首页 > 最新文献

Joule最新文献

英文 中文
Competitive anion coordination overcomes charge-transfer barriers for lithium–sulfur batteries 竞争阴离子配位克服了锂硫电池的电荷转移障碍
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-23 DOI: 10.1016/j.joule.2025.102259
Xi-Yao Li, Bo-Quan Li, Tian Jin, Shuai Feng, Yu-Chen Gao, Meng Zhao, Xiang Chen, Jia-Qi Huang, Qiang Zhang
Beyond ionic conduction and solid-electrolyte interphase formation, the fundamental roles of lithium salt anions in batteries remain unexplored. Herein, an anion-induced competitive solvation mechanism that governs lithium polysulfide (LiPS) behaviors in high-energy-density lithium–sulfur batteries is pioneeringly unveiled. Specifically, anions contend against weakly solvating solvents to occupy the LiPS inner solvation shell. Enhancing anion coordination while diminishing weakly solvating solvent coordination overcomes the rate-determining LiPS charge-transfer barriers. As a proof of concept, bis(fluorosulfonyl)imide anion coordination reduces activation polarization and boosts cycling stability at high current densities. Ah-level pouch cells achieve stable operation at high rates of 0.35 C and deliver a record-setting energy density of 622 Wh kg−1 (based on total weight) with stable cycling. By elucidating the anion-induced competitive solvation mechanism, our work transcends conventional views of anion roles and establishes a new paradigm for advancing practical Li–S batteries.
除了离子传导和固体电解质间相形成之外,锂盐阴离子在电池中的基本作用仍未被探索。本文开创性地揭示了阴离子诱导的控制高能量密度锂硫电池中多硫锂(lip)行为的竞争溶剂化机制。具体来说,阴离子与弱溶剂溶剂竞争,以占据LiPS的内溶剂化壳层。增强阴离子配位,减弱弱溶剂溶剂配位,克服了决定速率的LiPS电荷转移障碍。作为概念证明,双(氟磺酰基)亚胺阴离子配位降低了激活极化,提高了高电流密度下的循环稳定性。ah级袋状电池在0.35℃的高速率下实现稳定运行,并提供创纪录的622 Wh kg−1(基于总重量)的能量密度,稳定循环。通过阐明阴离子诱导的竞争溶剂化机制,我们的工作超越了阴离子作用的传统观点,并为推进实用Li-S电池建立了新的范例。
{"title":"Competitive anion coordination overcomes charge-transfer barriers for lithium–sulfur batteries","authors":"Xi-Yao Li, Bo-Quan Li, Tian Jin, Shuai Feng, Yu-Chen Gao, Meng Zhao, Xiang Chen, Jia-Qi Huang, Qiang Zhang","doi":"10.1016/j.joule.2025.102259","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102259","url":null,"abstract":"Beyond ionic conduction and solid-electrolyte interphase formation, the fundamental roles of lithium salt anions in batteries remain unexplored. Herein, an anion-induced competitive solvation mechanism that governs lithium polysulfide (LiPS) behaviors in high-energy-density lithium–sulfur batteries is pioneeringly unveiled. Specifically, anions contend against weakly solvating solvents to occupy the LiPS inner solvation shell. Enhancing anion coordination while diminishing weakly solvating solvent coordination overcomes the rate-determining LiPS charge-transfer barriers. As a proof of concept, bis(fluorosulfonyl)imide anion coordination reduces activation polarization and boosts cycling stability at high current densities. Ah-level pouch cells achieve stable operation at high rates of 0.35 C and deliver a record-setting energy density of 622 Wh kg<sup>−1</sup> (based on total weight) with stable cycling. By elucidating the anion-induced competitive solvation mechanism, our work transcends conventional views of anion roles and establishes a new paradigm for advancing practical Li–S batteries.","PeriodicalId":343,"journal":{"name":"Joule","volume":"30 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146021979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-play of contending silicon photovoltaic technologies 竞争硅光伏技术的现状
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-22 DOI: 10.1016/j.joule.2025.102240
Martin A. Green, Zibo Zhou, Ning Song, Kaifu Qiu, Xixiang Xu, Wenjing Wang, Zi Ouyang, Yifeng Chen, Jessica Y. Jiang
{"title":"State-of-play of contending silicon photovoltaic technologies","authors":"Martin A. Green, Zibo Zhou, Ning Song, Kaifu Qiu, Xixiang Xu, Wenjing Wang, Zi Ouyang, Yifeng Chen, Jessica Y. Jiang","doi":"10.1016/j.joule.2025.102240","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102240","url":null,"abstract":"","PeriodicalId":343,"journal":{"name":"Joule","volume":"75 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting ionic conductivity of fluoride electrolytes by polyanion coordination chemistry enabling 5 V-Class all-solid-state batteries 通过聚阴离子配位化学提高氟化物电解质的离子电导率,实现5v级全固态电池
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102233
Huaimin Jin , Xingyu Wang , Simeng Zhang , Xiangzhen Zhu , Chong Liu , Junyi Yue , Jie Qu , Bei Wu , Xu Han , Yueyue Wang , Yang Xu , Han Wu , Liyu Zhou , Mingying Zhang , Hao Lai , Shuo Wang , Jiangwen Liang , Xueliang Sun , Xiaona Li
Fluoride solid-state electrolytes (SSEs) offer superior electrochemical stability, making them theoretically ideal for high-voltage all-solid-state batteries (ASSBs), but their low Li+ conductivity hinders practical application. Here, we exploit the polyanion coordination strategy to develop a class of fluoride SSEs, LixTi(PO4)x/3F4, which exhibits high ionic conductivity and ultrahigh-voltage stability. Especially, Li1.3Ti(PO4)1.3/3F4 (1.16 × 10−5 S cm−1) demonstrates a two-order-of-magnitude enhancement in Li+ conductivity compared to analogous Li2TiF6. Combined experimental and theoretical analyses reveal that the high ionic conductivity of LixTi(PO4)x/3F4 arises from weakened Li+-surrounding interactions and flexible network structures. Attractively, the exceptional ionic conductivity and ultrahigh-voltage stability of Li1.3Ti(PO4)1.3/3F4 enable a low-resistance and highly stable electrolyte-electrode interface, contributing to 91.6% capacity retention after 200 cycles for 5 V-class LiNi0.5Mn1.5O4-based ASSBs at 1 C and 30°C. The discoveries in this work open a new avenue for designing high-conductivity fluoride SSEs, paving the way for the application of high-voltage cathodes in high-energy-density ASSBs.
氟化物固态电解质(sse)具有优异的电化学稳定性,理论上是高压全固态电池(assb)的理想选择,但其低Li+导电性阻碍了实际应用。本研究利用聚阴离子配位策略,制备了一类具有高离子电导率和超高电压稳定性的氟化物ssi, LixTi(PO4)x/3F4。特别是,Li1.3Ti(PO4)1.3/3F4 (1.16 × 10−5 S cm−1)与类似的Li2TiF6相比,Li+电导率提高了两个数量级。实验和理论分析表明,LixTi(PO4)x/3F4的高离子电导率源于Li+周围相互作用的减弱和网络结构的柔性。引人注目的是,Li1.3Ti(PO4)1.3/3F4优异的离子电导率和超高电压稳定性使其具有低电阻和高度稳定的电解质-电极界面,在1℃和30℃下,5个v级lini0.5 mn1.5 o4基assb在200次循环后的容量保持率为91.6%。本工作的发现为设计高导电性氟化sbs开辟了新的途径,为高压阴极在高能量密度assb中的应用铺平了道路。
{"title":"Boosting ionic conductivity of fluoride electrolytes by polyanion coordination chemistry enabling 5 V-Class all-solid-state batteries","authors":"Huaimin Jin ,&nbsp;Xingyu Wang ,&nbsp;Simeng Zhang ,&nbsp;Xiangzhen Zhu ,&nbsp;Chong Liu ,&nbsp;Junyi Yue ,&nbsp;Jie Qu ,&nbsp;Bei Wu ,&nbsp;Xu Han ,&nbsp;Yueyue Wang ,&nbsp;Yang Xu ,&nbsp;Han Wu ,&nbsp;Liyu Zhou ,&nbsp;Mingying Zhang ,&nbsp;Hao Lai ,&nbsp;Shuo Wang ,&nbsp;Jiangwen Liang ,&nbsp;Xueliang Sun ,&nbsp;Xiaona Li","doi":"10.1016/j.joule.2025.102233","DOIUrl":"10.1016/j.joule.2025.102233","url":null,"abstract":"<div><div>Fluoride solid-state electrolytes (SSEs) offer superior electrochemical stability, making them theoretically ideal for high-voltage all-solid-state batteries (ASSBs), but their low Li<sup>+</sup> conductivity hinders practical application. Here, we exploit the polyanion coordination strategy to develop a class of fluoride SSEs, Li<sub><em>x</em></sub>Ti(PO<sub>4</sub>)<sub><em>x</em>/3</sub>F<sub>4</sub>, which exhibits high ionic conductivity and ultrahigh-voltage stability. Especially, Li<sub>1.3</sub>Ti(PO<sub>4</sub>)<sub>1.3/3</sub>F<sub>4</sub> (1.16 × 10<sup>−5</sup> S cm<sup>−1</sup>) demonstrates a two-order-of-magnitude enhancement in Li<sup>+</sup> conductivity compared to analogous Li<sub>2</sub>TiF<sub>6</sub>. Combined experimental and theoretical analyses reveal that the high ionic conductivity of Li<sub><em>x</em></sub>Ti(PO<sub>4</sub>)<sub><em>x</em>/3</sub>F<sub>4</sub> arises from weakened Li<sup>+</sup>-surrounding interactions and flexible network structures. Attractively, the exceptional ionic conductivity and ultrahigh-voltage stability of Li<sub>1.3</sub>Ti(PO<sub>4</sub>)<sub>1.3/3</sub>F<sub>4</sub> enable a low-resistance and highly stable electrolyte-electrode interface, contributing to 91.6% capacity retention after 200 cycles for 5 V-class LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>-based ASSBs at 1 C and 30°C. The discoveries in this work open a new avenue for designing high-conductivity fluoride SSEs, paving the way for the application of high-voltage cathodes in high-energy-density ASSBs.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102233"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-plane iridium-based filaments sap efficiency in proton exchange membrane electrolyzers 交叉平面铱基灯丝降低了质子交换膜电解槽的效率
IF 39.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102238
Christine Heume, Violeta Karyofylli, Ali Javed, Krzysztof Dzieciol, Shibabrata Basak, Jean-Pierre Poc, Yasemin Tasdemir, Yannik Rutsch, Lukas Rein, Niklas Wolf, Sebastian Speer, Sven Jovanovic, Leander Treutlein, Julian Borowec, Florian Hausen, Ladislaus Dobrenizki, Stephan Malmberg, Josef Granwehr, Hans Kungl, Eva Jodat, Rüdiger-A. Eichel
Proton exchange membrane electrolysis cells (PEMECs) are key to producing green hydrogen. The success of the green hydrogen economy depends on the technical maturity and scalability of water electrolysis systems. However, achieving energy-efficient and long-term operation requires a thorough understanding of aging mechanisms. While PEMECs have been extensively studied under laboratory conditions, data derived from industrial-scale operations are scarce.Our study addresses aging in an industry-oriented PEMEC operated under realistic conditions for 5,000 h, revealing systematic parasitic current pathways from cross-plane iridium filaments within the membrane, correlated with the anode/porous transport layer (PTL) interface. Experiments and computational models confirm that these parasitic currents do not impede system operation but do reduce system efficiency. This filament formation associated with the anode/PTL interface represents a hitherto unreported source of aging within PEMECs. Our findings will help optimize PEMEC design, effectively improving system performance and lifetime on an industrial scale, thus advancing the green hydrogen economy.
质子交换膜电解电池(PEMECs)是生产绿色氢的关键。绿色氢经济的成功取决于水电解系统的技术成熟度和可扩展性。然而,实现节能和长期运行需要对老化机制有透彻的了解。尽管在实验室条件下对pemec进行了广泛的研究,但来自工业规模操作的数据很少。我们的研究解决了在现实条件下运行5000小时的工业导向PEMEC的老化问题,揭示了膜内跨平面铱丝的系统寄生电流路径,与阳极/多孔传输层(PTL)界面相关。实验和计算模型证实,这些寄生电流不会妨碍系统运行,但会降低系统效率。这种与阳极/PTL界面相关的细丝形成代表了pemec中迄今未报道的老化来源。我们的研究结果将有助于优化PEMEC设计,有效提高系统性能和工业规模的使用寿命,从而推进绿色氢经济。
{"title":"Cross-plane iridium-based filaments sap efficiency in proton exchange membrane electrolyzers","authors":"Christine Heume, Violeta Karyofylli, Ali Javed, Krzysztof Dzieciol, Shibabrata Basak, Jean-Pierre Poc, Yasemin Tasdemir, Yannik Rutsch, Lukas Rein, Niklas Wolf, Sebastian Speer, Sven Jovanovic, Leander Treutlein, Julian Borowec, Florian Hausen, Ladislaus Dobrenizki, Stephan Malmberg, Josef Granwehr, Hans Kungl, Eva Jodat, Rüdiger-A. Eichel","doi":"10.1016/j.joule.2025.102238","DOIUrl":"https://doi.org/10.1016/j.joule.2025.102238","url":null,"abstract":"Proton exchange membrane electrolysis cells (PEMECs) are key to producing green hydrogen. The success of the green hydrogen economy depends on the technical maturity and scalability of water electrolysis systems. However, achieving energy-efficient and long-term operation requires a thorough understanding of aging mechanisms. While PEMECs have been extensively studied under laboratory conditions, data derived from industrial-scale operations are scarce.Our study addresses aging in an industry-oriented PEMEC operated under realistic conditions for 5,000 h, revealing systematic parasitic current pathways from cross-plane iridium filaments within the membrane, correlated with the anode/porous transport layer (PTL) interface. Experiments and computational models confirm that these parasitic currents do not impede system operation but do reduce system efficiency. This filament formation associated with the anode/PTL interface represents a hitherto unreported source of aging within PEMECs. Our findings will help optimize PEMEC design, effectively improving system performance and lifetime on an industrial scale, thus advancing the green hydrogen economy.","PeriodicalId":343,"journal":{"name":"Joule","volume":"31 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146005591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the viability of p-i-n perovskite solar cells with printable carbon cathode: Origin of polarity inversion 用可印刷碳阴极提高p-i-n钙钛矿太阳能电池的可行性:极性反转的起源
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102224
Tian Du , Hakan U. Dag , Zijian Peng , Jonas Englhard , Anastasia Barabash , Handan Zhang , Jiyun Zhang , Jiayi Tan , Shudi Qiu , Lirong Dong , Michael Wagner , Jens A. Hauch , Fei Guo , Olga Kasian , Julien Bachmann , Christoph J. Brabec
Printable rear electrodes represent a key enabling technology for the upscaling of perovskite solar cells (PSCs). Carbon electrodes are appealing candidates widely employed in n-i-p (so-called “conventional”) architectures, but their integration into p-i-n (so-called “inverted”) architectures is prohibited by interfacial energetic mismatch. We address this challenge by introducing a tin oxide (SnOx) interlayer with desirable mechanical durability and n-doping level. We show in detail how the tailored interlayer converts carbon from a hole-collecting anode to an electron-collecting cathode and how the electron-extraction barrier is minimized, narrowing the efficiency gap between carbon (21.8%) and silver (24.0%) electrodes. The advancement results in a remarkably improved viability of the PSCs: a modest drop in efficiency is outweighed by a 3-fold improvement in projected operational lifetime (>8,000 h) and a 60% reduction in the bill of materials. These results underscore the potential of carbon as a cost-effective alternative to silver in the industrialization of p-i-n PSCs.
可打印后电极是钙钛矿太阳能电池(PSCs)升级的关键使能技术。碳电极是广泛应用于n-i-p(所谓的“传统”)结构的有吸引力的候选者,但由于界面能量不匹配,它们无法集成到p-i-n(所谓的“倒置”)结构中。我们通过引入具有理想机械耐久性和n掺杂水平的氧化锡(SnOx)中间层来解决这一挑战。我们详细展示了定制的中间层如何将碳从空穴收集阳极转化为电子收集阴极,以及如何最小化电子提取势垒,缩小碳(21.8%)和银(24.0%)电极之间的效率差距。这一进步显著提高了psc的生存能力:效率的适度下降被预计使用寿命(>8,000小时)的3倍提高和材料清单的60%减少所抵消。这些结果强调了碳作为一种具有成本效益的银替代品在p-i-n psc工业化中的潜力。
{"title":"Enhancing the viability of p-i-n perovskite solar cells with printable carbon cathode: Origin of polarity inversion","authors":"Tian Du ,&nbsp;Hakan U. Dag ,&nbsp;Zijian Peng ,&nbsp;Jonas Englhard ,&nbsp;Anastasia Barabash ,&nbsp;Handan Zhang ,&nbsp;Jiyun Zhang ,&nbsp;Jiayi Tan ,&nbsp;Shudi Qiu ,&nbsp;Lirong Dong ,&nbsp;Michael Wagner ,&nbsp;Jens A. Hauch ,&nbsp;Fei Guo ,&nbsp;Olga Kasian ,&nbsp;Julien Bachmann ,&nbsp;Christoph J. Brabec","doi":"10.1016/j.joule.2025.102224","DOIUrl":"10.1016/j.joule.2025.102224","url":null,"abstract":"<div><div>Printable rear electrodes represent a key enabling technology for the upscaling of perovskite solar cells (PSCs). Carbon electrodes are appealing candidates widely employed in n-i-p (so-called “conventional”) architectures, but their integration into p-i-n (so-called “inverted”) architectures is prohibited by interfacial energetic mismatch. We address this challenge by introducing a tin oxide (SnO<sub>x</sub>) interlayer with desirable mechanical durability and n-doping level. We show in detail how the tailored interlayer converts carbon from a hole-collecting anode to an electron-collecting cathode and how the electron-extraction barrier is minimized, narrowing the efficiency gap between carbon (21.8%) and silver (24.0%) electrodes. The advancement results in a remarkably improved viability of the PSCs: a modest drop in efficiency is outweighed by a 3-fold improvement in projected operational lifetime (&gt;8,000 h) and a 60% reduction in the bill of materials. These results underscore the potential of carbon as a cost-effective alternative to silver in the industrialization of p-i-n PSCs.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102224"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145689031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A strategic tuning of interfacial Li+ solvation with ultrathin polymer layers for anode-free lithium metal batteries 无阳极锂金属电池用超薄聚合物层界面Li+溶剂化的策略调整
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102226
Juhyun Lee , Jinuk Kim , Wontae Jang , Dong Gyu Lee , Hongsin Kim , Yuha An , Junsu Son , Minjeong Kang , Gyuwon Lee , Jungyoon Lee , Donghyeok Son , Cheol-Young Park , Keonwoo Choi , Dongseok Shin , Tae Kyung Lee , Joonhee Moon , Sung Gap Im , Jinwoo Lee
Although anode-free lithium metal batteries (AFLMBs) offer exceptional energy density, they suffer from rapid capacity fading attributable to interfacial instability and the absence of a lithium reservoir. An interfacial solvation tuning strategy using ultrathin (∼15 nm) polymer coatings on Cu current collectors via initiated chemical vapor deposition is presented in this study. The designed polymer poly(heptadecafluorodecyl methacrylate) (pPFDMA) exhibits strong electrolyte- and solvent-phobicity, suppressing parasitic reactions and inducing local salt enrichment within the polymer. This solvation environment promotes a thin, inorganic-rich solid-electrolyte interphase layer and ensures high bulk ionic conductivity, enhancing both the cycling stability and rate capability. Consequently, pPFDMA-coated Cu enables a threefold improvement in the cycle life of half-cells and achieves 413 Wh kg−1 and 826 W kg−1 in LiNi0.8Co0.1Mn0.1O2 (NCM811)-based anode-free pouch cells. This work provides a practical and generalizable approach for interfacial engineering in AFLMBs, focusing on current collector-electrolyte interactions.
尽管无阳极锂金属电池(aflmb)具有优异的能量密度,但由于界面不稳定和缺乏锂储层,它们的容量会迅速衰减。本研究提出了一种通过化学气相沉积在Cu集热器上使用超薄(~ 15 nm)聚合物涂层的界面溶剂化调谐策略。所设计的聚合物聚甲基丙烯酸十六氟癸酯(pPFDMA)具有很强的电解质和溶剂疏水性,可以抑制寄生反应并诱导聚合物内部的局部盐富集。这种溶剂化环境促进了薄的、无机丰富的固体电解质间相层,并确保了高体积离子电导率,增强了循环稳定性和速率能力。因此,ppfdma涂层Cu使半电池的循环寿命提高了三倍,在LiNi0.8Co0.1Mn0.1O2 (NCM811)基无阳极袋状电池中达到413 Wh kg - 1和826 W kg - 1。这项工作为aflmb的界面工程提供了一种实用和可推广的方法,重点是电流集电极-电解质相互作用。
{"title":"A strategic tuning of interfacial Li+ solvation with ultrathin polymer layers for anode-free lithium metal batteries","authors":"Juhyun Lee ,&nbsp;Jinuk Kim ,&nbsp;Wontae Jang ,&nbsp;Dong Gyu Lee ,&nbsp;Hongsin Kim ,&nbsp;Yuha An ,&nbsp;Junsu Son ,&nbsp;Minjeong Kang ,&nbsp;Gyuwon Lee ,&nbsp;Jungyoon Lee ,&nbsp;Donghyeok Son ,&nbsp;Cheol-Young Park ,&nbsp;Keonwoo Choi ,&nbsp;Dongseok Shin ,&nbsp;Tae Kyung Lee ,&nbsp;Joonhee Moon ,&nbsp;Sung Gap Im ,&nbsp;Jinwoo Lee","doi":"10.1016/j.joule.2025.102226","DOIUrl":"10.1016/j.joule.2025.102226","url":null,"abstract":"<div><div>Although anode-free lithium metal batteries (AFLMBs) offer exceptional energy density, they suffer from rapid capacity fading attributable to interfacial instability and the absence of a lithium reservoir. An interfacial solvation tuning strategy using ultrathin (∼15 nm) polymer coatings on Cu current collectors via initiated chemical vapor deposition is presented in this study. The designed polymer poly(heptadecafluorodecyl methacrylate) (pPFDMA) exhibits strong electrolyte- and solvent-phobicity, suppressing parasitic reactions and inducing local salt enrichment within the polymer. This solvation environment promotes a thin, inorganic-rich solid-electrolyte interphase layer and ensures high bulk ionic conductivity, enhancing both the cycling stability and rate capability. Consequently, pPFDMA-coated Cu enables a threefold improvement in the cycle life of half-cells and achieves 413 Wh kg<sup>−1</sup> and 826 W kg<sup>−1</sup> in LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811)-based anode-free pouch cells. This work provides a practical and generalizable approach for interfacial engineering in AFLMBs, focusing on current collector-electrolyte interactions.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102226"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roadmap to 100 GWDC: Scientific and supply chain challenges for CdTe photovoltaics 到100 GWDC的路线图:CdTe光伏的科学和供应链挑战
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102235
B. Edward Sartor , Samantha B. Reese , Lorelle M. Mansfield , Ryan Muzzio , Chun-Sheng Jiang , Eric Colegrove , John S. Mangum , Camden L. Kasik , Daniel Z. Shaw , James R. Sites , Ramesh G. Dhere , Alex B. Goldstone , Michael S. Moats , Lana Alagha , Chungho Lee , Dingyuan Lu , Gang Xiong , Rouin Farshchi , Jialiu Ma , Timothy Nagle , Michael J. Heben
This roadmap highlights pathways to expand the CdTe module manufacturing capacity per year to 100 GWDC by 2030 by improving Te extraction from existing supply chains, minimizing Te usage in modules by leveraging thinner absorbers, and focusing research efforts in key areas to improve module efficiencies. Both scientific and supply chain innovations will be necessary to maintain the high compound annual growth rate of the CdTe photovoltaic (PV) industry and cement its role as a key technology for multi-TW-scale PV deployment.
该路线图强调了到2030年将碲化镉组件的年产能扩大到100 GWDC的途径,包括改善现有供应链中的碲提取,通过利用更薄的吸收器来最大限度地减少组件中的碲使用,以及将研究重点放在提高组件效率的关键领域。科学和供应链创新对于保持CdTe光伏(PV)行业的高复合年增长率和巩固其作为多太瓦规模光伏部署的关键技术的作用是必要的。
{"title":"Roadmap to 100 GWDC: Scientific and supply chain challenges for CdTe photovoltaics","authors":"B. Edward Sartor ,&nbsp;Samantha B. Reese ,&nbsp;Lorelle M. Mansfield ,&nbsp;Ryan Muzzio ,&nbsp;Chun-Sheng Jiang ,&nbsp;Eric Colegrove ,&nbsp;John S. Mangum ,&nbsp;Camden L. Kasik ,&nbsp;Daniel Z. Shaw ,&nbsp;James R. Sites ,&nbsp;Ramesh G. Dhere ,&nbsp;Alex B. Goldstone ,&nbsp;Michael S. Moats ,&nbsp;Lana Alagha ,&nbsp;Chungho Lee ,&nbsp;Dingyuan Lu ,&nbsp;Gang Xiong ,&nbsp;Rouin Farshchi ,&nbsp;Jialiu Ma ,&nbsp;Timothy Nagle ,&nbsp;Michael J. Heben","doi":"10.1016/j.joule.2025.102235","DOIUrl":"10.1016/j.joule.2025.102235","url":null,"abstract":"<div><div>This roadmap highlights pathways to expand the CdTe module manufacturing capacity per year to 100 GW<sub>DC</sub> by 2030 by improving Te extraction from existing supply chains, minimizing Te usage in modules by leveraging thinner absorbers, and focusing research efforts in key areas to improve module efficiencies. Both scientific and supply chain innovations will be necessary to maintain the high compound annual growth rate of the CdTe photovoltaic (PV) industry and cement its role as a key technology for multi-TW-scale PV deployment.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102235"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical extraction of gallium from chemically akin metal mixtures via an atomic-scale low-entropy-increasing strategy 利用原子尺度低熵增加策略从化学性质相似的金属混合物中机械化学萃取镓
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102234
Jinhui Li , Lanbin Wang , Beikai Zhang , Duanmei Song , Jiadong Yu
Conventional mixing-then-separating recycling processes struggle with emerging urban minerals containing chemically akin metals because the resulting high-entropy mixtures become kinetically trapped against separation. This work introduces an atomic-scale low-entropy-increasing strategy for selective gallium (Ga) recovery from end-of-life Cu(In,Ga)Se2 (CIGS) photovoltaics. The process integrates mechanochemical molten-salt extraction with water leaching, delivering 96.08% Ga recovery with a Ga/indium (In) separation factor of 88.89, which is ∼35 times higher than existing metallurgical benchmarks. Mechanistic investigations reveal that mechanochemical polarization selectively cleaves Ga–selenium (Se) bonds (3.01 eV) over copper (Cu)–Se (4.33 eV) and In–Se (4.47 eV), dissolving Ga as Ga(OH)4 complexes while retaining CuInSe2 solids with intact CIGS configuration. Compared with other CIGS recycling methods, this entropy-minimizing lattice-topology-conversion strategy slashes carbon emissions, water consumption, and fossil fuel demand by 70.32%–86.94%, 87.72%–92.00%, and 62.91%–81.45%, respectively. Overall, we establish a scalable metallurgical design for critical metal recovery in urban mining, advancing the circular economy.
传统的先混合再分离的回收过程很难处理含有化学上类似金属的新兴城市矿物,因为由此产生的高熵混合物会在动力学上被困住,无法分离。这项工作介绍了一种原子尺度的低熵增加策略,用于从寿命终止的Cu(In,Ga)Se2 (CIGS)光伏电池中选择性回收镓(Ga)。该工艺将机械化学熔盐萃取与水浸相结合,镓回收率为96.08%,镓/铟(In)分离系数为88.89,比现有冶金基准高出约35倍。机制研究表明,机械化学极化选择性地在铜(Cu) -Se (4.33 eV)和In-Se (4.47 eV)上切割Ga -硒(Se)键(3.01 eV),使Ga溶解为Ga(OH)4 -配合物,同时保留了具有完整CIGS结构的CuInSe2固体。与其他CIGS回收方法相比,这种熵最小化的晶格拓扑转换策略将碳排放、水消耗和化石燃料需求分别降低了70.32% ~ 86.94%、87.72% ~ 92.00%和62.91% ~ 81.45%。总体而言,我们为城市采矿中的关键金属回收建立了可扩展的冶金设计,推进了循环经济。
{"title":"Mechanochemical extraction of gallium from chemically akin metal mixtures via an atomic-scale low-entropy-increasing strategy","authors":"Jinhui Li ,&nbsp;Lanbin Wang ,&nbsp;Beikai Zhang ,&nbsp;Duanmei Song ,&nbsp;Jiadong Yu","doi":"10.1016/j.joule.2025.102234","DOIUrl":"10.1016/j.joule.2025.102234","url":null,"abstract":"<div><div>Conventional mixing-then-separating recycling processes struggle with emerging urban minerals containing chemically akin metals because the resulting high-entropy mixtures become kinetically trapped against separation. This work introduces an atomic-scale low-entropy-increasing strategy for selective gallium (Ga) recovery from end-of-life Cu(In,Ga)Se<sub>2</sub> (CIGS) photovoltaics. The process integrates mechanochemical molten-salt extraction with water leaching, delivering 96.08% Ga recovery with a Ga/indium (In) separation factor of 88.89, which is ∼35 times higher than existing metallurgical benchmarks. Mechanistic investigations reveal that mechanochemical polarization selectively cleaves Ga–selenium (Se) bonds (3.01 eV) over copper (Cu)–Se (4.33 eV) and In–Se (4.47 eV), dissolving Ga as Ga(OH)<sub>4</sub><sup>−</sup> complexes while retaining CuInSe<sub>2</sub> solids with intact CIGS configuration. Compared with other CIGS recycling methods, this entropy-minimizing lattice-topology-conversion strategy slashes carbon emissions, water consumption, and fossil fuel demand by 70.32%–86.94%, 87.72%–92.00%, and 62.91%–81.45%, respectively. Overall, we establish a scalable metallurgical design for critical metal recovery in urban mining, advancing the circular economy.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102234"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand rulers dictate atomic pairing and geometry of dual-atom catalysts 配体标尺决定了双原子催化剂的原子配对和几何结构
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102308
Lei Shi , Huiyuan Zhu
In a recent issue of Nature Materials, Ma et al. introduce a ligand-constrained strategy for synthesizing highly paired dual-atom catalysts. By coordinating metal centers with diamine ligands of tunable lengths, they achieved a pairing ratio exceeding 80%, precisely controlled interatomic distance, and enhanced catalytic activity for electrochemical nitrate reduction reaction.
在最近一期的《自然材料》杂志上,Ma等人介绍了一种配体约束策略,用于合成高度配对的双原子催化剂。通过金属中心配位长度可调的二胺配体,实现了超过80%的配对率,精确控制原子间距离,提高了电化学硝酸还原反应的催化活性。
{"title":"Ligand rulers dictate atomic pairing and geometry of dual-atom catalysts","authors":"Lei Shi ,&nbsp;Huiyuan Zhu","doi":"10.1016/j.joule.2025.102308","DOIUrl":"10.1016/j.joule.2025.102308","url":null,"abstract":"<div><div>In a recent issue of <em>Nature Materials</em>, Ma et al. introduce a ligand-constrained strategy for synthesizing highly paired dual-atom catalysts. By coordinating metal centers with diamine ligands of tunable lengths, they achieved a pairing ratio exceeding 80%, precisely controlled interatomic distance, and enhanced catalytic activity for electrochemical nitrate reduction reaction.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102308"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146006713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical outlook for large-scale all-solid-state batteries 大规模全固态电池的关键前景
IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.joule.2025.102269
Seongjae Ko , Makoto Ue , Atsuo Yamada
Seongjae Ko worked as a senior researcher at Samsung SDI in South Korea from 2012 to 2015. He joined Professor Yamada’s group as an academic support specialist in 2015. From 2017 to 2020, he worked as a DC1 research fellow at the Japan Society for the Promotion of Science. He received his PhD from the University of Tokyo in 2020. Since 2021, he has served as an assistant professor at the University of Tokyo and was later promoted to lecturer. Further details are available at https://orcid.org/0000-0001-6163-7687.
Makoto Ue obtained his MS and PhD from The University of Tokyo in 1981 and 1995, respectively, and studied at the University of Pittsburgh and Lawrence Berkeley National Laboratory from 1988 to 1990. He worked for Mitsubishi Chemical from 1981 to 2012 (fellow), Samsung SDI as a vice president from 2012 to 2018, National Institute for Materials Science as a special researcher from 2019 to 2020, and Waseda University as a guest professor since 2022. He was awarded eight awards including the Achievement Award from ECSJ (2022), the Battery Division Technology Award from ECS (2004), and the Research Award from IBA (1997).
Atsuo Yamada has had a unique career in both academic and industrial research. After serving as the laboratory head of the Sony Research Center, he was appointed as associate professor at the Tokyo Institute of Technology in 2002, and as full professor at the University of Tokyo in 2009. He has been awarded the Spriggs Award (2010) and the Purdy Award (2016) by ACerS, the Scientific Achievement Award (2016) by ECSJ, Research Award (2016) from IBA, the Battery Division Research Award (2022) from ECS, Science & Technology Award (2023) from MEXT minister, and Clarivate Highly Cited Researcher (2019, 2025).
高成宰(Seongjae Ko)于2012年至2015年在韩国三星SDI担任高级研究员。他于2015年加入山田教授的团队,担任学术支持专家。2017年至2020年,在日本科学促进会担任DC1研究员。2020年获东京大学博士学位。自2021年起,他在东京大学担任助理教授,后晋升为讲师。他分别于1981年和1995年在东京大学获得硕士和博士学位,并于1988年至1990年在匹兹堡大学和劳伦斯伯克利国家实验室学习。他于1981年至2012年在三菱化学(研究员)、2012年至2018年在三星SDI担任副社长、2019年至2020年在国立材料科学研究所担任特别研究员、2022年在早稻田大学担任客座教授。他获得了8个奖项,包括ECSJ成就奖(2022年),ECS电池部门技术奖(2004年)和IBA研究奖(1997年)。山田硕在学术和工业研究方面都有着独特的职业生涯。在担任索尼研究中心实验室主任之后,他于2002年被任命为东京工业大学副教授,并于2009年被任命为东京大学正教授。他曾获得美国科学院颁发的Spriggs奖(2010年)和Purdy奖(2016年),ECSJ科学成就奖(2016年),IBA研究奖(2016年),ECS电池部门研究奖(2022年),MEXT部长科学技术奖(2023年)和Clarivate高被引研究员(2019年,2025年)。
{"title":"A critical outlook for large-scale all-solid-state batteries","authors":"Seongjae Ko ,&nbsp;Makoto Ue ,&nbsp;Atsuo Yamada","doi":"10.1016/j.joule.2025.102269","DOIUrl":"10.1016/j.joule.2025.102269","url":null,"abstract":"<div><div>Seongjae Ko worked as a senior researcher at Samsung SDI in South Korea from 2012 to 2015. He joined Professor Yamada’s group as an academic support specialist in 2015. From 2017 to 2020, he worked as a DC1 research fellow at the Japan Society for the Promotion of Science. He received his PhD from the University of Tokyo in 2020. Since 2021, he has served as an assistant professor at the University of Tokyo and was later promoted to lecturer. Further details are available at <span><span>https://orcid.org/0000-0001-6163-7687</span><svg><path></path></svg></span>.</div><div>Makoto Ue obtained his MS and PhD from The University of Tokyo in 1981 and 1995, respectively, and studied at the University of Pittsburgh and Lawrence Berkeley National Laboratory from 1988 to 1990. He worked for Mitsubishi Chemical from 1981 to 2012 (fellow), Samsung SDI as a vice president from 2012 to 2018, National Institute for Materials Science as a special researcher from 2019 to 2020, and Waseda University as a guest professor since 2022. He was awarded eight awards including the Achievement Award from ECSJ (2022), the Battery Division Technology Award from ECS (2004), and the Research Award from IBA (1997).</div><div>Atsuo Yamada has had a unique career in both academic and industrial research. After serving as the laboratory head of the Sony Research Center, he was appointed as associate professor at the Tokyo Institute of Technology in 2002, and as full professor at the University of Tokyo in 2009. He has been awarded the Spriggs Award (2010) and the Purdy Award (2016) by ACerS, the Scientific Achievement Award (2016) by ECSJ, Research Award (2016) from IBA, the Battery Division Research Award (2022) from ECS, Science &amp; Technology Award (2023) from MEXT minister, and Clarivate Highly Cited Researcher (2019, 2025).</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":"Article 102269"},"PeriodicalIF":35.4,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Joule
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1