Pub Date : 2024-09-01DOI: 10.1016/j.resenv.2024.100167
Ran Tao , Bin Li , Yufeng Wu , Wei Zhang , Lijuan Zhao , Haoran Yuan , Jing Gu , Yong Chen
Pyrolysis technology is a green and efficient method for recycling enameled wires. However, since waste enameled wires are typically recovered from electronic waste, they often contain small amounts of wires and cables. Therefore, during the pyrolysis process of waste enameled wires, it is inevitable for the paint film and the cable sheath to undergo co-pyrolysis. Polyesterimide enameled wires (EPEsI) and polyvinyl chloride (PVC) were chosen as represent enameled wires and cable sheath materials, respectively. Using thermogravimetric analysis with various pyrolysis kinetic analysis methods, the pyrolysis characteristics and kinetics of EPEsI and Mixture (mixture of EPEsI and PVC) were studied. Through synergy analysis and pyrolysis-gas chromatography/mass spectrometry analysis, the influence of PVC on the pyrolysis of EPEsI was elucidated from aspects such as pyrolysis characteristics and product distribution. Based on density functional theory calculations and wave function analysis, the role of endogenous metal Cu in EPEsI on the pyrolysis processes of PEsI and PVC, as well as the mechanism of HCl from PVC on the pyrolysis of PEsI, were clarified.
{"title":"Based on experiment and quantum chemical calculations: a study of the co-pyrolysis mechanism of polyesterimide enameled wires with polyvinyl chloride and the catalytic effect of endogenous metal Cu","authors":"Ran Tao , Bin Li , Yufeng Wu , Wei Zhang , Lijuan Zhao , Haoran Yuan , Jing Gu , Yong Chen","doi":"10.1016/j.resenv.2024.100167","DOIUrl":"10.1016/j.resenv.2024.100167","url":null,"abstract":"<div><p>Pyrolysis technology is a green and efficient method for recycling enameled wires. However, since waste enameled wires are typically recovered from electronic waste, they often contain small amounts of wires and cables. Therefore, during the pyrolysis process of waste enameled wires, it is inevitable for the paint film and the cable sheath to undergo co-pyrolysis. Polyesterimide enameled wires (EPEsI) and polyvinyl chloride (PVC) were chosen as represent enameled wires and cable sheath materials, respectively. Using thermogravimetric analysis with various pyrolysis kinetic analysis methods, the pyrolysis characteristics and kinetics of EPEsI and Mixture (mixture of EPEsI and PVC) were studied. Through synergy analysis and pyrolysis-gas chromatography/mass spectrometry analysis, the influence of PVC on the pyrolysis of EPEsI was elucidated from aspects such as pyrolysis characteristics and product distribution. Based on density functional theory calculations and wave function analysis, the role of endogenous metal Cu in EPEsI on the pyrolysis processes of PEsI and PVC, as well as the mechanism of HCl from PVC on the pyrolysis of PEsI, were clarified.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100167"},"PeriodicalIF":12.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000203/pdfft?md5=c9d8712a542d3b0f788519ee479c3952&pid=1-s2.0-S2666916124000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142135806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resenv.2024.100168
Jiaxin Wang , Tao Huang , Zaili Ling , Shijie Song , Jiayi Xin , Yao Liu , Kaijie Chen , Zijian Wei , Ji Ren , Yuan Zhao , Hong Gao , Jianmin Ma
Population and agricultural resource distribution disparities drive the multidimensional challenge of ensuring food security, especially in large and diverse nations like China. Agricultural practices and trade patterns have profound implications not only for national food security but also for global environmental and health outcomes. Although regional agricultural trade has great potential to alleviate food supply pressures, little is known about the environmental and health consequences of agricultural trade on a national scale in China. This study firstly estimated ammonia (NH3) emissions, a precursor of PM, driven by interprovincial grain and meat trade (GMT) for 2017 in mainland China. Then, PM pollution and associated health risks induced by GTM were simulated using a coupled meteorology atmospheric chemistry model and integrated exposure–response model. We found that approximately 30% of NH3 emissions from grain and meat production were trade-related, demonstrating a dramatic virtual transfer from Northern China to Southern China. Interprovincial GMT dramatically reduced PM levels and the associated health burden in Southern China, but enhanced in Northern China. Given higher population intensity and reduced PM levels in Southern China, interprovincial GMT was estimated to avoid 4,851 (95% confidence interval: 3,444–5,870) premature deaths in China in 2017. Our results illustrate the need for rethinking trade patterns for optimality to minimize the mixed impacts of the GWT on the environment, human health, and food security, and to provide supports to the development of more effective policies to achieve these goals.
{"title":"North-to-south transfer of grain and meat products significantly reduces PM2.5 pollution and associated health risk in China","authors":"Jiaxin Wang , Tao Huang , Zaili Ling , Shijie Song , Jiayi Xin , Yao Liu , Kaijie Chen , Zijian Wei , Ji Ren , Yuan Zhao , Hong Gao , Jianmin Ma","doi":"10.1016/j.resenv.2024.100168","DOIUrl":"10.1016/j.resenv.2024.100168","url":null,"abstract":"<div><p>Population and agricultural resource distribution disparities drive the multidimensional challenge of ensuring food security, especially in large and diverse nations like China. Agricultural practices and trade patterns have profound implications not only for national food security but also for global environmental and health outcomes. Although regional agricultural trade has great potential to alleviate food supply pressures, little is known about the environmental and health consequences of agricultural trade on a national scale in China. This study firstly estimated ammonia (NH<sub>3</sub>) emissions, a precursor of PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span>, driven by interprovincial grain and meat trade (GMT) for 2017 in mainland China. Then, PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> pollution and associated health risks induced by GTM were simulated using a coupled meteorology atmospheric chemistry model and integrated exposure–response model. We found that approximately 30% of NH<sub>3</sub> emissions from grain and meat production were trade-related, demonstrating a dramatic virtual transfer from Northern China to Southern China. Interprovincial GMT dramatically reduced PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> levels and the associated health burden in Southern China, but enhanced in Northern China. Given higher population intensity and reduced PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> levels in Southern China, interprovincial GMT was estimated to avoid 4,851 (95% confidence interval: 3,444–5,870) premature deaths in China in 2017. Our results illustrate the need for rethinking trade patterns for optimality to minimize the mixed impacts of the GWT on the environment, human health, and food security, and to provide supports to the development of more effective policies to achieve these goals.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100168"},"PeriodicalIF":12.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000215/pdfft?md5=4cb0e1b5f7613bc40c237c6317a4c0f4&pid=1-s2.0-S2666916124000215-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resenv.2024.100170
Malin Grosse-Heilmann, Elena Cristiano, Roberto Deidda, Francesco Viola
Durum wheat is a crucial staple crop in many arid and semi-arid regions around the world, significantly contributing to local food security. This review paper aims to explore the current status of durum wheat productivity and the potential impacts of future climatic conditions on its cultivation. Various drivers and constraints affecting durum wheat yield are examined, including biotic and abiotic stressors, CO2 concentrations and agronomic practices. Drought and heat stress were identified as the primary yield limiting factors. Furthermore, the influence of climate change on durum wheat is evaluated, focusing on altered precipitation patterns, temperature extremes, and increased atmospheric CO2 levels. Most prominent quantification methods for climate change impact on yields are explored. The paper provides a summary of the current state of research, which reveals some contradictory results for future durum wheat yields. On the one hand, significant increases in productivity due to the fertilization effect of higher CO2 levels are predicted. On the other hand, the crop failures are foreseen as consequence of elevated heat and drought stress as part of climate change. Overall, this paper underlines the importance of understanding the complex interactions between climate change and durum wheat productivity and highlights the urgency to explore sustainable adaptation strategies to ensure future food security.
{"title":"Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects","authors":"Malin Grosse-Heilmann, Elena Cristiano, Roberto Deidda, Francesco Viola","doi":"10.1016/j.resenv.2024.100170","DOIUrl":"10.1016/j.resenv.2024.100170","url":null,"abstract":"<div><p>Durum wheat is a crucial staple crop in many arid and semi-arid regions around the world, significantly contributing to local food security. This review paper aims to explore the current status of durum wheat productivity and the potential impacts of future climatic conditions on its cultivation. Various drivers and constraints affecting durum wheat yield are examined, including biotic and abiotic stressors, CO<sub>2</sub> concentrations and agronomic practices. Drought and heat stress were identified as the primary yield limiting factors. Furthermore, the influence of climate change on durum wheat is evaluated, focusing on altered precipitation patterns, temperature extremes, and increased atmospheric CO<sub>2</sub> levels. Most prominent quantification methods for climate change impact on yields are explored. The paper provides a summary of the current state of research, which reveals some contradictory results for future durum wheat yields. On the one hand, significant increases in productivity due to the fertilization effect of higher CO<sub>2</sub> levels are predicted. On the other hand, the crop failures are foreseen as consequence of elevated heat and drought stress as part of climate change. Overall, this paper underlines the importance of understanding the complex interactions between climate change and durum wheat productivity and highlights the urgency to explore sustainable adaptation strategies to ensure future food security.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100170"},"PeriodicalIF":12.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000239/pdfft?md5=870d2268c25f90596d5314fba554bc6a&pid=1-s2.0-S2666916124000239-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resenv.2024.100169
Andrea Paulillo , Esther Sanyé-Mengual
The Planetary Boundaries (PBs) pioneering approach defines environmental sustainability in terms of a Safe Operating Space (SOS) for human’s society to develop and thrive. The approach has found fertile ground in combination with Life Cycle Assessment (LCA) - a standardised method for assessing the environmental impacts of product systems. In this article, we conduct a detailed review of existing approaches to embed PBs in LCA. We start by exploring the links between PBs control variables and LCA impact categories and then focus on reviewing three approaches (i) absolute environmental sustainability assessment (AESA), (ii) PBs-based normalisation and (iii) PBs-based weighting. We examine four key methodological aspects covering harmonisation of units (between PBs control variables and LCA indicators), definition and allocation of the SOS, regionalisation of boundaries and temporal aspects. We conclude the review with a discussion on applicability, limitations, policy implications and conclusions.
{"title":"Approaches to incorporate Planetary Boundaries in Life Cycle Assessment: A critical review","authors":"Andrea Paulillo , Esther Sanyé-Mengual","doi":"10.1016/j.resenv.2024.100169","DOIUrl":"10.1016/j.resenv.2024.100169","url":null,"abstract":"<div><p>The Planetary Boundaries (PBs) pioneering approach defines environmental sustainability in terms of a Safe Operating Space (SOS) for human’s society to develop and thrive. The approach has found fertile ground in combination with Life Cycle Assessment (LCA) - a standardised method for assessing the environmental impacts of product systems. In this article, we conduct a detailed review of existing approaches to embed PBs in LCA. We start by exploring the links between PBs control variables and LCA impact categories and then focus on reviewing three approaches (i) absolute environmental sustainability assessment (AESA), (ii) PBs-based normalisation and (iii) PBs-based weighting. We examine four key methodological aspects covering harmonisation of units (between PBs control variables and LCA indicators), definition and allocation of the SOS, regionalisation of boundaries and temporal aspects. We conclude the review with a discussion on applicability, limitations, policy implications and conclusions.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100169"},"PeriodicalIF":12.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000227/pdfft?md5=7ac3ba07db86ce8856d4c62e42b26e40&pid=1-s2.0-S2666916124000227-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.resenv.2024.100166
Xinxin Li , Yifan Wei , Lijun Wang , Sanjun Jin , Ping Wang , Juan Chang , Qingqiang Yin , Chaoqi Liu , Maolong Li , Yayu Liu , Qun Zhu , Xiaowei Dang , Fushan Lu
Direct land application of conventional compost may cause ecological risks due to the presence of heavy metals. To effectively reduce heavy metal bioavailability in compost, a multi-component passivator comprising Candida utilis, sodium humate, zeolite and attapulgite was developed, which showed passivation rates of 59.28%, 86.93% and 38.95% for zinc (Zn), copper (Cu), and ferrum (Fe), respectively, in compost. The addition of customized multi-component passivator in compost not only reduced the mobility of heavy metals, but also improved the quality of the compost and further increased the abundance of lignocellulose-degrading beneficial microorganisms in compost. Subsequent fertilization results showed that the compost product fermented with customized multi-component passivator greatly improved the growth of Chinese cabbage, with significant increases in height, weight, root length, and total chlorophyll contents of 97.63%, 210.13%, 20.42%, and 40.38%, respectively. It can be concluded that the custom-made multi-component passivator is expected to be a good additive for heavy metal passivation, high-quality compost, and plant growth.
{"title":"Effects of multi-component passivator on heavy metal passivation, compost quality and plant growth","authors":"Xinxin Li , Yifan Wei , Lijun Wang , Sanjun Jin , Ping Wang , Juan Chang , Qingqiang Yin , Chaoqi Liu , Maolong Li , Yayu Liu , Qun Zhu , Xiaowei Dang , Fushan Lu","doi":"10.1016/j.resenv.2024.100166","DOIUrl":"10.1016/j.resenv.2024.100166","url":null,"abstract":"<div><p>Direct land application of conventional compost may cause ecological risks due to the presence of heavy metals. To effectively reduce heavy metal bioavailability in compost, a multi-component passivator comprising <em>Candida utilis</em>, sodium humate, zeolite and attapulgite was developed, which showed passivation rates of 59.28%, 86.93% and 38.95% for zinc (Zn), copper (Cu), and ferrum (Fe), respectively, in compost. The addition of customized multi-component passivator in compost not only reduced the mobility of heavy metals, but also improved the quality of the compost and further increased the abundance of lignocellulose-degrading beneficial microorganisms in compost. Subsequent fertilization results showed that the compost product fermented with customized multi-component passivator greatly improved the growth of Chinese cabbage, with significant increases in height, weight, root length, and total chlorophyll contents of 97.63%, 210.13%, 20.42%, and 40.38%, respectively. It can be concluded that the custom-made multi-component passivator is expected to be a good additive for heavy metal passivation, high-quality compost, and plant growth.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100166"},"PeriodicalIF":12.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000197/pdfft?md5=75dd857c81f3ab4218947ae0c7c76de3&pid=1-s2.0-S2666916124000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.resenv.2024.100165
Jiajia Zhang , Wencheng Ding , Shengtao Wang , Xuejiao Ha , Lei Zhang , Yue Zhao , Wenqiang Wu , Meng Zhao , Guoyuan Zou , Yanhua Chen
Organic composts are significant sources of microplastic (MP) pollution in soils, and their input is much higher in greenhouse agriculture than open-field agriculture. However, how long-term compost application affects MPs pollution in greenhouse soil profiles remains unclear. This study examined MPs characteristics in chicken manure compost and earthworms, exploring the long-term impacts of compost application on MPs accumulation and vertical migration in 0–100 cm soil depth through a 15-year greenhouse experiment. Microplastics abundance was 3965 items kg in compost, 191–248 items kg in compost-amended soils, and 2.73–4.52 items individual in earthworms from compost-amended soils; the latter two increased significantly with compost application and were significantly higher than unamended soils. Soil MPs accumulation from long-term compost amendment contributed 45.4% of the total. The proportion of MPs <2 mm in compost (49.7%) was less than in compost-amended soils (65.5%) and earthworms (65.4%). Microplastics size and abundance decreased with increasing soil depth. Microplastics polymer types and shapes in composts, compost-amended soils, and earthworms exhibited similarities, mainly including polyethylene and polypropylene fragments and fibers. Compost-derived MPs in soils exhibited complex weathering morphology and adhered to mineral colloids. Therefore, soil MPs originating from compost gradually weathered and degraded into smaller particles and migrated to deeper soil, maybe resulting in more serious ecological issues.
{"title":"Pollution characteristics of microplastics in greenhouse soil profiles with the long-term application of organic compost","authors":"Jiajia Zhang , Wencheng Ding , Shengtao Wang , Xuejiao Ha , Lei Zhang , Yue Zhao , Wenqiang Wu , Meng Zhao , Guoyuan Zou , Yanhua Chen","doi":"10.1016/j.resenv.2024.100165","DOIUrl":"10.1016/j.resenv.2024.100165","url":null,"abstract":"<div><p>Organic composts are significant sources of microplastic (MP) pollution in soils, and their input is much higher in greenhouse agriculture than open-field agriculture. However, how long-term compost application affects MPs pollution in greenhouse soil profiles remains unclear. This study examined MPs characteristics in chicken manure compost and earthworms, exploring the long-term impacts of compost application on MPs accumulation and vertical migration in 0–100 cm soil depth through a 15-year greenhouse experiment. Microplastics abundance was 3965 items kg<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in compost, 191–248 items kg<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in compost-amended soils, and 2.73–4.52 items individual<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in earthworms from compost-amended soils; the latter two increased significantly with compost application and were significantly higher than unamended soils. Soil MPs accumulation from long-term compost amendment contributed 45.4% of the total. The proportion of MPs <2 mm in compost (49.7%) was less than in compost-amended soils (65.5%) and earthworms (65.4%). Microplastics size and abundance decreased with increasing soil depth. Microplastics polymer types and shapes in composts, compost-amended soils, and earthworms exhibited similarities, mainly including polyethylene and polypropylene fragments and fibers. Compost-derived MPs in soils exhibited complex weathering morphology and adhered to mineral colloids. Therefore, soil MPs originating from compost gradually weathered and degraded into smaller particles and migrated to deeper soil, maybe resulting in more serious ecological issues.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100165"},"PeriodicalIF":12.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000185/pdfft?md5=9922319bc395f2548e15092101b13c6e&pid=1-s2.0-S2666916124000185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.resenv.2024.100164
Qingchen Xiao , Boyan Wang , Zishan Li , Zihua Zhang , Kailing Xie , Jing Zhou , Keqing Lin , Xiaowan Geng , Xiaoyu Li , Jin Chen
Heavy metal (HM) contamination affects the composition and structure of soil microbial communities, but there are few studies on the assembly process and co-occurrence network of soil microbial community succession driven by Cd in volcanic ecosystem. To address this gap in knowledge, we collected and analyzed soil samples from the Nvshan Volcanic area to understand the microbial characteristics in primary succession soil (PS) and secondary succession soil (SS). We found that the soil was contaminated with different levels of Cd (PS > SS), resulting in obvious heterogeneity of microorganisms. The absolute abundance of bacteria (16S rRNA gene copies) varied significantly between the two successions (P < 0.0001). The co-occurrence networks analysis showed that the number of nodes in bacterial communities was lower in PS compared to SS (1002 vs. 1004), indicating that heavy metal contamination would reduce the number of soil microbial communities. Compared with PS, bacterial communities exhibited stronger competitiveness in SS (positive: negative, P/N: 25.69 vs. 64.22), whereas fungal communities were closer symbiotic relationships (positive/negative, P/N: 15.85 vs. 14.29). The neutral community model (NCM) analysis revealed that stochastic processes predominantly governed the microbial assembly process (bacterial R2: 0.657, fungal R2: 0.686). The Mantel test analysis revealed that Cd was negatively associated with cbbLR, amoA, and phoD. The results of the Sankey diagram showed that fungi were more resistant than bacteria (27 vs. 13). This study contributes to understanding the process of soil microbial succession under Cd stress and identifying microbial strains with potential for Cd remediation.
{"title":"The assembly process and co-occurrence network of soil microbial community driven by cadmium in volcanic ecosystem","authors":"Qingchen Xiao , Boyan Wang , Zishan Li , Zihua Zhang , Kailing Xie , Jing Zhou , Keqing Lin , Xiaowan Geng , Xiaoyu Li , Jin Chen","doi":"10.1016/j.resenv.2024.100164","DOIUrl":"10.1016/j.resenv.2024.100164","url":null,"abstract":"<div><p>Heavy metal (HM) contamination affects the composition and structure of soil microbial communities, but there are few studies on the assembly process and co-occurrence network of soil microbial community succession driven by Cd in volcanic ecosystem. To address this gap in knowledge, we collected and analyzed soil samples from the Nvshan Volcanic area to understand the microbial characteristics in primary succession soil (PS) and secondary succession soil (SS). We found that the soil was contaminated with different levels of Cd (PS > SS), resulting in obvious heterogeneity of microorganisms. The absolute abundance of bacteria (16S rRNA gene copies) varied significantly between the two successions (<em>P</em> < 0.0001). The co-occurrence networks analysis showed that the number of nodes in bacterial communities was lower in PS compared to SS (1002 vs. 1004), indicating that heavy metal contamination would reduce the number of soil microbial communities. Compared with PS, bacterial communities exhibited stronger competitiveness in SS (positive: negative, P/N: 25.69 vs. 64.22), whereas fungal communities were closer symbiotic relationships (positive/negative, P/N: 15.85 vs. 14.29). The neutral community model (NCM) analysis revealed that stochastic processes predominantly governed the microbial assembly process (bacterial R<sup>2</sup>: 0.657, fungal R<sup>2</sup>: 0.686). The Mantel test analysis revealed that Cd was negatively associated with <em>cbbLR</em>, <em>amoA</em>, and <em>phoD</em>. The results of the Sankey diagram showed that fungi were more resistant than bacteria (27 vs. 13). This study contributes to understanding the process of soil microbial succession under Cd stress and identifying microbial strains with potential for Cd remediation.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100164"},"PeriodicalIF":12.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000173/pdfft?md5=2b63090da2719c8ad1672da20788ed56&pid=1-s2.0-S2666916124000173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to regulatory demands for sustainable practices, there has been a significant increase in the use of recycled materials in food packaging, particularly when incorporated behind functional barriers. This study, conducted as part of the “ABA Modeling” project, evaluates the migration of contaminants from the non-decontaminated, recycled polyethylene terephthalate (rPET) B-layer, which is sandwiched between two virgin A-layers in three-layer trays. The study aims to assess the long-term implications for food safety within the context of the European and French circular economy frameworks. Using a migration modeling approach based on “worst-case” scenarios for ten contaminants – similar to methodologies employed for decontaminated direct food contact PET – the levels of chemical residues are analyzed and compared. Findings highlight the significant impact of the co-extrusion process on the suitability of rPET for food contact. Additionally, the study discusses the risks and challenges for the recycling sector, particularly in managing chemical contamination during mechanical recycling. Recommendations are provided to improve industrial practices, emphasizing the importance of ongoing monitoring to ensure the long-term sustainability of these recycling practices.
为了满足可持续发展的监管要求,食品包装中对回收材料的使用大幅增加,尤其是在功能性屏障后面使用回收材料时。作为 "ABA 建模 "项目的一部分,本研究评估了三层托盘中夹在两层原生 A 层之间的未去污再生聚对苯二甲酸乙二酯(rPET)B 层的污染物迁移情况。这项研究旨在评估在欧洲和法国循环经济框架内对食品安全的长期影响。该研究采用基于十种污染物 "最坏情况 "情景的迁移建模方法(类似于用于净化直接接触食品的 PET 的方法),对化学残留物的水平进行了分析和比较。研究结果强调了共挤工艺对 rPET 食品接触适用性的重大影响。此外,研究还讨论了回收行业面临的风险和挑战,特别是在机械回收过程中管理化学污染方面。研究提出了改进工业实践的建议,强调了持续监测的重要性,以确保这些回收实践的长期可持续性。
{"title":"Assessment of chemical risks and circular economy implications of recycled PET in food packaging with functional barriers","authors":"Phuong-Mai Nguyen , Carole Berrard , Natacha Daoud , Philippe Saillard , Jérémy Peyroux , Olivier Vitrac","doi":"10.1016/j.resenv.2024.100163","DOIUrl":"10.1016/j.resenv.2024.100163","url":null,"abstract":"<div><p>In response to regulatory demands for sustainable practices, there has been a significant increase in the use of recycled materials in food packaging, particularly when incorporated behind functional barriers. This study, conducted as part of the “ABA Modeling” project, evaluates the migration of contaminants from the non-decontaminated, recycled polyethylene terephthalate (rPET) B-layer, which is sandwiched between two virgin A-layers in three-layer trays. The study aims to assess the long-term implications for food safety within the context of the European and French circular economy frameworks. Using a migration modeling approach based on “worst-case” scenarios for ten contaminants – similar to methodologies employed for decontaminated direct food contact PET – the levels of chemical residues are analyzed and compared. Findings highlight the significant impact of the co-extrusion process on the suitability of rPET for food contact. Additionally, the study discusses the risks and challenges for the recycling sector, particularly in managing chemical contamination during mechanical recycling. Recommendations are provided to improve industrial practices, emphasizing the importance of ongoing monitoring to ensure the long-term sustainability of these recycling practices.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100163"},"PeriodicalIF":12.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000161/pdfft?md5=3c99d181a593afc97390c956febf2124&pid=1-s2.0-S2666916124000161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141715693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.resenv.2024.100162
Paul Beckert , Giacomo Pareschi , Julian Ehwald , Romain Sacchi , Christian Bauer
Today, options to reduce the climate impacts of high-speed passenger transport over hundreds of kilometres are limited to using low-carbon synthetic fuels in aviation and high-speed trains. In the future, alternatives like battery electric airplanes might be available. Further, vehicles operating in near-vacuum tubes, so-called “hyperloop systems”, could represent an alternative. Our first-of-its-kind environmental life cycle assessment (LCA), considering its construction, operation, and end-of-life, shows that such a hyperloop system is energy-efficient and can exhibit very low greenhouse gas emissions (<8 g CO/pkm) if low-carbon sources provide electricity for its operation and relatively high occupation rates can be realised. The environmental performance of a hyperloop system can be regarded as very similar to that of a train offering the same transport service. Compared to air travel, environmental burdens can be substantially reduced (<5% impact on climate change compared to conventional aircraft). This fundamental finding holds despite uncertainties regarding technical properties and design choices, which reflect the current development status of the hyperloop.
{"title":"Fast as a plane, clean as a train? Prospective life cycle assessment of a hyperloop system","authors":"Paul Beckert , Giacomo Pareschi , Julian Ehwald , Romain Sacchi , Christian Bauer","doi":"10.1016/j.resenv.2024.100162","DOIUrl":"https://doi.org/10.1016/j.resenv.2024.100162","url":null,"abstract":"<div><p>Today, options to reduce the climate impacts of high-speed passenger transport over hundreds of kilometres are limited to using low-carbon synthetic fuels in aviation and high-speed trains. In the future, alternatives like battery electric airplanes might be available. Further, vehicles operating in near-vacuum tubes, so-called “hyperloop systems”, could represent an alternative. Our first-of-its-kind environmental life cycle assessment (LCA), considering its construction, operation, and end-of-life, shows that such a hyperloop system is energy-efficient and can exhibit very low greenhouse gas emissions (<8 g CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/pkm) if low-carbon sources provide electricity for its operation and relatively high occupation rates can be realised. The environmental performance of a hyperloop system can be regarded as very similar to that of a train offering the same transport service. Compared to air travel, environmental burdens can be substantially reduced (<5% impact on climate change compared to conventional aircraft). This fundamental finding holds despite uncertainties regarding technical properties and design choices, which reflect the current development status of the hyperloop.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100162"},"PeriodicalIF":12.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266691612400015X/pdfft?md5=1eb0312270d523665ae773b619f85468&pid=1-s2.0-S266691612400015X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dissolved organic carbon (DOC) is a major source for CO2 emission, and strongly involved in the transformation of many pollutants in the environmental medium. Neglecting the transformation of DOC in deep soil (>100 cm) may lead to a high degree of uncertainty in the estimation of the soil C budget, greenhouse gas emission and environmental risk. Using an envelope soil profile in a representative agricultural region of eastern China, this study provides kinetic and molecular evidence for DOC transformation in deep soil. Deep soil remained rich in DOC, with 52.53–65.46% of the DOC sequestered in soil below 100 cm. DOC in deep soil may be derived more from leaching from shallow soil than from the decomposition of in situ SOC. As the incubation process progressed, the DOC changed in three stages: (I) DOC accumulation; (II) DOC decomposition; and (III) slow DOC accumulation, with CO2 emissions exhibiting corresponding kinetic patterns. Soil CO2 release from deep soil accounted for a non-negligible portion (12.9–57.4%) of the soil profile. Fourier-transform ion cyclotron resonance mass spectrometry indicated that during the incubation process, less aromatic, and more saturated DOC molecules with lower molecular weights may be preferentially decomposed. During the early stages of incubation, lipids and peptides were preferentially degraded. In the later stages, due to the depletion of active components, lignin began to undergo partial degradation. DOC transformation in deep soil was favored under anaerobic conditions. This study might shed new light on the greenhouse effect and the environmental risk management.
{"title":"The overlooked role of deep soil in dissolved organic carbon transformation and CO2 emissions: Evidence from incubation experiments and FT-ICR MS characterization","authors":"Haoran Wu, Jia Xin, Zhiyuan Zhang, Linna Jia, Wenlin Ren, Zeliang Shen","doi":"10.1016/j.resenv.2024.100161","DOIUrl":"https://doi.org/10.1016/j.resenv.2024.100161","url":null,"abstract":"<div><p>Dissolved organic carbon (DOC) is a major source for CO<sub>2</sub> emission, and strongly involved in the transformation of many pollutants in the environmental medium. Neglecting the transformation of DOC in deep soil (>100 cm) may lead to a high degree of uncertainty in the estimation of the soil C budget, greenhouse gas emission and environmental risk. Using an envelope soil profile in a representative agricultural region of eastern China, this study provides kinetic and molecular evidence for DOC transformation in deep soil. Deep soil remained rich in DOC, with 52.53–65.46% of the DOC sequestered in soil below 100 cm. DOC in deep soil may be derived more from leaching from shallow soil than from the decomposition of in situ SOC. As the incubation process progressed, the DOC changed in three stages: (I) DOC accumulation; (II) DOC decomposition; and (III) slow DOC accumulation, with CO<sub>2</sub> emissions exhibiting corresponding kinetic patterns. Soil CO<sub>2</sub> release from deep soil accounted for a non-negligible portion (12.9–57.4%) of the soil profile. Fourier-transform ion cyclotron resonance mass spectrometry indicated that during the incubation process, less aromatic, and more saturated DOC molecules with lower molecular weights may be preferentially decomposed. During the early stages of incubation, lipids and peptides were preferentially degraded. In the later stages, due to the depletion of active components, lignin began to undergo partial degradation. DOC transformation in deep soil was favored under anaerobic conditions. This study might shed new light on the greenhouse effect and the environmental risk management.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100161"},"PeriodicalIF":12.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000148/pdfft?md5=d5be4c2c515d10a99cdddb95bfadc201&pid=1-s2.0-S2666916124000148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}