Pub Date : 2023-05-29DOI: 10.1088/2633-4356/ace490
R. Flaschmann, C. Schmid, L. Zugliani, S. Strohauer, F. Wietschorke, Stefanie Grotowski, B. Jonas, M. Müller, M. Althammer, R. Gross, J. Finley, Kai-Oliver Mueller
We investigate the growth conditions for thin (≤ 200 nm) sputtered aluminum (Al) films. These coatings are needed for various applications, e.g. for advanced manufacturing processes in the aerospace industry or for nanostructures for quantum devices. Obtaining high-quality films, with low roughness, requires precise optimization of the deposition process. To this end, we tune various sputtering parameters such as the deposition rate, temperature and power, which enables 50 nm thin films with a root mean square (RMS) roughness of less than 1 nm and high reflectivity. Finally, we confirm the high quality of the deposited films by realizing superconducting single-photon detectors integrated into multi-layer heterostructures consisting of an aluminum mirror and a silicon dioxide dielectric spacer. We achieve an improvement in detection efficiency at 780 nm from 40 % to 70 % by this integration approach.
{"title":"Optimizing the growth conditions of Al mirrors for superconducting nanowire single-photon detectors","authors":"R. Flaschmann, C. Schmid, L. Zugliani, S. Strohauer, F. Wietschorke, Stefanie Grotowski, B. Jonas, M. Müller, M. Althammer, R. Gross, J. Finley, Kai-Oliver Mueller","doi":"10.1088/2633-4356/ace490","DOIUrl":"https://doi.org/10.1088/2633-4356/ace490","url":null,"abstract":"\u0000 We investigate the growth conditions for thin (≤ 200 nm) sputtered aluminum (Al) films. These coatings are needed for various applications, e.g. for advanced manufacturing processes in the aerospace industry or for nanostructures for quantum devices. Obtaining high-quality films, with low roughness, requires precise optimization of the deposition process. To this end, we tune various sputtering parameters such as the deposition rate, temperature and power, which enables 50 nm thin films with a root mean square (RMS) roughness of less than 1 nm and high reflectivity. Finally, we confirm the high quality of the deposited films by realizing superconducting single-photon detectors integrated into multi-layer heterostructures consisting of an aluminum mirror and a silicon dioxide dielectric spacer. We achieve an improvement in detection efficiency at 780 nm from 40 % to 70 % by this integration approach.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115687588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19DOI: 10.1088/2633-4356/acd744
Wei-Chen Chien, Yu-Han Chang, Cheng Xin Lu, Yen-Yu Ting, C. Wu, Sheng-Di Lin, W. Kuo
Ultra-thin superconducting aluminum films of 3-nm grown on sapphire by molecule-beam epitaxy show excellent superconductivity and large kinetic inductance. This results in a record high Kerr non-linearity of 33 kHz and 3.62 MHz per photon in notch-type and transmission-type resonators, respectively. 4-wave mixing leverages this non-linearity to achieve 12 dB parametric amplification in transmission type resonator, making the ultra-thin film ideal for photon detection and amplification applications.
{"title":"Large parametric amplification in kinetic inductance dominant resonators based on 3 nm-thick epitaxial superconductors","authors":"Wei-Chen Chien, Yu-Han Chang, Cheng Xin Lu, Yen-Yu Ting, C. Wu, Sheng-Di Lin, W. Kuo","doi":"10.1088/2633-4356/acd744","DOIUrl":"https://doi.org/10.1088/2633-4356/acd744","url":null,"abstract":"\u0000 Ultra-thin superconducting aluminum films of 3-nm grown on sapphire by molecule-beam epitaxy show excellent superconductivity and large kinetic inductance. This results in a record high Kerr non-linearity of 33 kHz and 3.62 MHz per photon in notch-type and transmission-type resonators, respectively. 4-wave mixing leverages this non-linearity to achieve 12 dB parametric amplification in transmission type resonator, making the ultra-thin film ideal for photon detection and amplification applications.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126320843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1088/2633-4356/accac7
V. Djurberg, S. Majdi, N. Suntornwipat, J. Isberg
Using the state of valley-polarization of electrons in solids is a promising new paradigm for information storage and processing. The central challenge in utilizing valley-polarization for this purpose is to develop methods for manipulating and reading out the final valley state. Here, we demonstrate optical detection of valley-polarized electrons in diamond. It is achieved by capturing images of electroluminescence from nitrogen-vacancy centers at the surface of a diamond sample that are excited by electrons drifting and diffusing through the sample. Monte Carlo simulations are performed to interpret the resulting experimental diffusion patterns. Our results give insight into the drift-diffusion of valley-polarized electrons in diamond and yield a way of analyzing the valley-polarization of ensembles of electrons.
{"title":"Optical detection of valley-polarized electron diffusion in diamond","authors":"V. Djurberg, S. Majdi, N. Suntornwipat, J. Isberg","doi":"10.1088/2633-4356/accac7","DOIUrl":"https://doi.org/10.1088/2633-4356/accac7","url":null,"abstract":"\u0000 Using the state of valley-polarization of electrons in solids is a promising new paradigm for information storage and processing. The central challenge in utilizing valley-polarization for this purpose is to develop methods for manipulating and reading out the final valley state. Here, we demonstrate optical detection of valley-polarized electrons in diamond. It is achieved by capturing images of electroluminescence from nitrogen-vacancy centers at the surface of a diamond sample that are excited by electrons drifting and diffusing through the sample. Monte Carlo simulations are performed to interpret the resulting experimental diffusion patterns. Our results give insight into the drift-diffusion of valley-polarized electrons in diamond and yield a way of analyzing the valley-polarization of ensembles of electrons.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132080942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.1088/2633-4356/acd743
J. Lima, G. Burkard
The performance and scalability of silicon spin qubits depend directly on the value of the conduction band valley splitting. In this work, we investigate the influence of electromagnetic fields and the interface width on the valley splitting of a quantum dot in a Si/SiGe heterostructure. We propose a new three-dimensional theoretical model within the effective mass theory for the calculation of the valley splitting in such heterostructures that takes into account the concentration fluctuation at the interfaces and the lateral confinement. With this model, we predict that the electric field is an important parameter for valley splitting engineering, since it can shift the probability distribution away from small valley splittings for some interface widths. We also obtain a critical softness of the interfaces in the heterostructure, above which the best option for spin qubits is to consider an interface as wide as possible.
{"title":"Interface and electromagnetic effects in the valley splitting of Si quantum dots","authors":"J. Lima, G. Burkard","doi":"10.1088/2633-4356/acd743","DOIUrl":"https://doi.org/10.1088/2633-4356/acd743","url":null,"abstract":"\u0000 The performance and scalability of silicon spin qubits depend directly on the value of the conduction band valley splitting. In this work, we investigate the influence of electromagnetic fields and the interface width on the valley splitting of a quantum dot in a Si/SiGe heterostructure. We propose a new three-dimensional theoretical model within the effective mass theory for the calculation of the valley splitting in such heterostructures that takes into account the concentration fluctuation at the interfaces and the lateral confinement. With this model, we predict that the electric field is an important parameter for valley splitting engineering, since it can shift the probability distribution away from small valley splittings for some interface widths. We also obtain a critical softness of the interfaces in the heterostructure, above which the best option for spin qubits is to consider an interface as wide as possible.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121463119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-24DOI: 10.1088/2633-4356/acbefb
J. D. de Teresa
In this Perspective article, we evaluate the current state of research on the use of focused electron and ion beams to directly fabricate nanoscale superconducting devices with application in quantum technologies. First, the article introduces the main superconducting devices and their fabrication by means of standard lithography techniques such as optical lithography and electron beam lithography. Then, focused ion beam patterning of superconductors through milling or irradiation is shown, as well as the growth of superconducting devices by means of focused electron and ion beam induced deposition. We suggest that the key benefits of these resist-free direct-growth techniques for quantum technologies include the ability to make electrical nanocontacts and circuit edit, fabrication of high-resolution superconducting resonators, creation of Josephson junctions and SQUIDs for on-tip sensors, patterning of high-Tc SQUIDs and other superconducting circuits, and the exploration of fluxtronics and topological superconductivity.
{"title":"Nanoscale direct-write fabrication of superconducting devices for application in quantum technologies","authors":"J. D. de Teresa","doi":"10.1088/2633-4356/acbefb","DOIUrl":"https://doi.org/10.1088/2633-4356/acbefb","url":null,"abstract":"\u0000 In this Perspective article, we evaluate the current state of research on the use of focused electron and ion beams to directly fabricate nanoscale superconducting devices with application in quantum technologies. First, the article introduces the main superconducting devices and their fabrication by means of standard lithography techniques such as optical lithography and electron beam lithography. Then, focused ion beam patterning of superconductors through milling or irradiation is shown, as well as the growth of superconducting devices by means of focused electron and ion beam induced deposition. We suggest that the key benefits of these resist-free direct-growth techniques for quantum technologies include the ability to make electrical nanocontacts and circuit edit, fabrication of high-resolution superconducting resonators, creation of Josephson junctions and SQUIDs for on-tip sensors, patterning of high-Tc SQUIDs and other superconducting circuits, and the exploration of fluxtronics and topological superconductivity.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"133 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121372316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-16DOI: 10.1088/2633-4356/acbcba
Kavya Ravindran, Jayjit Kumar Dey, Aryan Keshri, B. Roul, S. .. Krupanidhi, Sujit Das
Topological phenomena at the oxide interfaces attract the scientific community for the fertile ground of exotic physical properties and highly favorable applications in the area of high-density low-energy nonvolatile memory and spintronic devices. Synthesis of atomically controlled ultrathin high-quality films with superior interfaces and their characterization by high resolution experimental set up along with high output theoretical calculations matching with the experimental results make this field possible to explain some of the promising quantum phenomena and exotic phases. In this review, we highlight some of the interesting interface aspects in ferroic thin films and heterostructures including the topological Hall effect in magnetic skyrmions, strain dependent interlayer magnetic interactions, interlayer coupling mediated electron conduction, switching of noncollinear spin texture etc. Finally, a brief overview followed by the relevant aspects and future direction for understanding, improving, and optimizing the topological phenomena for next generation applications are discussed.
{"title":"Topological phenomena at the oxide interfaces","authors":"Kavya Ravindran, Jayjit Kumar Dey, Aryan Keshri, B. Roul, S. .. Krupanidhi, Sujit Das","doi":"10.1088/2633-4356/acbcba","DOIUrl":"https://doi.org/10.1088/2633-4356/acbcba","url":null,"abstract":"\u0000 Topological phenomena at the oxide interfaces attract the scientific community for the fertile ground of exotic physical properties and highly favorable applications in the area of high-density low-energy nonvolatile memory and spintronic devices. Synthesis of atomically controlled ultrathin high-quality films with superior interfaces and their characterization by high resolution experimental set up along with high output theoretical calculations matching with the experimental results make this field possible to explain some of the promising quantum phenomena and exotic phases. In this review, we highlight some of the interesting interface aspects in ferroic thin films and heterostructures including the topological Hall effect in magnetic skyrmions, strain dependent interlayer magnetic interactions, interlayer coupling mediated electron conduction, switching of noncollinear spin texture etc. Finally, a brief overview followed by the relevant aspects and future direction for understanding, improving, and optimizing the topological phenomena for next generation applications are discussed.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128772477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-26DOI: 10.1088/2633-4356/acc9f6
Thomas Luschmann, Alexander Jung, S. Geprägs, F. Haslbeck, A. Marx, S. Filipp, S. Gröblacher, R. Gross, H. Huebl
Lithium niobate (LNO) is a well established material for surface acoustic wave (SAW) devices including resonators, delay lines and filters. Recently, multi-layer substrates based on LNO thin films have become commercially available. Here, we present a systematic low-temperature study of the performance of SAW devices fabricated on LNO-on-insulator and LNO-on-Silicon substrates and compare them to bulk LNO devices. Our study aims at assessing the performance of these substrates for quantum acoustics, i.e. the integration with superconducting circuits operating in the quantum regime. To this end, we design SAW resonators with a target frequency of 5 GHz and perform experiments at millikelvin temperatures and microwave power levels corresponding to single photons or phonons. The devices are investigated regarding their internal quality factors as a function of the excitation power and temperature, which allows us to characterize and quantify losses and identify the dominating loss mechanism. For the measured devices, fitting the experimental data shows that the quality factors are limited by the coupling of the resonator to a bath of two-level-systems. Our results suggest that SAW devices on thin film LNO on silicon have comparable performance to devices on bulk LNO and are viable for use in SAW-based quantum acoustic devices.
{"title":"Surface acoustic wave resonators on thin film piezoelectric substrates in the quantum regime","authors":"Thomas Luschmann, Alexander Jung, S. Geprägs, F. Haslbeck, A. Marx, S. Filipp, S. Gröblacher, R. Gross, H. Huebl","doi":"10.1088/2633-4356/acc9f6","DOIUrl":"https://doi.org/10.1088/2633-4356/acc9f6","url":null,"abstract":"\u0000 Lithium niobate (LNO) is a well established material for surface acoustic wave (SAW) devices including resonators, delay lines and filters. Recently, multi-layer substrates based on LNO thin films have become commercially available. Here, we present a systematic low-temperature study of the performance of SAW devices fabricated on LNO-on-insulator and LNO-on-Silicon substrates and compare them to bulk LNO devices. Our study aims at assessing the performance of these substrates for quantum acoustics, i.e. the integration with superconducting circuits operating in the quantum regime. To this end, we design SAW resonators with a target frequency of \u0000 \u0000 \u0000 \u0000 5\u0000 \u0000 \u0000 \u0000 GHz\u0000 \u0000 \u0000 \u0000 and perform experiments at millikelvin temperatures and microwave power levels corresponding to single photons or phonons. The devices are investigated regarding their internal quality factors as a function of the excitation power and temperature, which allows us to characterize and quantify losses and identify the dominating loss mechanism. For the measured devices, fitting the experimental data shows that the quality factors are limited by the coupling of the resonator to a bath of two-level-systems. Our results suggest that SAW devices on thin film LNO on silicon have comparable performance to devices on bulk LNO and are viable for use in SAW-based quantum acoustic devices.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132840856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-11DOI: 10.1088/2633-4356/acb87f
Ivan Zhigulin, Karin Yamamura, Viktor Iv'ady, A. Gale, J. Horder, C. Lobo, M. Kianinia, M. Toth, I. Aharonovich
Colour centres in hexagonal boron nitride (hBN) have emerged as intriguing contenders for integrated quantum photonics. In this work, we present detailed photophysical analysis of hBN single emitters emitting at the blue spectral range. The emitters are fabricated by different electron beam irradiation and annealing conditions and exhibit narrow-band luminescence centred at 436 nm. Photon statistics as well as rigorous photodynamics analysis unveils potential level structure of the emitters, which suggests lack of a metastable state, supported by a theoretical analysis. The potential defect can have an electronic structure with fully occupied defect state in the lower half of the hBN band gap and empty defect state in the upper half of the band gap. Overall, our results are important to understand the photophysical properties of the emerging family of blue quantum emitters in hBN as potential sources for scalable quantum photonic applications.
{"title":"Photophysics of blue quantum emitters in hexagonal Boron Nitride","authors":"Ivan Zhigulin, Karin Yamamura, Viktor Iv'ady, A. Gale, J. Horder, C. Lobo, M. Kianinia, M. Toth, I. Aharonovich","doi":"10.1088/2633-4356/acb87f","DOIUrl":"https://doi.org/10.1088/2633-4356/acb87f","url":null,"abstract":"\u0000 Colour centres in hexagonal boron nitride (hBN) have emerged as intriguing contenders for integrated quantum photonics. In this work, we present detailed photophysical analysis of hBN single emitters emitting at the blue spectral range. The emitters are fabricated by different electron beam irradiation and annealing conditions and exhibit narrow-band luminescence centred at 436 nm. Photon statistics as well as rigorous photodynamics analysis unveils potential level structure of the emitters, which suggests lack of a metastable state, supported by a theoretical analysis. The potential defect can have an electronic structure with fully occupied defect state in the lower half of the hBN band gap and empty defect state in the upper half of the band gap. Overall, our results are important to understand the photophysical properties of the emerging family of blue quantum emitters in hBN as potential sources for scalable quantum photonic applications.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132426058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.1088/2633-4356/accac3
Hong Liu, Rhonald Burgos Atencia, N. Medhekar, D. Culcer
The mutual interplay between electron transport and magnetism has attracted considerable attention in recent years, primarily motivated by strategies to manipulate magnetic degrees of freedom electrically, such as spin-orbit torques and domain wall motion. Within this field the topological Hall effect, which originates from scalar spin chirality, is an example of inter-band quantum coherence induced by real-space inhomogeneous magnetic textures, and its magnitude depends on the winding number and chiral spin features that establish the total topological charge of the system. Remarkably, in the two decades since its discovery, there has been no research on the quantum correction to the topological Hall effect. Here we will show that, unlike the ordinary Hall effect, the inhomogeneous magnetization arising from the spin texture will give additional scattering terms in the kinetic equation, which result in a quantum correction to the topological Hall resistivity. We focus on 2D systems, where weak localization is strongest, and determine the complicated gradient corrections to the Cooperon and kinetic equation. Whereas the weak localization correction to the topological Hall effect is not large in currently known materials, we show that it is experimentally observable in dilute magnetic semiconductors. Our theoretical results will stimulate experiments on the topological Hall effect and fill the theoretical knowledge gap on weak localization corrections to transverse transport.
{"title":"Coherent backscattering in the topological Hall effect","authors":"Hong Liu, Rhonald Burgos Atencia, N. Medhekar, D. Culcer","doi":"10.1088/2633-4356/accac3","DOIUrl":"https://doi.org/10.1088/2633-4356/accac3","url":null,"abstract":"\u0000 The mutual interplay between electron transport and magnetism has attracted considerable attention in recent years, primarily motivated by strategies to manipulate magnetic degrees of freedom electrically, such as spin-orbit torques and domain wall motion. Within this field the topological Hall effect, which originates from scalar spin chirality, is an example of inter-band quantum coherence induced by real-space inhomogeneous magnetic textures, and its magnitude depends on the winding number and chiral spin features that establish the total topological charge of the system. Remarkably, in the two decades since its discovery, there has been no research on the quantum correction to the topological Hall effect. Here we will show that, unlike the ordinary Hall effect, the inhomogeneous magnetization arising from the spin texture will give additional scattering terms in the kinetic equation, which result in a quantum correction to the topological Hall resistivity. We focus on 2D systems, where weak localization is strongest, and determine the complicated gradient corrections to the Cooperon and kinetic equation. Whereas the weak localization correction to the topological Hall effect is not large in currently known materials, we show that it is experimentally observable in dilute magnetic semiconductors. Our theoretical results will stimulate experiments on the topological Hall effect and fill the theoretical knowledge gap on weak localization corrections to transverse transport.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128656572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.1088/2633-4356/accd3a
E. Pyurbeeva, J. O. Thomas, J. Mol
Thermodynamic probes can be used to deduce microscopic internal dynamics of nanoscale quantum systems. Several direct entropy measurement protocols based on charge transport measurements have been proposed and experimentally applied to single-electron devices. To date, these methods have relied on (quasi-)equilibrium conditions between the nanoscale quantum system and its environment, which constitutes only a small subset of the experimental conditions available. In this paper, we establish a thermodynamic analysis method based on stochastic thermodynamics, that is valid far from equilibrium conditions, is applicable to a broad range of single-electron devices and allows us to find the difference in entropy between the charge states of the nanodevice, as well as a characteristic of any selection rules governing electron transfers. We apply this non-equilibrium entropy measurement protocol to a single-molecule device in which the internal dynamics can be described by a two-site Hubbard model.
{"title":"Non-equilibrium thermodynamics in a single-molecule quantum system","authors":"E. Pyurbeeva, J. O. Thomas, J. Mol","doi":"10.1088/2633-4356/accd3a","DOIUrl":"https://doi.org/10.1088/2633-4356/accd3a","url":null,"abstract":"\u0000 Thermodynamic probes can be used to deduce microscopic internal dynamics of nanoscale quantum systems. Several direct entropy measurement protocols based on charge transport measurements have been proposed and experimentally applied to single-electron devices. To date, these methods have relied on (quasi-)equilibrium conditions between the nanoscale quantum system and its environment, which constitutes only a small subset of the experimental conditions available. In this paper, we establish a thermodynamic analysis method based on stochastic thermodynamics, that is valid far from equilibrium conditions, is applicable to a broad range of single-electron devices and allows us to find the difference in entropy between the charge states of the nanodevice, as well as a characteristic of any selection rules governing electron transfers. We apply this non-equilibrium entropy measurement protocol to a single-molecule device in which the internal dynamics can be described by a two-site Hubbard model.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129686778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}