Pub Date : 2024-10-22DOI: 10.1016/j.clet.2024.100824
Ayat Hassan , Shadi W. Hasan , Bart Van der Bruggen , Sulaiman Al-Zuhair
This study investigated the development of poly(vinylidene fluoride) (PVDF) hybrid ultrafiltration membranes, where ZIF-8 nanocrystals are synthesized in situ within the membrane pores. These ZIF-8 embedded membranes are specifically designed for the treatment of emerging pollutants, such as ibuprofen. The optimized membrane, characterized by a higher concentration of ZIF-8 and greater surface coverage, exhibited significantly enhanced performance and improved properties, including increased hydrophobicity and mechanical strength. By increasing the zinc concentration from 0.2 to 0.3 M during the preparation of the ZIF-8 coated membrane, hydrophobicity was enhanced, as indicated by an increase in the contact angle from 60.3° to 87.2°, along with improved porosity from 41.3% to 60.5%. Further performance enhancements were achieved by encapsulating enzymes, specifically laccase and peroxidase, within the ZIF-8 coated membrane. A comparison of ibuprofen removal by these enzymes showed that peroxidase was slightly more effective, reaching a maximum removal efficiency of approximately 45% within 2 h. The biocatalytic membranes demonstrated a high stability and reusability, underscoring their potential for efficient ibuprofen removal. These findings highlight the efficacy of ZIF-8-coated PVDF membranes as advanced tools for water purification, offering significant improvements in both purification efficiency and membrane stability.
{"title":"Efficient ibuprofen removal using enzymatic activated ZIF-8-PVDF membranes","authors":"Ayat Hassan , Shadi W. Hasan , Bart Van der Bruggen , Sulaiman Al-Zuhair","doi":"10.1016/j.clet.2024.100824","DOIUrl":"10.1016/j.clet.2024.100824","url":null,"abstract":"<div><div>This study investigated the development of poly(vinylidene fluoride) (PVDF) hybrid ultrafiltration membranes, where ZIF-8 nanocrystals are synthesized in situ within the membrane pores. These ZIF-8 embedded membranes are specifically designed for the treatment of emerging pollutants, such as ibuprofen. The optimized membrane, characterized by a higher concentration of ZIF-8 and greater surface coverage, exhibited significantly enhanced performance and improved properties, including increased hydrophobicity and mechanical strength. By increasing the zinc concentration from 0.2 to 0.3 M during the preparation of the ZIF-8 coated membrane, hydrophobicity was enhanced, as indicated by an increase in the contact angle from 60.3° to 87.2°, along with improved porosity from 41.3% to 60.5%. Further performance enhancements were achieved by encapsulating enzymes, specifically laccase and peroxidase, within the ZIF-8 coated membrane. A comparison of ibuprofen removal by these enzymes showed that peroxidase was slightly more effective, reaching a maximum removal efficiency of approximately 45% within 2 h. The biocatalytic membranes demonstrated a high stability and reusability, underscoring their potential for efficient ibuprofen removal. These findings highlight the efficacy of ZIF-8-coated PVDF membranes as advanced tools for water purification, offering significant improvements in both purification efficiency and membrane stability.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100824"},"PeriodicalIF":5.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.clet.2024.100830
Xin Yin , Mohammed W. Muhieldeen , Ruzaimah Razman , Jonathan Yong Chung Ee , Meng Choung Chiong
Natural ventilation is an eco-friendly and renewable energy source that enhances thermal comfort and energy efficiency. The window is the most traditional method of introducing natural ventilation into the built environment, but its full potential has been slow to be explored. The indoor arrangement of naturally ventilated buildings must be effectively managed to ensure indoor thermal comfort and ventilation efficiency. Although the windows offer a number of advantages for natural ventilation, they can be challenging to implement in real occupied conditions due to the integrated design between façade and interior arrangement. A comprehensive review aims to investigate the potential factors that influence the performance of natural window ventilation. The overall findings show that wind-driven cross-ventilation and single-sided ventilation are the most extensively studied natural window ventilation strategies. However, the topics of corner ventilation and buoyancy-driven ventilation do not receive much attention. The findings highlight that appropriate window designs, including factors such as window geometry, opening ratio, number of openings, location, type, orientation, and shading systems, can maintain thermal comfort, reduce cooling loads, extend ventilation period, and improve indoor air quality. In addition, it has been discovered that the geometric and thermal properties of indoor obstructions determine the advantages and limitations of local thermal comfort and airflow patterns in different scenarios. The necessity for further studies on the effects of interior conditions on natural window ventilation is argued, as it is a crucial issue for ensuring accurate results. The review of recent literature contributes to categorizing the influential factors and identifying the important aspects to be considered in natural window ventilation. Through this literature review, further research is encouraged to fully exploit the potential for integrating interior factors and window characteristics in the design of low-energy buildings.
{"title":"The potential effects of window configuration and interior layout on natural ventilation buildings: A comprehensive review","authors":"Xin Yin , Mohammed W. Muhieldeen , Ruzaimah Razman , Jonathan Yong Chung Ee , Meng Choung Chiong","doi":"10.1016/j.clet.2024.100830","DOIUrl":"10.1016/j.clet.2024.100830","url":null,"abstract":"<div><div>Natural ventilation is an eco-friendly and renewable energy source that enhances thermal comfort and energy efficiency. The window is the most traditional method of introducing natural ventilation into the built environment, but its full potential has been slow to be explored. The indoor arrangement of naturally ventilated buildings must be effectively managed to ensure indoor thermal comfort and ventilation efficiency. Although the windows offer a number of advantages for natural ventilation, they can be challenging to implement in real occupied conditions due to the integrated design between façade and interior arrangement. A comprehensive review aims to investigate the potential factors that influence the performance of natural window ventilation. The overall findings show that wind-driven cross-ventilation and single-sided ventilation are the most extensively studied natural window ventilation strategies. However, the topics of corner ventilation and buoyancy-driven ventilation do not receive much attention. The findings highlight that appropriate window designs, including factors such as window geometry, opening ratio, number of openings, location, type, orientation, and shading systems, can maintain thermal comfort, reduce cooling loads, extend ventilation period, and improve indoor air quality. In addition, it has been discovered that the geometric and thermal properties of indoor obstructions determine the advantages and limitations of local thermal comfort and airflow patterns in different scenarios. The necessity for further studies on the effects of interior conditions on natural window ventilation is argued, as it is a crucial issue for ensuring accurate results. The review of recent literature contributes to categorizing the influential factors and identifying the important aspects to be considered in natural window ventilation. Through this literature review, further research is encouraged to fully exploit the potential for integrating interior factors and window characteristics in the design of low-energy buildings.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100830"},"PeriodicalIF":5.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.clet.2024.100823
Anna Gobetti , Giovanna Cornacchia , Giorgio Ramorino
This study investigates the valorization of two industrial waste streams - nitrile butadiene rubber (NBR) scraps and electric arc furnace (EAF) slag – in the development of recycled NBR compounds filled with EAF slag as filler. A new recycling method for NBR scraps is employed via calendering at room temperature without the need for curatives, chemical agents, or pre-grinding. The resulting recycled NBR is then used as a matrix for EAF slag particles to produce sustainable rubber compounds that are entirely recycled. Characterization reveals that incorporating EAF slag enhances the devulcanization process of recycled NBR during recycling. The filler grain size affects composite properties like hardness, crosslink density, and tensile modulus, with finer slag particles (<50 μm) exhibiting improved reinforcement due to increased interaction surface with the rubber matrix. Dynamic mechanical analysis indicates that recycled NBR filled with EAF slag exhibits a more significant Payne effect compared to unfilled recycled NBR, due to filler-matrix interactions. Interestingly, EAF slag facilitates the rapid fractional recovery of the low-strain storage modulus after experiencing high-amplitude strain, ascribed to the formation of a rigid rubber layer around the slag particles.
Overall, the findings highlight the potential to valorize these two waste materials effectively by producing functional recycled NBR/EAF slag composites with desirable properties through a simple, industrially viable recycling method without capital-intensive equipment. This represents both environmental and economic benefits through waste valorization and industrial symbiosis.
{"title":"Transforming waste into valuable resources: Recycled nitrile-butadiene rubber scraps filled with electric arc furnace slag","authors":"Anna Gobetti , Giovanna Cornacchia , Giorgio Ramorino","doi":"10.1016/j.clet.2024.100823","DOIUrl":"10.1016/j.clet.2024.100823","url":null,"abstract":"<div><div>This study investigates the valorization of two industrial waste streams - nitrile butadiene rubber (NBR) scraps and electric arc furnace (EAF) slag – in the development of recycled NBR compounds filled with EAF slag as filler. A new recycling method for NBR scraps is employed via calendering at room temperature without the need for curatives, chemical agents, or pre-grinding. The resulting recycled NBR is then used as a matrix for EAF slag particles to produce sustainable rubber compounds that are entirely recycled. Characterization reveals that incorporating EAF slag enhances the devulcanization process of recycled NBR during recycling. The filler grain size affects composite properties like hardness, crosslink density, and tensile modulus, with finer slag particles (<50 μm) exhibiting improved reinforcement due to increased interaction surface with the rubber matrix. Dynamic mechanical analysis indicates that recycled NBR filled with EAF slag exhibits a more significant Payne effect compared to unfilled recycled NBR, due to filler-matrix interactions. Interestingly, EAF slag facilitates the rapid fractional recovery of the low-strain storage modulus after experiencing high-amplitude strain, ascribed to the formation of a rigid rubber layer around the slag particles.</div><div>Overall, the findings highlight the potential to valorize these two waste materials effectively by producing functional recycled NBR/EAF slag composites with desirable properties through a simple, industrially viable recycling method without capital-intensive equipment. This represents both environmental and economic benefits through waste valorization and industrial symbiosis.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100823"},"PeriodicalIF":5.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.clet.2024.100822
Hossein Abdipour , Ghorban Asgari
In this work, for the first time, the effectiveness of the degradation and mineralization process of methylene blue) MB) was investigated using activated persulfate (PS) with a magnetic field. The effect of various operating parameters, including pH, PS (5–20 mg/L), intensity of the magnetic field (1–4 A), initial concentration of methylene blue dye (25–100 mg/L), and contact time (30–120 min), was evaluated. Process optimization was conducted via the Taguchi model, and the optimal values of these factors were found to be pH = 5, PS = 10 mg/L, MFs = 4 A, reaction time = 30 min, and the initial concentration of methylene blue dye = 50 mg/L. Under optimal conditions, the methylene blue removal efficiency and TOC destruction efficiency reached 91.8% and 88%, respectively. The kinetics of the process followed pseudo-second order (R2 = 0.9723). According to the promising results of the research, the efficiency of dye purification using a magnetic field has increased by about three times compared to the state without this factor. It can be suggested that this system be used as a wastewater treatment process for the textile industry to reduce the toxicity of wastewater and total organic carbon (TOC).
{"title":"Enhanced methylene blue degradation and miniralization through activated persulfate coupled with magnetic field","authors":"Hossein Abdipour , Ghorban Asgari","doi":"10.1016/j.clet.2024.100822","DOIUrl":"10.1016/j.clet.2024.100822","url":null,"abstract":"<div><div>In this work, for the first time, the effectiveness of the degradation and mineralization process of methylene blue) MB) was investigated using activated persulfate (PS) with a magnetic field. The effect of various operating parameters, including pH, PS (5–20 mg/L), intensity of the magnetic field (1–4 A), initial concentration of methylene blue dye (25–100 mg/L), and contact time (30–120 min), was evaluated. Process optimization was conducted via the Taguchi model, and the optimal values of these factors were found to be pH = 5, PS = 10 mg/L, MFs = 4 A, reaction time = 30 min, and the initial concentration of methylene blue dye = 50 mg/L. Under optimal conditions, the methylene blue removal efficiency and TOC destruction efficiency reached 91.8% and 88%, respectively. The kinetics of the process followed pseudo-second order (R<sup>2</sup> = 0.9723). According to the promising results of the research, the efficiency of dye purification using a magnetic field has increased by about three times compared to the state without this factor. It can be suggested that this system be used as a wastewater treatment process for the textile industry to reduce the toxicity of wastewater and total organic carbon (TOC).</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100822"},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.clet.2024.100821
Agus Nugroho , Muhammad Kozin , Zhang Bo , Rizalman Mamat , Mohd Fairusham Ghazali , Muhammad Prisla Kamil , Prabowo Puranto , Diah Ayu Fitriani , Siti Amalina Azahra , Kusuma Putri Suwondo , Putri Sayyida Ashfiya
The necessity of conducting research on biolubricants arises from the urgent need to develop sustainable alternatives to conventional petroleum-based lubricants, which contribute to environmental degradation and carbon emissions. As biolubricants offer eco-friendly lubrication solutions, exploring their development and performance is essential to advancing sustainable technologies and achieving global net zero emissions targets. This paper aims to comprehensively plot scientific research outputs on biolubricant manufacturing and recent developments using a quantitative review technique known as bibliometric analysis. The 1000 publications were extracted from the Web of Science database and evaluated with the VOSviewer software. The study examines biolubricants' ability to support sustainability efforts, particularly through their lubrication properties, alignment with Sustainable Development Goals (SDGs), and enhancement with nanomaterials. It also identifies future trends and addresses biolubricants' limitations. The research highlights the significance of the field, with leading journals such as Industrial Crops and Products (34 articles), Tribology International (31 articles), and the Journal of Cleaner Production (29 articles) contributing extensively. The citations and document correlations analysis reveals 742 articles, grouped into 182 publication clusters, showcasing a robust network of influential research. Ongoing bibliometric evaluation is critical for identifying key developments, gaps, and opportunities in sustainable lubrication technologies.
{"title":"Recent advances in harnessing biolubricants to enhance tribological performance and environmental responsibility – Bibliometric review (2015–2024)","authors":"Agus Nugroho , Muhammad Kozin , Zhang Bo , Rizalman Mamat , Mohd Fairusham Ghazali , Muhammad Prisla Kamil , Prabowo Puranto , Diah Ayu Fitriani , Siti Amalina Azahra , Kusuma Putri Suwondo , Putri Sayyida Ashfiya","doi":"10.1016/j.clet.2024.100821","DOIUrl":"10.1016/j.clet.2024.100821","url":null,"abstract":"<div><div>The necessity of conducting research on biolubricants arises from the urgent need to develop sustainable alternatives to conventional petroleum-based lubricants, which contribute to environmental degradation and carbon emissions. As biolubricants offer eco-friendly lubrication solutions, exploring their development and performance is essential to advancing sustainable technologies and achieving global net zero emissions targets. This paper aims to comprehensively plot scientific research outputs on biolubricant manufacturing and recent developments using a quantitative review technique known as bibliometric analysis. The 1000 publications were extracted from the Web of Science database and evaluated with the VOSviewer software. The study examines biolubricants' ability to support sustainability efforts, particularly through their lubrication properties, alignment with Sustainable Development Goals (SDGs), and enhancement with nanomaterials. It also identifies future trends and addresses biolubricants' limitations. The research highlights the significance of the field, with leading journals such as Industrial Crops and Products (34 articles), Tribology International (31 articles), and the Journal of Cleaner Production (29 articles) contributing extensively. The citations and document correlations analysis reveals 742 articles, grouped into 182 publication clusters, showcasing a robust network of influential research. Ongoing bibliometric evaluation is critical for identifying key developments, gaps, and opportunities in sustainable lubrication technologies.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100821"},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The utilization of environmentally friendly materials derived from agricultural sources is becoming more prevalent in the construction industry. Many studies have already been conducted on various agro-resources, providing a variety of information on the characteristics of botanical aggregates and bio-based concrete. However, the prediction of the mechanical behavior of bio-based concrete remains complex owing to the various factors that influence its properties. Hence, it is crucial to collect a multitude of diverse information scattered throughout the literature regarding the mechanical response of bio-based materials under different loading conditions.
This paper review aims to evaluate the mechanical behavior law and mechanical properties of bio-based concrete under various loadings (compression, flexion, and shear) in accordance with multi-plant-aggregates and different mineral binders. The literature has provided around 120 papers listing a compilation of 18 plant aggregates sourced from various origins that are utilized in plant-based concrete. On the other side, a few types of aggregates and binders were introduced in the literature regarding the mechanical behavior of bio-based concrete. Several factors can affect the mechanical properties of bio-based concrete at the composite scale such as the formulation, the casting process (energy), the curing conditions, the morphology of the aggregates, the density, the porosity, the mineral matrix properties, and particles/binder physicochemical interactions. Hence, this paper elaborates on a conceptual understanding that focuses on the mechanical response of bio-based concrete in relation to the various influencing factors up to the application of these materials in building sector.
{"title":"Mechanical behavior of bio-based concrete under various loadings and factors affecting its mechanical properties at the composite scale: A state-of-the-art review","authors":"Rafik Bardouh , Evelyne Toussaint , Sofiane Amziane , Sandrine Marceau","doi":"10.1016/j.clet.2024.100819","DOIUrl":"10.1016/j.clet.2024.100819","url":null,"abstract":"<div><div>The utilization of environmentally friendly materials derived from agricultural sources is becoming more prevalent in the construction industry. Many studies have already been conducted on various agro-resources, providing a variety of information on the characteristics of botanical aggregates and bio-based concrete. However, the prediction of the mechanical behavior of bio-based concrete remains complex owing to the various factors that influence its properties. Hence, it is crucial to collect a multitude of diverse information scattered throughout the literature regarding the mechanical response of bio-based materials under different loading conditions.</div><div>This paper review aims to evaluate the mechanical behavior law and mechanical properties of bio-based concrete under various loadings (compression, flexion, and shear) in accordance with multi-plant-aggregates and different mineral binders. The literature has provided around 120 papers listing a compilation of 18 plant aggregates sourced from various origins that are utilized in plant-based concrete. On the other side, a few types of aggregates and binders were introduced in the literature regarding the mechanical behavior of bio-based concrete. Several factors can affect the mechanical properties of bio-based concrete at the composite scale such as the formulation, the casting process (energy), the curing conditions, the morphology of the aggregates, the density, the porosity, the mineral matrix properties, and particles/binder physicochemical interactions. Hence, this paper elaborates on a conceptual understanding that focuses on the mechanical response of bio-based concrete in relation to the various influencing factors up to the application of these materials in building sector.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100819"},"PeriodicalIF":5.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.clet.2024.100818
Kamil Neyfel Çerçi , Ivo Rafael Oliveira Silva , Önder Kaşka , Kamel Hooman
This paper proposes and simulates a desiccant air cooling system integrated with a vapor compression cooling unit and a heat recovery unit for an office building in Çanakkale, Turkey, during the summer season. The required electrical energy for equipment of the proposed system is supplied by an Solid Oxide Fuel Cells (SOFC) unit using human waste as fuel. Moreover, some of the waste heat generated by the SOFC is used to regenerate the desiccant wheel. The simulation also includes the effects of three different refrigerants for the vapor compression cooling unit. Among the refrigerants, the highest electrical COP was obtained for the system using R1234ze(Z), which is 3.14% and 2.40% higher than the systems using R717 and R1233zd(E), respectively. Additionally, the system using R1234ze(Z) achieved electrical savings of 9.97% and 9.23% compared to the other systems. These electrical savings resulted in fuel savings of 1.19% and 0.90% for R1234ze(Z) compared to R717 and R1233zd(E), respectively. During the summer season, the electricity production from the existing SOFC unit met 82.00% of the total electricity consumption of the desiccant hybrid cooling system. Furthermore, a difference of 3984.56 kWh in primary energy consumption was identified between the desiccant hybrid cooling systems operating with the SOFC and without the SOFC during the summer season.
{"title":"Summer period analysis of the rotary desiccant - hybrid cooling system combined with solid oxide fuel cells using human waste fuel","authors":"Kamil Neyfel Çerçi , Ivo Rafael Oliveira Silva , Önder Kaşka , Kamel Hooman","doi":"10.1016/j.clet.2024.100818","DOIUrl":"10.1016/j.clet.2024.100818","url":null,"abstract":"<div><div>This paper proposes and simulates a desiccant air cooling system integrated with a vapor compression cooling unit and a heat recovery unit for an office building in Çanakkale, Turkey, during the summer season. The required electrical energy for equipment of the proposed system is supplied by an Solid Oxide Fuel Cells (SOFC) unit using human waste as fuel. Moreover, some of the waste heat generated by the SOFC is used to regenerate the desiccant wheel. The simulation also includes the effects of three different refrigerants for the vapor compression cooling unit. Among the refrigerants, the highest electrical COP was obtained for the system using R1234ze(Z), which is 3.14% and 2.40% higher than the systems using R717 and R1233zd(E), respectively. Additionally, the system using R1234ze(Z) achieved electrical savings of 9.97% and 9.23% compared to the other systems. These electrical savings resulted in fuel savings of 1.19% and 0.90% for R1234ze(Z) compared to R717 and R1233zd(E), respectively. During the summer season, the electricity production from the existing SOFC unit met 82.00% of the total electricity consumption of the desiccant hybrid cooling system. Furthermore, a difference of 3984.56 kWh in primary energy consumption was identified between the desiccant hybrid cooling systems operating with the SOFC and without the SOFC during the summer season.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100818"},"PeriodicalIF":5.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.clet.2024.100810
Paweł Kwaśnicki
In this work an application of two texturized glasses as a front side material for PV (photovoltaic) system in architectural and designed installation was analysed taking into account optical, topographic, electrical and aesthetic aspects. Since Building Integrated Photovoltaic (BIPV) is becoming increasingly popular, expanding the scope of installation on facades, building walls and various types of glazing its aesthetics aspects become one of the key parameters. For some BIPV application a surface topography such as roughness and or matte surface meeting aesthetic requirements is crucial. Additionally, in the case of installations in urban spaces, an important parameter is the low reflectance value and, consequently, the reduction of light reflections that can blind drivers. The measurements carried out show that the use of glass with a textured surface slightly reduces the electrical parameters of the PV system: around 5% for power (W) while significantly reducing the reflection parameters (light reflection) up to 88% in visible (VIS) region.
{"title":"Texturized glass in the application of architectural photovoltaics","authors":"Paweł Kwaśnicki","doi":"10.1016/j.clet.2024.100810","DOIUrl":"10.1016/j.clet.2024.100810","url":null,"abstract":"<div><div>In this work an application of two texturized glasses as a front side material for PV (photovoltaic) system in architectural and designed installation was analysed taking into account optical, topographic, electrical and aesthetic aspects. Since Building Integrated Photovoltaic (BIPV) is becoming increasingly popular, expanding the scope of installation on facades, building walls and various types of glazing its aesthetics aspects become one of the key parameters. For some BIPV application a surface topography such as roughness and or matte surface meeting aesthetic requirements is crucial. Additionally, in the case of installations in urban spaces, an important parameter is the low reflectance value and, consequently, the reduction of light reflections that can blind drivers. The measurements carried out show that the use of glass with a textured surface slightly reduces the electrical parameters of the PV system: around 5% for power (W) while significantly reducing the reflection parameters (light reflection) up to 88% in visible (VIS) region.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"22 ","pages":"Article 100810"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.clet.2024.100817
Redeil N. Arreza, Alec Nowell A. Ranara, Trisha Kerstin C. Tan, Kathleen B. Aviso, Angelo Earvin Sy Choi
Significant volumes of wastewater, particularly from the textile industry, pose environmental concerns due to the presence of hazardous substances such as ortho-toluidine (OT). The photo-Fenton process can be used to break down and remove this hazardous organic compound. Previous studies on the photo-Fenton process have focused on local optimization of operating variables without considering cost factors. The photo-Fenton process is studied in this paper with UVA irradiation, Fe2+ dosage, and H2O2 concentration considered as variables. The study uses fuzzy optimization in a multi-objective framework for making decisions to determine the optimal values of OT degradation with its corresponding cumulative uncertainty error (YA), and the total operating cost (CT), both of which are essential for assessing the techno-economic feasibility of the process. The Pareto front was generated from the objective functions to establish the boundary limits for YA and CT. The results show an overall satisfaction level of 71.81% for the objective functions, indicating a partially satisficing solution for maximizing OT degradation while minimizing operating cost. The optimum conditions of the variables require 85.70 W m−3 UVA irradiation, 0.5177 mM for Fe2+ dosage, and 7.85 mM for the H2O2 concentration. These conditions yielded an OT degradation value of 83.22% and a total operating cost of 768.61 USD·m−3. Comparison with previous literature showed an OT degradation efficiency that was 16.78% lower. However, this tradeoff in the process efficiency is offset by a total operating cost that is 2.28 times cheaper, emphasizing the cost-effectiveness of the fuzzy optimized solution.
大量废水,尤其是纺织业的废水,因含有邻甲苯胺(OT)等有害物质而引发环境问题。光-芬顿工艺可用于分解和去除这种有害有机化合物。以往对光-芬顿工艺的研究主要集中在操作变量的局部优化,而没有考虑成本因素。本文以 UVA 照射、Fe2+ 用量和 H2O2 浓度为变量,对光-芬顿工艺进行了研究。该研究在多目标框架下使用模糊优化进行决策,以确定 OT 降解的最佳值及其相应的累积不确定性误差(YA)和总运营成本(CT),这两个值对于评估该工艺的技术经济可行性至关重要。根据目标函数生成帕累托前沿,以确定 YA 和 CT 的边界限制。结果表明,目标函数的总体满意度为 71.81%,这表明在最大化 OT 降解的同时最小化运营成本的解决方案部分令人满意。变量的最佳条件需要 85.70 W m-3 的 UVA 照射、0.5177 mM 的 Fe2+ 用量和 7.85 mM 的 H2O2 浓度。在这些条件下,OT 降解值为 83.22%,总运行成本为 768.61 美元-m-3。与以前的文献相比,OT 降解效率低 16.78%。然而,总运营成本降低了 2.28 倍,从而抵消了工艺效率上的折衷,凸显了模糊优化解决方案的成本效益。
{"title":"Fuzzy optimization of the photo-Fenton process on o-toluidine degradation in the aspect wastewater treatment","authors":"Redeil N. Arreza, Alec Nowell A. Ranara, Trisha Kerstin C. Tan, Kathleen B. Aviso, Angelo Earvin Sy Choi","doi":"10.1016/j.clet.2024.100817","DOIUrl":"10.1016/j.clet.2024.100817","url":null,"abstract":"<div><div>Significant volumes of wastewater, particularly from the textile industry, pose environmental concerns due to the presence of hazardous substances such as ortho-toluidine (OT). The photo-Fenton process can be used to break down and remove this hazardous organic compound. Previous studies on the photo-Fenton process have focused on local optimization of operating variables without considering cost factors. The photo-Fenton process is studied in this paper with UVA irradiation, Fe<sup>2+</sup> dosage, and H<sub>2</sub>O<sub>2</sub> concentration considered as variables. The study uses fuzzy optimization in a multi-objective framework for making decisions to determine the optimal values of OT degradation with its corresponding cumulative uncertainty error (<em>Y</em><sub><em>A</em></sub>), and the total operating cost (<em>C</em><sub><em>T</em></sub>), both of which are essential for assessing the techno-economic feasibility of the process. The Pareto front was generated from the objective functions to establish the boundary limits for <em>Y</em><sub><em>A</em></sub> and <em>C</em><sub><em>T</em></sub>. The results show an overall satisfaction level of 71.81% for the objective functions, indicating a partially satisficing solution for maximizing OT degradation while minimizing operating cost. The optimum conditions of the variables require 85.70 W m<sup>−3</sup> UVA irradiation, 0.5177 mM for Fe<sup>2+</sup> dosage, and 7.85 mM for the H<sub>2</sub>O<sub>2</sub> concentration. These conditions yielded an OT degradation value of 83.22% and a total operating cost of 768.61 USD·m<sup>−3</sup>. Comparison with previous literature showed an OT degradation efficiency that was 16.78% lower. However, this tradeoff in the process efficiency is offset by a total operating cost that is 2.28 times cheaper, emphasizing the cost-effectiveness of the fuzzy optimized solution.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"22 ","pages":"Article 100817"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.clet.2024.100812
Babatunde Olawale Yusuf , Tareg Abdalla Abdalla , Turki S. Alahmari , Raouf Hassan
Effective and efficient handling of solid waste remains a significant issue, particularly in low- and middle-income countries, and densely populated urban areas. Waste plastic is identified as a major contributor to solid waste streams. This study highlighted the viable reuse of waste Linear low-density polyethylene (LLDPE) plastic as a binder and full replacement for cement in composite blocks. An extrusion technique was adopted to melt the plastic and mix it with the sand fillers to create a homogenous waste plastic binder composite block. Composite block samples were produced at various mixture ratios of 1:1, 1:2, and 1:3 with waste plastic or cement as binder and sand as filler. The composite samples' compressive strength, flexural strength, tensile strength, UPV, thermal conductivity, skid resistance, Cantabro mass loss, and morphology were investigated. In addition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis of the composites were carried out. The results showed that composite blocks containing waste LLDPE plastic as binder exhibited lower compressive strength, higher flexural strength, and tensile strength, better thermal insulation, and abrasion resistance compared to composite blocks containing cement as binder. Meanwhile, the cement binder composite gave better skid resistance when the surface was wet than the waste plastic binder composite. However, the waste LLDPE plastic composite mixes considered gave compressive strength above 5 N/mm2, which is the minimum requirement for building bricks according to BS 3921: 1985.
{"title":"Adaptive reuse of waste plastic as binders in composites for sustainable construction","authors":"Babatunde Olawale Yusuf , Tareg Abdalla Abdalla , Turki S. Alahmari , Raouf Hassan","doi":"10.1016/j.clet.2024.100812","DOIUrl":"10.1016/j.clet.2024.100812","url":null,"abstract":"<div><div>Effective and efficient handling of solid waste remains a significant issue, particularly in low- and middle-income countries, and densely populated urban areas. Waste plastic is identified as a major contributor to solid waste streams. This study highlighted the viable reuse of waste Linear low-density polyethylene (LLDPE) plastic as a binder and full replacement for cement in composite blocks. An extrusion technique was adopted to melt the plastic and mix it with the sand fillers to create a homogenous waste plastic binder composite block. Composite block samples were produced at various mixture ratios of 1:1, 1:2, and 1:3 with waste plastic or cement as binder and sand as filler. The composite samples' compressive strength, flexural strength, tensile strength, UPV, thermal conductivity, skid resistance, Cantabro mass loss, and morphology were investigated. In addition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis of the composites were carried out. The results showed that composite blocks containing waste LLDPE plastic as binder exhibited lower compressive strength, higher flexural strength, and tensile strength, better thermal insulation, and abrasion resistance compared to composite blocks containing cement as binder. Meanwhile, the cement binder composite gave better skid resistance when the surface was wet than the waste plastic binder composite. However, the waste LLDPE plastic composite mixes considered gave compressive strength above 5 N/mm<sup>2</sup>, which is the minimum requirement for building bricks according to BS 3921: 1985.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"22 ","pages":"Article 100812"},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}