使是最简单的级别,只需很少的计算工作,也可以大大提高能源规划分析的质量。在整合的最高水平上,MGA可以促进确定共识战略,加速能源转型。
{"title":"Near-optimal energy planning strategies with modeling to generate alternatives to flexibly explore practically desirable options","authors":"Francesco Lombardi ,&nbsp;Koen van Greevenbroek ,&nbsp;Aleksander Grochowicz ,&nbsp;Michael Lau ,&nbsp;Fabian Neumann ,&nbsp;Neha Patankar ,&nbsp;Oskar Vågerö","doi":"10.1016/j.joule.2025.102144","DOIUrl":"10.1016/j.joule.2025.102144","url":null,"abstract":"<div><div>Cost-optimizing energy planning models are widespread in supporting energy transition planning decisions. Nonetheless, finding a “cost-optimal” planning strategy provides only a false sense of certainty. Stakeholders may prefer other economically comparable alternatives due to unaccounted-for features. Multi-objective or robust optimization, among others, can efficiently explore alternatives whose desired secondary features are well defined. “Modeling to generate alternatives” (MGA) explores alternatives systematically, including alternatives whose features, such as social viability, are hard to model, albeit key to practical implementation. Computational and interpretation barriers hindered past MGA usage and integration with other methods, but recent developments enable going beyond such barriers. We synthesize such developments and provide practical recommendations for applying MGA in five levels of increasing benefit. Even the simplest levels, requiring little computational effort, can substantially improve the quality of energy planning analyses. At the highest level of integration, MGA can facilitate identifying consensus strategies, accelerating the energy transition.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102144"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divalent and halide dual-ion storage of a redox-active symmetric cell for an efficient wastewater-energy nexus 用于高效废水-能源连接的氧化还原活性对称电池的二价和卤化物双离子存储
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102176
Gun Jang , Sang Baek Kim , Wonji Jung , Hye Rin Park , Hao Fu , Sung Pil Hong , Min Jun Hwang , Hongdae Lee , Dong Wook Kim , Jee Yeon Kim , Changhoon Oh , Ho Seok Park , Hui-Ming Cheng
Here, we design an energy-efficient ion management and high-performance energy storage system based on a redox-active symmetric cell based on a divalent and halide dual-ion storage mechanism of V2O3 nanocrystal/carbon hybrids grown on reduced graphene oxide (V2O3@C/rGO). Experimental and computational analyses confirm the Ca2+ insertion-based ion storage and redox-mediating Br conversion mechanism of the V2O3@C/rGO. The symmetric cells of two V2O3@C/rGO electrodes can function as an energy-dense aqueous divalent metal-halogen battery with a high rate and long cycles, as well as an energy-efficient redox-active capacitive deionization (RACDI) device with high salt adsorption capacity and rate in both high and low concentrations of wastewater. Particularly, the total energy consumption of our RACDI is 76 Wh kg−1, which is lower than that of existing CDI technologies, by means of spontaneous electrode regeneration without an ion-exchange membrane. This work provides a new concept of highly efficient and stable energy storage-desalination integrated functional systems for a sustainable wastewater-energy nexus.
在此,我们设计了一种基于氧化还原活性对称电池的节能离子管理和高性能储能系统,该电池基于还原氧化石墨烯(V2O3@C/rGO)上生长的V2O3纳米晶/碳杂化物的二价和卤化物双离子存储机制。实验和计算分析证实了V2O3@C/rGO基于Ca2+插入的离子储存和氧化还原介导的Br -转化机制。两个V2O3@C/rGO电极的对称电池可以作为高倍率和长循环的能量密集的水相二价金属-卤素电池,以及在高浓度和低浓度废水中具有高盐吸附容量和速率的节能氧化还原活性电容去离子(RACDI)装置。特别是,我们的RACDI总能耗为76 Wh kg−1,低于现有的CDI技术,通过自发电极再生,无需离子交换膜。这项工作为可持续的废水-能源联系提供了高效稳定的储能-脱盐综合功能系统的新概念。
{"title":"Divalent and halide dual-ion storage of a redox-active symmetric cell for an efficient wastewater-energy nexus","authors":"Gun Jang ,&nbsp;Sang Baek Kim ,&nbsp;Wonji Jung ,&nbsp;Hye Rin Park ,&nbsp;Hao Fu ,&nbsp;Sung Pil Hong ,&nbsp;Min Jun Hwang ,&nbsp;Hongdae Lee ,&nbsp;Dong Wook Kim ,&nbsp;Jee Yeon Kim ,&nbsp;Changhoon Oh ,&nbsp;Ho Seok Park ,&nbsp;Hui-Ming Cheng","doi":"10.1016/j.joule.2025.102176","DOIUrl":"10.1016/j.joule.2025.102176","url":null,"abstract":"<div><div>Here, we design an energy-efficient ion management and high-performance energy storage system based on a redox-active symmetric cell based on a divalent and halide dual-ion storage mechanism of V<sub>2</sub>O<sub>3</sub> nanocrystal/carbon hybrids grown on reduced graphene oxide (V<sub>2</sub>O<sub>3</sub>@C/rGO). Experimental and computational analyses confirm the Ca<sup>2+</sup> insertion-based ion storage and redox-mediating Br<sup>−</sup> conversion mechanism of the V<sub>2</sub>O<sub>3</sub>@C/rGO. The symmetric cells of two V<sub>2</sub>O<sub>3</sub>@C/rGO electrodes can function as an energy-dense aqueous divalent metal-halogen battery with a high rate and long cycles, as well as an energy-efficient redox-active capacitive deionization (RACDI) device with high salt adsorption capacity and rate in both high and low concentrations of wastewater. Particularly, the total energy consumption of our RACDI is 76 Wh kg<sup>−1</sup>, which is lower than that of existing CDI technologies, by means of spontaneous electrode regeneration without an ion-exchange membrane. This work provides a new concept of highly efficient and stable energy storage-desalination integrated functional systems for a sustainable wastewater-energy nexus.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102176"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogenizing strain via reinforced lattice interaction enables efficient and stable 4T perovskite/silicon tandem solar cells 通过增强晶格相互作用使应变均匀化,使4T钙钛矿/硅串联太阳能电池高效稳定
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102142
Yawei Niu , Shuyi Lin , Xiaorui Dong , Minhuan Wang , Yuzhen Zhang , Sihan Ning , Zhe Li , Jingyang Wang , Jun Yin , Shangshang Chen , Pengchen Zhu , Jia Zhu
Connecting a wide-band-gap (WBG) perovskite solar cell with a crystalline silicon (c-Si) cell enables the device to surpass the Shockley-Queisser (S-Q) limit of a single-junction solar cell. However, strain in WBG perovskites reduces the ion migration barrier and defect formation energy, severely impacting the efficiency and stability of tandem devices. Herein, we utilize benzamidinium chloride (BMCl), a molecule containing a deprotonation-resistant amidinium group, which occupies the A-site vacancy and interacts strongly with the [PbI6]4− octahedra to stabilize the crystal lattice. This strategy synergistically facilitates uniform compressive strain formation within perovskite films, increasing the ion migration barrier and defect formation energy. The optimized WBG single-junction perovskite (with a 1.67 eV band gap) and 4-terminal (4T) perovskite/Si tandem devices achieved power conversion efficiencies (PCEs) of 23.5% (22.9% certified) and 33.4%, respectively. Remarkably, the 4T tandem device showed no PCE decay after 48 days of operation under outdoor conditions, demonstrating superior real-world stability.
将宽带隙(WBG)钙钛矿太阳能电池与晶体硅(c-Si)电池连接,使该设备能够超越单结太阳能电池的Shockley-Queisser (S-Q)极限。然而,WBG钙钛矿中的应变降低了离子迁移势垒和缺陷形成能量,严重影响了串联器件的效率和稳定性。在这里,我们利用了氯化苄脒(BMCl),一种含有抗去质子酰胺基团的分子,它占据了a位的空位,并与[PbI6]4−八面体强烈相互作用以稳定晶格。这一策略协同促进了钙钛矿薄膜内均匀压缩应变的形成,增加了离子迁移屏障和缺陷形成能量。优化后的WBG单结钙钛矿(带隙1.67 eV)和4端(4T)钙钛矿/硅串联器件的功率转换效率(pce)分别为23.5%(认证为22.9%)和33.4%。值得注意的是,4T串联装置在室外条件下运行48天后没有PCE衰减,显示出卓越的实际稳定性。
{"title":"Homogenizing strain via reinforced lattice interaction enables efficient and stable 4T perovskite/silicon tandem solar cells","authors":"Yawei Niu ,&nbsp;Shuyi Lin ,&nbsp;Xiaorui Dong ,&nbsp;Minhuan Wang ,&nbsp;Yuzhen Zhang ,&nbsp;Sihan Ning ,&nbsp;Zhe Li ,&nbsp;Jingyang Wang ,&nbsp;Jun Yin ,&nbsp;Shangshang Chen ,&nbsp;Pengchen Zhu ,&nbsp;Jia Zhu","doi":"10.1016/j.joule.2025.102142","DOIUrl":"10.1016/j.joule.2025.102142","url":null,"abstract":"<div><div>Connecting a wide-band-gap (WBG) perovskite solar cell with a crystalline silicon (c-Si) cell enables the device to surpass the Shockley-Queisser (S-Q) limit of a single-junction solar cell. However, strain in WBG perovskites reduces the ion migration barrier and defect formation energy, severely impacting the efficiency and stability of tandem devices. Herein, we utilize benzamidinium chloride (BMCl), a molecule containing a deprotonation-resistant amidinium group, which occupies the A-site vacancy and interacts strongly with the [PbI<sub>6</sub>]<sup>4−</sup> octahedra to stabilize the crystal lattice. This strategy synergistically facilitates uniform compressive strain formation within perovskite films, increasing the ion migration barrier and defect formation energy. The optimized WBG single-junction perovskite (with a 1.67 eV band gap) and 4-terminal (4T) perovskite/Si tandem devices achieved power conversion efficiencies (PCEs) of 23.5% (22.9% certified) and 33.4%, respectively. Remarkably, the 4T tandem device showed no PCE decay after 48 days of operation under outdoor conditions, demonstrating superior real-world stability.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102142"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145141104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon-supported molybdenum nitride with optimized triple-phase interfaces for unprecedented efficiency in reverse water-gas shift reactions 碳负载的氮化钼具有优化的三相界面,在逆向水气转换反应中具有前所未有的效率
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102163
Yifan Feng , Zhenyu Xing , Daoping Ye , Jin Niu , Tian Ma , Bowen Liu , Yi Wang , Bo Yin , Chong Cheng , Shuang Li
Although molybdenum nitride (Mo2N) demonstrates exceptional hydrogenation potential, its intrinsic catalytic potential is severely compromised by the unavoidable surface oxidative molybdenum trioxide (MoO3) layer, which severely masks active Mo2N sites for hydrogen dissociation. Here, we report a carbon-supported Mo2N architecture (Mo2N-C) with partially exposed Mo2N sites that strategically balances surface protection and active site accessibility. This engineered Mo2N-C catalyst achieves a CO2 conversion rate of 20.3% at 500°C, with a CO2:H2 ratio of 1:1 and a weight hourly space velocity (WHSV) of 3 × 105 mL gcat−1 h−1, representing a 7-fold enhancement over conventional Mo2N. Remarkably, under a WHSV of 3 × 106 mL gcat−1 h−1, the Mo2N-C catalyst demonstrates unprecedented CO productivity (146.94 × 10−5 molCO gcat−1 s−1), outperforming all reported non-precious metal catalysts. This work establishes a new paradigm for designing oxidation-resistant and high-performance metal nitride catalysts through interface engineering, opening alternative avenues and generalizable approaches for sustainable CO2 conversion technologies.
尽管氮化钼(Mo2N)表现出优异的加氢电位,但其固有的催化电位受到不可避免的表面氧化三氧化钼(MoO3)层的严重损害,该层严重掩盖了氢解离的活性Mo2N位点。在这里,我们报告了一种碳支撑的Mo2N结构(Mo2N- c),其部分暴露的Mo2N位点战略性地平衡了表面保护和活性位点的可及性。该Mo2N-C催化剂在500℃下的CO2转化率为20.3%,CO2:H2比为1:1,重量小时空速(WHSV)为3 × 105 mL gcat−1 h−1,比传统Mo2N提高了7倍。值得注意的是,在3 × 106 mL gcat−1 h−1的WHSV下,Mo2N-C催化剂表现出前所未有的CO产率(146.94 × 10−5 molCO gcat−1 s−1),优于所有报道的非贵金属催化剂。本研究为通过界面工程设计抗氧化和高性能金属氮化物催化剂建立了一个新的范例,为可持续的二氧化碳转化技术开辟了替代途径和可推广的方法。
{"title":"Carbon-supported molybdenum nitride with optimized triple-phase interfaces for unprecedented efficiency in reverse water-gas shift reactions","authors":"Yifan Feng ,&nbsp;Zhenyu Xing ,&nbsp;Daoping Ye ,&nbsp;Jin Niu ,&nbsp;Tian Ma ,&nbsp;Bowen Liu ,&nbsp;Yi Wang ,&nbsp;Bo Yin ,&nbsp;Chong Cheng ,&nbsp;Shuang Li","doi":"10.1016/j.joule.2025.102163","DOIUrl":"10.1016/j.joule.2025.102163","url":null,"abstract":"<div><div>Although molybdenum nitride (Mo<sub>2</sub>N) demonstrates exceptional hydrogenation potential, its intrinsic catalytic potential is severely compromised by the unavoidable surface oxidative molybdenum trioxide (MoO<sub>3</sub>) layer, which severely masks active Mo<sub>2</sub>N sites for hydrogen dissociation. Here, we report a carbon-supported Mo<sub>2</sub>N architecture (Mo<sub>2</sub>N-C) with partially exposed Mo<sub>2</sub>N sites that strategically balances surface protection and active site accessibility. This engineered Mo<sub>2</sub>N-C catalyst achieves a CO<sub>2</sub> conversion rate of 20.3% at 500°C, with a CO<sub>2</sub>:H<sub>2</sub> ratio of 1:1 and a weight hourly space velocity (WHSV) of 3 × 10<sup>5</sup> mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>, representing a 7-fold enhancement over conventional Mo<sub>2</sub>N. Remarkably, under a WHSV of 3 × 10<sup>6</sup> mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>, the Mo<sub>2</sub>N-C catalyst demonstrates unprecedented CO productivity (146.94 × 10<sup>−5</sup> mol<sub>CO</sub> g<sub>cat</sub><sup>−1</sup> s<sup>−1</sup>), outperforming all reported non-precious metal catalysts. This work establishes a new paradigm for designing oxidation-resistant and high-performance metal nitride catalysts through interface engineering, opening alternative avenues and generalizable approaches for sustainable CO<sub>2</sub> conversion technologies.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102163"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145255421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of metallic interlayers at the lithium-Li6PS5Cl solid electrolyte interface 金属夹层对锂- li6ps5cl固体电解质界面的影响
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1016/j.joule.2025.102175
Souhardh Kotakadi , Jack Aspinall , Matthew Burton , Yi Liang , Yuichi Aihara , Mauro Pasta
Solid-state batteries promise higher energy density than current lithium-ion technology. To achieve this and address challenges associated with metallic lithium, zero-excess lithium configurations are required. Metallic interlayers at the negative electrode-electrolyte interface present a route to control plating morphology and improve lithium cycling efficiency, but their underlying mechanism remains unclear. Here, we systematically investigate the lithiation dynamics of bismuth, indium, silver, and magnesium interlayers using operando scanning electron microscopy. Solid solution-forming interlayers promote uniform plating and maintain structural integrity, while intermetallic-forming interlayers undergo mechanical failure due to volumetric changes. Heterogeneous lithiation arises from lithium diffusivity differences between phases. Three-electrode impedance spectroscopy and coulometric titration time analysis reveal that interlayer deposition onto the solid electrolyte maximizes electrochemically active contact with the current collector, reducing effective current density but increasing solid electrolyte interphase growth. Overall, plating morphology, mechanical stability, and cycling efficiency are governed by alloy nucleation behavior and lithium diffusivity.
固态电池比目前的锂离子技术有更高的能量密度。为了实现这一目标并解决与金属锂相关的挑战,需要零过量锂配置。在负极-电解质界面的金属中间层提供了一条控制镀层形态和提高锂循环效率的途径,但其潜在的机制尚不清楚。在这里,我们使用operando扫描电子显微镜系统地研究了铋、铟、银和镁中间层的锂化动力学。固溶形成的中间层促进了镀层的均匀性并保持了结构的完整性,而金属间形成的中间层由于体积的变化而发生机械破坏。非均相锂化是由不同相间的锂扩散率差异引起的。三电极阻抗谱和库仑滴定时间分析表明,层间沉积使固体电解质与集电极的电化学活性接触最大化,降低了有效电流密度,但增加了固体电解质的界面生长。总体而言,镀层形貌、机械稳定性和循环效率受合金成核行为和锂扩散率的影响。
{"title":"Impact of metallic interlayers at the lithium-Li6PS5Cl solid electrolyte interface","authors":"Souhardh Kotakadi ,&nbsp;Jack Aspinall ,&nbsp;Matthew Burton ,&nbsp;Yi Liang ,&nbsp;Yuichi Aihara ,&nbsp;Mauro Pasta","doi":"10.1016/j.joule.2025.102175","DOIUrl":"10.1016/j.joule.2025.102175","url":null,"abstract":"<div><div>Solid-state batteries promise higher energy density than current lithium-ion technology. To achieve this and address challenges associated with metallic lithium, zero-excess lithium configurations are required. Metallic interlayers at the negative electrode-electrolyte interface present a route to control plating morphology and improve lithium cycling efficiency, but their underlying mechanism remains unclear. Here, we systematically investigate the lithiation dynamics of bismuth, indium, silver, and magnesium interlayers using <em>operando scanning electron microscopy</em>. Solid solution-forming interlayers promote uniform plating and maintain structural integrity, while intermetallic-forming interlayers undergo mechanical failure due to volumetric changes. Heterogeneous lithiation arises from lithium diffusivity differences between phases. Three-electrode impedance spectroscopy and coulometric titration time analysis reveal that interlayer deposition onto the solid electrolyte maximizes electrochemically active contact with the current collector, reducing effective current density but increasing solid electrolyte interphase growth. Overall, plating morphology, mechanical stability, and cycling efficiency are governed by alloy nucleation behavior and lithium diffusivity.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 11","pages":"Article 102175"},"PeriodicalIF":35.4,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Buried heterointerface reinforcement with passivation-integrated nanostructures for efficient and stable perovskite solar modules 采用钝化集成纳米结构的埋藏异质界面增强高效稳定的钙钛矿太阳能组件
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-11-17 DOI: 10.1016/j.joule.2025.102212
Jin Wen, Yuxuan Liu, Yinke Wang, Guihao Wang, Ningchong Zheng, Wennan Ou, Jinyan Guo, Jiajia Hong, Yijia Guo, Wenchi Kong, Anh Dinh Bui, Haowen Luo, Hieu Nguyen, Yuefeng Nie, Ke Xiao, Ludong Li, Hairen Tan
The buried heterointerface between hole transport layers (HTLs) and perovskite films critically determines the efficiency and stability of scalable perovskite solar modules. While self-assembled monolayer (SAM)-based HTLs enable record efficiencies in spin-coated devices, scalable blade coating often induces micron-scale nanogaps at the SAM/perovskite interface, causing non-radiative recombination and mechanical degradation. Here, we introduce a buried integrating-passivation nanostructure (BIPN) atop SAM, where inorganic oxide nanoparticles are utilized as mechanical reinforcements and passivating molecules function as chemical stabilizers, anchoring onto spherical surfaces via hydrogen bonding. This design effectively alleviates interfacial stress and minimizes nanoscale gaps, simultaneously decreasing defects and strengthening the buried interface. As a result, blade-coated perovskite solar cells achieve a power conversion efficiency of 26.0% (certified at 25.7%), while minimodules (20.25 cm2 aperture) deliver 22.5% efficiency and show no degradation after 2,100 h under the International Summit on Organic Photovoltaic Stability (ISOS)-L-1 condition.
空穴传输层(HTLs)与钙钛矿薄膜之间的埋藏异质界面决定了可扩展钙钛矿太阳能组件的效率和稳定性。基于自组装单层(SAM)的HTLs可以在自旋涂层器件中实现创纪录的效率,但可扩展的叶片涂层通常会在SAM/钙钛矿界面处产生微米级的纳米间隙,从而导致非辐射重组和机械降解。在这里,我们在SAM上引入了一种埋藏的集成钝化纳米结构(BIPN),其中无机氧化物纳米颗粒用作机械增强剂,钝化分子用作化学稳定剂,通过氢键锚定在球形表面上。该设计有效地缓解了界面应力,减小了纳米级间隙,同时减少了缺陷,增强了埋藏界面。因此,在国际有机光伏稳定性峰会(ISOS)-L-1条件下,叶片涂层钙钛矿太阳能电池的功率转换效率为26.0%(认证为25.7%),而微型组件(20.25 cm2孔径)的效率为22.5%,并且在2,100小时后没有退化。
{"title":"Buried heterointerface reinforcement with passivation-integrated nanostructures for efficient and stable perovskite solar modules","authors":"Jin Wen, Yuxuan Liu, Yinke Wang, Guihao Wang, Ningchong Zheng, Wennan Ou, Jinyan Guo, Jiajia Hong, Yijia Guo, Wenchi Kong, Anh Dinh Bui, Haowen Luo, Hieu Nguyen, Yuefeng Nie, Ke Xiao, Ludong Li, Hairen Tan","doi":"10.1016/j.joule.2025.102212","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102212","url":null,"abstract":"The buried heterointerface between hole transport layers (HTLs) and perovskite films critically determines the efficiency and stability of scalable perovskite solar modules. While self-assembled monolayer (SAM)-based HTLs enable record efficiencies in spin-coated devices, scalable blade coating often induces micron-scale nanogaps at the SAM/perovskite interface, causing non-radiative recombination and mechanical degradation. Here, we introduce a buried integrating-passivation nanostructure (BIPN) atop SAM, where inorganic oxide nanoparticles are utilized as mechanical reinforcements and passivating molecules function as chemical stabilizers, anchoring onto spherical surfaces via hydrogen bonding. This design effectively alleviates interfacial stress and minimizes nanoscale gaps, simultaneously decreasing defects and strengthening the buried interface. As a result, blade-coated perovskite solar cells achieve a power conversion efficiency of 26.0% (certified at 25.7%), while minimodules (20.25 cm<sup>2</sup> aperture) deliver 22.5% efficiency and show no degradation after 2,100 h under the International Summit on Organic Photovoltaic Stability (ISOS)-L-1 condition.","PeriodicalId":343,"journal":{"name":"Joule","volume":"43 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145531813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1