首页 > 最新文献

Cleaner Engineering and Technology最新文献

英文 中文
Mechanical behavior of bio-based concrete under various loadings and factors affecting its mechanical properties at the composite scale: A state-of-the-art review 生物基混凝土在各种荷载下的力学行为以及在复合尺度上影响其力学性能的因素:最新综述
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-13 DOI: 10.1016/j.clet.2024.100819
The utilization of environmentally friendly materials derived from agricultural sources is becoming more prevalent in the construction industry. Many studies have already been conducted on various agro-resources, providing a variety of information on the characteristics of botanical aggregates and bio-based concrete. However, the prediction of the mechanical behavior of bio-based concrete remains complex owing to the various factors that influence its properties. Hence, it is crucial to collect a multitude of diverse information scattered throughout the literature regarding the mechanical response of bio-based materials under different loading conditions.
This paper review aims to evaluate the mechanical behavior law and mechanical properties of bio-based concrete under various loadings (compression, flexion, and shear) in accordance with multi-plant-aggregates and different mineral binders. The literature has provided around 120 papers listing a compilation of 18 plant aggregates sourced from various origins that are utilized in plant-based concrete. On the other side, a few types of aggregates and binders were introduced in the literature regarding the mechanical behavior of bio-based concrete. Several factors can affect the mechanical properties of bio-based concrete at the composite scale such as the formulation, the casting process (energy), the curing conditions, the morphology of the aggregates, the density, the porosity, the mineral matrix properties, and particles/binder physicochemical interactions. Hence, this paper elaborates on a conceptual understanding that focuses on the mechanical response of bio-based concrete in relation to the various influencing factors up to the application of these materials in building sector.
在建筑业中,利用从农业资源中提取的环保材料正变得越来越普遍。针对各种农业资源已经开展了许多研究,提供了有关植物骨料和生物基混凝土特性的各种信息。然而,由于影响生物基混凝土特性的因素多种多样,对其力学行为的预测仍然十分复杂。因此,收集散见于文献中有关生物基材料在不同荷载条件下的力学响应的各种信息至关重要。本文综述的目的是评估生物基混凝土在不同荷载(压缩、弯曲和剪切)条件下与多植物骨料和不同矿物粘结剂相适应的力学行为规律和力学性能。文献提供了约 120 篇论文,列出了 18 种植物骨料的汇编,这些骨料来自不同的产地,可用于植物基混凝土。另一方面,关于生物基混凝土的力学性能,文献中也介绍了几种骨料和粘结剂。在复合尺度上,有多种因素会影响生物基混凝土的力学性能,如配方、浇注过程(能量)、养护条件、集料形态、密度、孔隙率、矿物基质性能以及颗粒/粘结剂的物理化学相互作用。因此,本文阐述了一种概念性理解,重点是生物基混凝土的机械响应与这些材料在建筑领域应用之前的各种影响因素的关系。
{"title":"Mechanical behavior of bio-based concrete under various loadings and factors affecting its mechanical properties at the composite scale: A state-of-the-art review","authors":"","doi":"10.1016/j.clet.2024.100819","DOIUrl":"10.1016/j.clet.2024.100819","url":null,"abstract":"<div><div>The utilization of environmentally friendly materials derived from agricultural sources is becoming more prevalent in the construction industry. Many studies have already been conducted on various agro-resources, providing a variety of information on the characteristics of botanical aggregates and bio-based concrete. However, the prediction of the mechanical behavior of bio-based concrete remains complex owing to the various factors that influence its properties. Hence, it is crucial to collect a multitude of diverse information scattered throughout the literature regarding the mechanical response of bio-based materials under different loading conditions.</div><div>This paper review aims to evaluate the mechanical behavior law and mechanical properties of bio-based concrete under various loadings (compression, flexion, and shear) in accordance with multi-plant-aggregates and different mineral binders. The literature has provided around 120 papers listing a compilation of 18 plant aggregates sourced from various origins that are utilized in plant-based concrete. On the other side, a few types of aggregates and binders were introduced in the literature regarding the mechanical behavior of bio-based concrete. Several factors can affect the mechanical properties of bio-based concrete at the composite scale such as the formulation, the casting process (energy), the curing conditions, the morphology of the aggregates, the density, the porosity, the mineral matrix properties, and particles/binder physicochemical interactions. Hence, this paper elaborates on a conceptual understanding that focuses on the mechanical response of bio-based concrete in relation to the various influencing factors up to the application of these materials in building sector.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summer period analysis of the rotary desiccant - hybrid cooling system combined with solid oxide fuel cells using human waste fuel 利用人类废料燃料的旋转干燥器--与固体氧化物燃料电池相结合的混合冷却系统的夏季分析
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-11 DOI: 10.1016/j.clet.2024.100818
This paper proposes and simulates a desiccant air cooling system integrated with a vapor compression cooling unit and a heat recovery unit for an office building in Çanakkale, Turkey, during the summer season. The required electrical energy for equipment of the proposed system is supplied by an Solid Oxide Fuel Cells (SOFC) unit using human waste as fuel. Moreover, some of the waste heat generated by the SOFC is used to regenerate the desiccant wheel. The simulation also includes the effects of three different refrigerants for the vapor compression cooling unit. Among the refrigerants, the highest electrical COP was obtained for the system using R1234ze(Z), which is 3.14% and 2.40% higher than the systems using R717 and R1233zd(E), respectively. Additionally, the system using R1234ze(Z) achieved electrical savings of 9.97% and 9.23% compared to the other systems. These electrical savings resulted in fuel savings of 1.19% and 0.90% for R1234ze(Z) compared to R717 and R1233zd(E), respectively. During the summer season, the electricity production from the existing SOFC unit met 82.00% of the total electricity consumption of the desiccant hybrid cooling system. Furthermore, a difference of 3984.56 kWh in primary energy consumption was identified between the desiccant hybrid cooling systems operating with the SOFC and without the SOFC during the summer season.
本文为土耳其恰纳卡莱的一栋办公楼提出并模拟了一套干燥剂空气冷却系统,该系统集成了蒸汽压缩冷却装置和热回收装置,适用于夏季。拟议系统设备所需的电能由固体氧化物燃料电池(SOFC)装置提供,该装置使用人类排泄物作为燃料。此外,SOFC 产生的部分废热还用于再生干燥剂轮。模拟还包括三种不同制冷剂对蒸汽压缩冷却装置的影响。在制冷剂中,使用 R1234ze(Z) 的系统获得了最高的电 COP,比使用 R717 和 R1233zd(E) 的系统分别高出 3.14% 和 2.40%。此外,与其他系统相比,使用 R1234ze(Z) 的系统可节省 9.97% 和 9.23% 的电力。与 R717 和 R1233zd(E)相比,R1234ze(Z)的节电效果可分别节省 1.19% 和 0.90% 的燃料。在夏季,现有 SOFC 设备的发电量满足了干燥剂混合冷却系统总耗电量的 82.00%。此外,在夏季,使用 SOFC 和不使用 SOFC 的干燥剂混合冷却系统的一次能源消耗量相差 3984.56 千瓦时。
{"title":"Summer period analysis of the rotary desiccant - hybrid cooling system combined with solid oxide fuel cells using human waste fuel","authors":"","doi":"10.1016/j.clet.2024.100818","DOIUrl":"10.1016/j.clet.2024.100818","url":null,"abstract":"<div><div>This paper proposes and simulates a desiccant air cooling system integrated with a vapor compression cooling unit and a heat recovery unit for an office building in Çanakkale, Turkey, during the summer season. The required electrical energy for equipment of the proposed system is supplied by an Solid Oxide Fuel Cells (SOFC) unit using human waste as fuel. Moreover, some of the waste heat generated by the SOFC is used to regenerate the desiccant wheel. The simulation also includes the effects of three different refrigerants for the vapor compression cooling unit. Among the refrigerants, the highest electrical COP was obtained for the system using R1234ze(Z), which is 3.14% and 2.40% higher than the systems using R717 and R1233zd(E), respectively. Additionally, the system using R1234ze(Z) achieved electrical savings of 9.97% and 9.23% compared to the other systems. These electrical savings resulted in fuel savings of 1.19% and 0.90% for R1234ze(Z) compared to R717 and R1233zd(E), respectively. During the summer season, the electricity production from the existing SOFC unit met 82.00% of the total electricity consumption of the desiccant hybrid cooling system. Furthermore, a difference of 3984.56 kWh in primary energy consumption was identified between the desiccant hybrid cooling systems operating with the SOFC and without the SOFC during the summer season.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Texturized glass in the application of architectural photovoltaics 建筑光伏应用中的纹理玻璃
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100810
In this work an application of two texturized glasses as a front side material for PV (photovoltaic) system in architectural and designed installation was analysed taking into account optical, topographic, electrical and aesthetic aspects. Since Building Integrated Photovoltaic (BIPV) is becoming increasingly popular, expanding the scope of installation on facades, building walls and various types of glazing its aesthetics aspects become one of the key parameters. For some BIPV application a surface topography such as roughness and or matte surface meeting aesthetic requirements is crucial. Additionally, in the case of installations in urban spaces, an important parameter is the low reflectance value and, consequently, the reduction of light reflections that can blind drivers. The measurements carried out show that the use of glass with a textured surface slightly reduces the electrical parameters of the PV system: around 5% for power (W) while significantly reducing the reflection parameters (light reflection) up to 88% in visible (VIS) region.
在这项工作中,考虑到光学、地形、电气和美学方面的因素,分析了两种纹理玻璃作为光伏(光电)系统正面材料在建筑和设计安装中的应用。由于光伏建筑一体化(BIPV)越来越受欢迎,在外墙、建筑墙壁和各种玻璃上的安装范围也在不断扩大,其美学方面成为关键参数之一。对于某些 BIPV 应用来说,符合美学要求的表面形貌(如粗糙度或哑光表面)至关重要。此外,在城市空间安装的情况下,一个重要的参数是低反射值,从而减少可能使驾驶员失明的光反射。测量结果表明,使用表面有纹理的玻璃可略微降低光伏系统的电气参数:功率(瓦)降低约 5%,而在可见光(VIS)区域,反射参数(光反射)则显著降低达 88%。
{"title":"Texturized glass in the application of architectural photovoltaics","authors":"","doi":"10.1016/j.clet.2024.100810","DOIUrl":"10.1016/j.clet.2024.100810","url":null,"abstract":"<div><div>In this work an application of two texturized glasses as a front side material for PV (photovoltaic) system in architectural and designed installation was analysed taking into account optical, topographic, electrical and aesthetic aspects. Since Building Integrated Photovoltaic (BIPV) is becoming increasingly popular, expanding the scope of installation on facades, building walls and various types of glazing its aesthetics aspects become one of the key parameters. For some BIPV application a surface topography such as roughness and or matte surface meeting aesthetic requirements is crucial. Additionally, in the case of installations in urban spaces, an important parameter is the low reflectance value and, consequently, the reduction of light reflections that can blind drivers. The measurements carried out show that the use of glass with a textured surface slightly reduces the electrical parameters of the PV system: around 5% for power (W) while significantly reducing the reflection parameters (light reflection) up to 88% in visible (VIS) region.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy optimization of the photo-Fenton process on o-toluidine degradation in the aspect wastewater treatment 模糊优化光-芬顿工艺在废水处理中对邻甲苯胺的降解作用
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100817
Significant volumes of wastewater, particularly from the textile industry, pose environmental concerns due to the presence of hazardous substances such as ortho-toluidine (OT). The photo-Fenton process can be used to break down and remove this hazardous organic compound. Previous studies on the photo-Fenton process have focused on local optimization of operating variables without considering cost factors. The photo-Fenton process is studied in this paper with UVA irradiation, Fe2+ dosage, and H2O2 concentration considered as variables. The study uses fuzzy optimization in a multi-objective framework for making decisions to determine the optimal values of OT degradation with its corresponding cumulative uncertainty error (YA), and the total operating cost (CT), both of which are essential for assessing the techno-economic feasibility of the process. The Pareto front was generated from the objective functions to establish the boundary limits for YA and CT. The results show an overall satisfaction level of 71.81% for the objective functions, indicating a partially satisficing solution for maximizing OT degradation while minimizing operating cost. The optimum conditions of the variables require 85.70 W m−3 UVA irradiation, 0.5177 mM for Fe2+ dosage, and 7.85 mM for the H2O2 concentration. These conditions yielded an OT degradation value of 83.22% and a total operating cost of 768.61 USD·m−3. Comparison with previous literature showed an OT degradation efficiency that was 16.78% lower. However, this tradeoff in the process efficiency is offset by a total operating cost that is 2.28 times cheaper, emphasizing the cost-effectiveness of the fuzzy optimized solution.
大量废水,尤其是纺织业的废水,因含有邻甲苯胺(OT)等有害物质而引发环境问题。光-芬顿工艺可用于分解和去除这种有害有机化合物。以往对光-芬顿工艺的研究主要集中在操作变量的局部优化,而没有考虑成本因素。本文以 UVA 照射、Fe2+ 用量和 H2O2 浓度为变量,对光-芬顿工艺进行了研究。该研究在多目标框架下使用模糊优化进行决策,以确定 OT 降解的最佳值及其相应的累积不确定性误差(YA)和总运营成本(CT),这两个值对于评估该工艺的技术经济可行性至关重要。根据目标函数生成帕累托前沿,以确定 YA 和 CT 的边界限制。结果表明,目标函数的总体满意度为 71.81%,这表明在最大化 OT 降解的同时最小化运营成本的解决方案部分令人满意。变量的最佳条件需要 85.70 W m-3 的 UVA 照射、0.5177 mM 的 Fe2+ 用量和 7.85 mM 的 H2O2 浓度。在这些条件下,OT 降解值为 83.22%,总运行成本为 768.61 美元-m-3。与以前的文献相比,OT 降解效率低 16.78%。然而,总运营成本降低了 2.28 倍,从而抵消了工艺效率上的折衷,凸显了模糊优化解决方案的成本效益。
{"title":"Fuzzy optimization of the photo-Fenton process on o-toluidine degradation in the aspect wastewater treatment","authors":"","doi":"10.1016/j.clet.2024.100817","DOIUrl":"10.1016/j.clet.2024.100817","url":null,"abstract":"<div><div>Significant volumes of wastewater, particularly from the textile industry, pose environmental concerns due to the presence of hazardous substances such as ortho-toluidine (OT). The photo-Fenton process can be used to break down and remove this hazardous organic compound. Previous studies on the photo-Fenton process have focused on local optimization of operating variables without considering cost factors. The photo-Fenton process is studied in this paper with UVA irradiation, Fe<sup>2+</sup> dosage, and H<sub>2</sub>O<sub>2</sub> concentration considered as variables. The study uses fuzzy optimization in a multi-objective framework for making decisions to determine the optimal values of OT degradation with its corresponding cumulative uncertainty error (<em>Y</em><sub><em>A</em></sub>), and the total operating cost (<em>C</em><sub><em>T</em></sub>), both of which are essential for assessing the techno-economic feasibility of the process. The Pareto front was generated from the objective functions to establish the boundary limits for <em>Y</em><sub><em>A</em></sub> and <em>C</em><sub><em>T</em></sub>. The results show an overall satisfaction level of 71.81% for the objective functions, indicating a partially satisficing solution for maximizing OT degradation while minimizing operating cost. The optimum conditions of the variables require 85.70 W m<sup>−3</sup> UVA irradiation, 0.5177 mM for Fe<sup>2+</sup> dosage, and 7.85 mM for the H<sub>2</sub>O<sub>2</sub> concentration. These conditions yielded an OT degradation value of 83.22% and a total operating cost of 768.61 USD·m<sup>−3</sup>. Comparison with previous literature showed an OT degradation efficiency that was 16.78% lower. However, this tradeoff in the process efficiency is offset by a total operating cost that is 2.28 times cheaper, emphasizing the cost-effectiveness of the fuzzy optimized solution.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive reuse of waste plastic as binders in composites for sustainable construction 将废塑料作为复合材料的粘合剂进行适应性再利用,实现可持续建筑
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100812
Effective and efficient handling of solid waste remains a significant issue, particularly in low- and middle-income countries, and densely populated urban areas. Waste plastic is identified as a major contributor to solid waste streams. This study highlighted the viable reuse of waste Linear low-density polyethylene (LLDPE) plastic as a binder and full replacement for cement in composite blocks. An extrusion technique was adopted to melt the plastic and mix it with the sand fillers to create a homogenous waste plastic binder composite block. Composite block samples were produced at various mixture ratios of 1:1, 1:2, and 1:3 with waste plastic or cement as binder and sand as filler. The composite samples' compressive strength, flexural strength, tensile strength, UPV, thermal conductivity, skid resistance, Cantabro mass loss, and morphology were investigated. In addition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis of the composites were carried out. The results showed that composite blocks containing waste LLDPE plastic as binder exhibited lower compressive strength, higher flexural strength, and tensile strength, better thermal insulation, and abrasion resistance compared to composite blocks containing cement as binder. Meanwhile, the cement binder composite gave better skid resistance when the surface was wet than the waste plastic binder composite. However, the waste LLDPE plastic composite mixes considered gave compressive strength above 5 N/mm2, which is the minimum requirement for building bricks according to BS 3921: 1985.
有效和高效地处理固体废物仍然是一个重大问题,尤其是在中低收入国家和人口稠密的城市地区。废塑料被认为是固体废物流的主要来源。这项研究强调了废弃线性低密度聚乙烯(LLDPE)塑料作为粘合剂的可行再利用,以及在复合砌块中完全替代水泥。研究采用挤压技术熔化塑料,并将其与砂填料混合,制成均匀的废塑料粘合剂复合砌块。以废塑料或水泥为粘合剂,沙子为填料,按 1:1、1:2 和 1:3 的不同混合比例制作了复合砌块样品。研究了复合材料样品的抗压强度、抗弯强度、抗拉强度、UPV、导热性、防滑性、Cantabro 质量损失和形态。此外,还对复合材料进行了热重分析(TGA)和差示扫描量热分析(DSC)。结果表明,与以水泥为粘合剂的复合砌块相比,以废弃低密度聚乙烯塑料为粘合剂的复合砌块具有更低的抗压强度、更高的抗弯强度和抗拉强度、更好的隔热性能和耐磨性。同时,与废塑料粘结剂复合材料相比,水泥粘结剂复合材料在表面潮湿时具有更好的防滑性。不过,根据 BS 3921 标准,废旧 LLDPE 塑料复合材料的抗压强度高于 5 牛顿/平方毫米,这是建筑用砖的最低要求:1985.
{"title":"Adaptive reuse of waste plastic as binders in composites for sustainable construction","authors":"","doi":"10.1016/j.clet.2024.100812","DOIUrl":"10.1016/j.clet.2024.100812","url":null,"abstract":"<div><div>Effective and efficient handling of solid waste remains a significant issue, particularly in low- and middle-income countries, and densely populated urban areas. Waste plastic is identified as a major contributor to solid waste streams. This study highlighted the viable reuse of waste Linear low-density polyethylene (LLDPE) plastic as a binder and full replacement for cement in composite blocks. An extrusion technique was adopted to melt the plastic and mix it with the sand fillers to create a homogenous waste plastic binder composite block. Composite block samples were produced at various mixture ratios of 1:1, 1:2, and 1:3 with waste plastic or cement as binder and sand as filler. The composite samples' compressive strength, flexural strength, tensile strength, UPV, thermal conductivity, skid resistance, Cantabro mass loss, and morphology were investigated. In addition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis of the composites were carried out. The results showed that composite blocks containing waste LLDPE plastic as binder exhibited lower compressive strength, higher flexural strength, and tensile strength, better thermal insulation, and abrasion resistance compared to composite blocks containing cement as binder. Meanwhile, the cement binder composite gave better skid resistance when the surface was wet than the waste plastic binder composite. However, the waste LLDPE plastic composite mixes considered gave compressive strength above 5 N/mm<sup>2</sup>, which is the minimum requirement for building bricks according to BS 3921: 1985.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocomposite materials from natural rubber/polylactic acid blends reinforced rubberwood sawdust for producing children's toys 利用天然橡胶/聚乳酸混合物增强橡胶木锯屑的生物复合材料生产儿童玩具
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100803
Biocomposite materials are prepared by blending natural rubber (NR) and polylactic acid (PLA) reinforced with rubberwood sawdust (RWS). This study aimed to investigate the effects of PLA grade, NR/PLA blend ratio, and RWS content on flexure, tension, hardness, and water absorption characteristics, including thermal stability. The RWS content significantly affected the physical and mechanical properties of the biocomposite materials. The increasing additions of RWS from 30 to 50 wt% increased the mechanical modulus, hardness, and water absorption but decreased the thermal stability of the biocomposites. Polymer blended with an NR/PLA ratio of 30/70 reinforced with 30 wt% RWS exhibited the highest mechanical strength, whereas a blend ratio of 40/60 was found to be reinforced with 40 wt% RWS. The polymer matrix blended with a higher PLA content resulted in superior biocomposite properties. Thus, the biocomposites with an NR/PLA ratio of 30/70 had better properties than those with a ratio of 40/60. Further, biocomposites with PLA grade of low melt flow rate (6 g/10 min) improved their properties more than that of a high melt flow rate (80 g/10 min). Therefore, the appropriate formulation of biocomposites for producing children's toys is a blend ratio of 30/70 with 2003D PLA grade of low melt flow rate and reinforcement with 30 wt% RWS. The tensile, flexural, and compressive forces of a toy boat prototype were 70.08, 104.9, and 124.8 N, respectively, while the specified standard is 69.0, 69.0, and 113.5 N, respectively, thus meeting the requirements of the American Society for Testing and Materials F963.
生物复合材料是由天然橡胶(NR)和聚乳酸(PLA)与橡胶木锯屑(RWS)混合增强制备而成。本研究旨在探讨聚乳酸等级、NR/PLA 混合比和 RWS 含量对弯曲、拉伸、硬度和吸水特性(包括热稳定性)的影响。RWS 含量对生物复合材料的物理和机械性能有明显影响。将 RWS 的添加量从 30% 增加到 50%,可提高生物复合材料的机械模量、硬度和吸水性,但会降低其热稳定性。用 30 wt% RWS 增强的 NR/PLA 混合比为 30/70 的聚合物显示出最高的机械强度,而用 40 wt% RWS 增强的混合比为 40/60。与较高聚乳酸含量的聚合物基体混合后,生物复合材料的性能更优越。因此,NR/PLA 比率为 30/70 的生物复合材料比比率为 40/60 的生物复合材料具有更好的性能。此外,使用低熔体流动速率(6 克/10 分钟)的聚乳酸级生物复合材料比使用高熔体流动速率(80 克/10 分钟)的生物复合材料更能改善其性能。因此,用于生产儿童玩具的生物复合材料的合适配方是:低熔体流动速率的 2003D 级聚乳酸与 30 wt% 的 RWS 增强材料的混合比例为 30/70。玩具船原型的拉伸力、弯曲力和压缩力分别为 70.08 牛、104.9 牛和 124.8 牛,而规定标准分别为 69.0 牛、69.0 牛和 113.5 牛,因此符合美国材料试验协会 F963 的要求。
{"title":"Biocomposite materials from natural rubber/polylactic acid blends reinforced rubberwood sawdust for producing children's toys","authors":"","doi":"10.1016/j.clet.2024.100803","DOIUrl":"10.1016/j.clet.2024.100803","url":null,"abstract":"<div><div>Biocomposite materials are prepared by blending natural rubber (NR) and polylactic acid (PLA) reinforced with rubberwood sawdust (RWS). This study aimed to investigate the effects of PLA grade, NR/PLA blend ratio, and RWS content on flexure, tension, hardness, and water absorption characteristics, including thermal stability. The RWS content significantly affected the physical and mechanical properties of the biocomposite materials. The increasing additions of RWS from 30 to 50 wt% increased the mechanical modulus, hardness, and water absorption but decreased the thermal stability of the biocomposites. Polymer blended with an NR/PLA ratio of 30/70 reinforced with 30 wt% RWS exhibited the highest mechanical strength, whereas a blend ratio of 40/60 was found to be reinforced with 40 wt% RWS. The polymer matrix blended with a higher PLA content resulted in superior biocomposite properties. Thus, the biocomposites with an NR/PLA ratio of 30/70 had better properties than those with a ratio of 40/60. Further, biocomposites with PLA grade of low melt flow rate (6 g/10 min) improved their properties more than that of a high melt flow rate (80 g/10 min). Therefore, the appropriate formulation of biocomposites for producing children's toys is a blend ratio of 30/70 with 2003D PLA grade of low melt flow rate and reinforcement with 30 wt% RWS. The tensile, flexural, and compressive forces of a toy boat prototype were 70.08, 104.9, and 124.8 N, respectively, while the specified standard is 69.0, 69.0, and 113.5 N, respectively, thus meeting the requirements of the American Society for Testing and Materials F963.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste cigarette filters-based polymer blends membrane for filtration of high loaded natural organic matter river water 基于废卷烟滤嘴的聚合物混合物膜用于过滤高负荷天然有机物河水
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100816
Waste cigarette filter (WCF) is one of the most common wastes found in the environment. Cigarette filters contain up to 96% cellulose acetate (CA), which can be used as a material for membrane fabrication. However, the CA-based membrane from WCF posed a weak mechanical property (brittle). Therefore, the objective of this work is to improve mechanical property of CA-based membrane from WCF by preparing blend membranes with polyvinylidene fluoride (PVDF) polymer and evaluate their performance for filtration of real river water containing high natural organic matter (NOM) concentrations. The variations of WCF and PVDF used were 100:0, 75:25, 50:50, 25:75, and 0:100. The membranes were then characterized to determine the morphology, pore size and pore size distribution, hydrophilicity, mechanical properties, and filtration performance of the membrane using clean water and river water. The SEM test results showed the presence of spherulites on the surface of the blend membrane, indicating that crystallization occurred during membrane formation. The spherulites resulted in smaller pore size, narrower pore size distribution, higher hydrophilicity, and mechanical properties. Meanwhile, the filtration test results showed that blend membranes produced higher permeability compared to pristine WCF, PVDF, and commercial-based CA membranes, where the result of river water permeability was in the range of 875–1062.5 L/m2.h.bar. The membrane fouling formation was aligned well with the result of permeability and is dominated by irreversible fouling formation from the dynamic cake layer built on the membrane surface, with NOM rejections of 26.6–33.8%, suggesting the need for further developments.
废香烟过滤嘴(WCF)是环境中最常见的废物之一。香烟过滤嘴含有高达 96% 的醋酸纤维素 (CA),可用作膜制造材料。然而,从 WCF 中提取的基于 CA 的膜具有较弱的机械性能(脆性)。因此,这项工作的目的是通过制备与聚偏二氟乙烯(PVDF)聚合物的混合膜来改善以 WCF 为原料的 CA 基膜的机械性能,并评估其在过滤含有高浓度天然有机物(NOM)的真实河水时的性能。所使用的 WCF 和 PVDF 的比例分别为 100:0、75:25、50:50、25:75 和 0:100。然后,使用清水和河水对膜进行表征,以确定膜的形态、孔径和孔径分布、亲水性、机械性能和过滤性能。扫描电子显微镜测试结果表明,混合膜表面存在球粒,这表明膜在形成过程中发生了结晶。球形颗粒使膜的孔径更小、孔径分布更窄、亲水性更强、机械性能更好。同时,过滤测试结果表明,与原始的 WCF、PVDF 和商用 CA 膜相比,混合膜产生了更高的渗透率,其中河水渗透率的结果范围为 875-1062.5 L/m2.h.bar。膜污垢的形成与渗透性的结果非常吻合,主要是膜表面形成的动态滤饼层形成的不可逆污垢,NOM 的去除率为 26.6%-33.8%,这表明需要进一步开发。
{"title":"Waste cigarette filters-based polymer blends membrane for filtration of high loaded natural organic matter river water","authors":"","doi":"10.1016/j.clet.2024.100816","DOIUrl":"10.1016/j.clet.2024.100816","url":null,"abstract":"<div><div>Waste cigarette filter (WCF) is one of the most common wastes found in the environment. Cigarette filters contain up to 96% cellulose acetate (CA), which can be used as a material for membrane fabrication. However, the CA-based membrane from WCF posed a weak mechanical property (brittle). Therefore, the objective of this work is to improve mechanical property of CA-based membrane from WCF by preparing blend membranes with polyvinylidene fluoride (PVDF) polymer and evaluate their performance for filtration of real river water containing high natural organic matter (NOM) concentrations. The variations of WCF and PVDF used were 100:0, 75:25, 50:50, 25:75, and 0:100. The membranes were then characterized to determine the morphology, pore size and pore size distribution, hydrophilicity, mechanical properties, and filtration performance of the membrane using clean water and river water. The SEM test results showed the presence of spherulites on the surface of the blend membrane, indicating that crystallization occurred during membrane formation. The spherulites resulted in smaller pore size, narrower pore size distribution, higher hydrophilicity, and mechanical properties. Meanwhile, the filtration test results showed that blend membranes produced higher permeability compared to pristine WCF, PVDF, and commercial-based CA membranes, where the result of river water permeability was in the range of 875–1062.5 L/m<sup>2</sup>.h.bar. The membrane fouling formation was aligned well with the result of permeability and is dominated by irreversible fouling formation from the dynamic cake layer built on the membrane surface, with NOM rejections of 26.6–33.8%, suggesting the need for further developments.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life cycle inventories for aviation: Background data, shortcomings, and improvements 航空生命周期清单:背景数据、不足和改进
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100813
In the context of growing environmental awareness and a drive towards sustainable aviation, Life Cycle Assessment (LCA) emerges as a pivotal tool for evaluating the environmental impacts of current and novel technologies. This paper focuses on Life Cycle Assessment within the aviation sector, with a specific emphasis on Life Cycle Inventories (LCIs) and databases. Recognizing a relevant data gap in existing databases regarding aircraft maintenance, our study seeks to address this limitation. A maintenance, repair and overhaul use-case is proposed as an illustrative example to enrich underrepresented data in LCIs. Our methodology considers the entire service life of aircraft, building a cumulative life cycle inventory in a cradle-to-gate approach. Geographical representativeness is ensured for maintenance activities conducted in Germany, with extrapolation applied across Europe where necessary. Our findings underscore the need to differentiate maintenance activities between aircraft components and engines, as well as the importance of considering various flight scenarios, ranging from short to long haul. This paper contributes to the advancement of LCA in aviation by providing insights into improving data accuracy and completeness. It also delves into how and why data generation is possible and what are the necessary data improvements within the topic. This paper is aimed at LCA practitioners in both research and industry, thus fostering sustainable practices in aviation.
在环境意识不断增强和航空业向可持续发展方向发展的背景下,生命周期评估(LCA)成为评估当前技术和新技术对环境影响的重要工具。本文重点关注航空领域的生命周期评估,特别强调生命周期清单(LCI)和数据库。由于认识到现有数据库在飞机维护方面存在相关数据缺口,我们的研究试图解决这一局限性。我们提出了一个维护、修理和大修的使用案例,作为丰富生命周期清单中代表性不足的数据的示例。我们的方法考虑了飞机的整个使用寿命,以 "从摇篮到登机口 "的方式建立了累积生命周期清单。在德国进行的维修活动确保了地域代表性,必要时在整个欧洲进行推断。我们的研究结果强调了区分飞机部件和发动机维护活动的必要性,以及考虑从短途到长途等各种飞行情况的重要性。本文就如何提高数据的准确性和完整性提出了自己的见解,为推进航空业的生命周期评估做出了贡献。本文还深入探讨了数据生成的方式和原因,以及该主题中必要的数据改进措施。本文面向研究和工业领域的生命周期评估从业人员,从而促进航空业的可持续发展。
{"title":"Life cycle inventories for aviation: Background data, shortcomings, and improvements","authors":"","doi":"10.1016/j.clet.2024.100813","DOIUrl":"10.1016/j.clet.2024.100813","url":null,"abstract":"<div><div>In the context of growing environmental awareness and a drive towards sustainable aviation, Life Cycle Assessment (LCA) emerges as a pivotal tool for evaluating the environmental impacts of current and novel technologies. This paper focuses on Life Cycle Assessment within the aviation sector, with a specific emphasis on Life Cycle Inventories (LCIs) and databases. Recognizing a relevant data gap in existing databases regarding aircraft maintenance, our study seeks to address this limitation. A maintenance, repair and overhaul use-case is proposed as an illustrative example to enrich underrepresented data in LCIs. Our methodology considers the entire service life of aircraft, building a cumulative life cycle inventory in a cradle-to-gate approach. Geographical representativeness is ensured for maintenance activities conducted in Germany, with extrapolation applied across Europe where necessary. Our findings underscore the need to differentiate maintenance activities between aircraft components and engines, as well as the importance of considering various flight scenarios, ranging from short to long haul. This paper contributes to the advancement of LCA in aviation by providing insights into improving data accuracy and completeness. It also delves into how and why data generation is possible and what are the necessary data improvements within the topic. This paper is aimed at LCA practitioners in both research and industry, thus fostering sustainable practices in aviation.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental and economic impact assessment of hydrophobic treatment of cotton using low-pressure-low-temperature plasma 利用低压低温等离子体对棉花进行疏水处理的环境和经济影响评估
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-10-01 DOI: 10.1016/j.clet.2024.100814
The purpose of this paper is to compare the environmental impact, using Life Cycle Assessment, and the total cost of two hydrophobic fluorocarbon treatment methods: a novel plasma surface modification technique and a traditional pad-dry-curing treatment of fabric. These two techniques have been chosen as two alternatives, with the pad-dry curing being a traditional liquid-based treatment and the plasma treatment a novel gas-based treatment. Such a comparison is a novel effort and will provide to the relevant industrial stakeholders an indication about the sustainability and the financial viability of the plasma treatment technique in comparison to the current state-of-the-art.
The Life Cycle Inventory for both techniques has been compiled based on experiments performed at the Technical Textiles Research Centre, using lab scale equipment. The environmental impact has been assessed using the Environmental Footprint 3.0 method and is expressed in micro ecopoints (μPt). The findings have revealed that for plasma treatment (duration of 5 min using 13 cm3/min of C2F6), the environmental footprint is 47% lower than the conventional pad-dry-curing (8.95 μPt per 10 g of treated cotton compared to 18.9 μPt) and the total treatment cost is 81% lower (£1.03 per 10 g of treated cotton compared to £5.47 using pad-dry-curing). The most significant contributor to the environmental performance of the plasma treatment is the electricity consumption, thus a minimization of the treatment time without losing the functionality of the process, and the subsequent operating expenses, will lead to the optimal plasma treatment conditions.
本文的目的是通过生命周期评估,比较两种疏水性碳氟化合物处理方法对环境的影响和总成本:一种是新型等离子体表面改性技术,另一种是对织物进行传统的垫干固化处理。这两种技术被选为两种替代方法,轧干固化是一种传统的液基处理方法,而等离子体处理是一种新型的气基处理方法。这种比较是一种新的尝试,将为相关的工业利益方提供等离子处理技术与当前最先进技术相比的可持续性和经济可行性方面的信息。两种技术的生命周期清单都是根据技术纺织品研究中心使用实验室规模的设备进行的实验编制的。使用环境足迹 3.0 方法评估了对环境的影响,并用微生态点 (μPt)表示。研究结果表明,对于等离子处理(持续时间为 5 分钟,使用 13 立方厘米/分钟的 C2F6),其环境足迹比传统的垫干固化低 47%(每 10 克处理棉花的环境足迹为 8.95 μPt,而垫干固化为 18.9 μPt),总处理成本低 81%(每 10 克处理棉花的环境足迹为 1.03 英镑,而垫干固化为 5.47 英镑)。对等离子处理的环保性能影响最大的是耗电量,因此,在不损失工艺功能的前提下尽量缩短处理时间,并降低后续运营成本,将能获得最佳的等离子处理条件。
{"title":"Environmental and economic impact assessment of hydrophobic treatment of cotton using low-pressure-low-temperature plasma","authors":"","doi":"10.1016/j.clet.2024.100814","DOIUrl":"10.1016/j.clet.2024.100814","url":null,"abstract":"<div><div>The purpose of this paper is to compare the environmental impact, using Life Cycle Assessment, and the total cost of two hydrophobic fluorocarbon treatment methods: a novel plasma surface modification technique and a traditional pad-dry-curing treatment of fabric. These two techniques have been chosen as two alternatives, with the pad-dry curing being a traditional liquid-based treatment and the plasma treatment a novel gas-based treatment. Such a comparison is a novel effort and will provide to the relevant industrial stakeholders an indication about the sustainability and the financial viability of the plasma treatment technique in comparison to the current state-of-the-art.</div><div>The Life Cycle Inventory for both techniques has been compiled based on experiments performed at the Technical Textiles Research Centre, using lab scale equipment. The environmental impact has been assessed using the Environmental Footprint 3.0 method and is expressed in micro ecopoints (μPt). The findings have revealed that for plasma treatment (duration of 5 min using 13 cm<sup>3</sup>/min of C<sub>2</sub>F<sub>6</sub>), the environmental footprint is 47% lower than the conventional pad-dry-curing (8.95 μPt per 10 g of treated cotton compared to 18.9 μPt) and the total treatment cost is 81% lower (£1.03 per 10 g of treated cotton compared to £5.47 using pad-dry-curing). The most significant contributor to the environmental performance of the plasma treatment is the electricity consumption, thus a minimization of the treatment time without losing the functionality of the process, and the subsequent operating expenses, will lead to the optimal plasma treatment conditions.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of CO2 removal from flue gas in an oscillatory baffled column using potassium carbonate solution 利用碳酸钾溶液提高振荡障板塔去除烟气中二氧化碳的能力
IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-09-28 DOI: 10.1016/j.clet.2024.100815
One of the efficient methods for reducing CO2 emissions from flue gas streams in oil refineries and power plants is the CO2absorption process using alkali solution. Potassium carbonate (K2CO3) solution, as CO2 absorbent, was used in the present study due to its high CO2 absorption capacity. However, K2CO3 has a drawback which is represented by its slow reaction with CO2. To overcome this issue, an oscillatory baffled column (OBC) was utilized as a contactor to maintain a high degree of mixing in the CO2 absorption system and thereby increasing the reaction rate between K2CO3 and CO2 as well as enhancing the mass transfer rate. In this study the effect of different operation conditions of the process namely; inlet flue gas flow rate (15 % (v/v) CO2 balanced with N2) and oscillation conditions on CO2 absorption in a semi-batch OBC were investigated. The experiments were performed with range of modified Reynolds Number of Oscillation (Reo = 0⎼1450) and aeration rates (0⎼1 vvm) using K2CO3 (100 g/L, 0.72 M)0.1.8–3.5-fold of enhancement of CO2 absorption rates was achieved by using OBC with respect to that obtained by baffled column (BC) (only baffles without oscillation) and plane bubble column (PBC) (without baffles and oscillation), respectively.
The use of K₂CO₃ as a solvent in an oscillating reactor (OBR) to remove CO₂ represents a new method due to the high reactivity of K₂CO₃ with CO₂, forming stable bicarbonate and carbonate compounds. OBR's enhanced mixing capabilities improve mass transfer rates and reaction efficiency, allowing for more effective CO2 capture compared to conventional reactors. This combination leverages the strengths of both the chemical reactivity of K₂CO₃ and the mechanical benefits of OBR, potentially leading to more efficient and scalable CO2 removal processes.
利用碱溶液吸收二氧化碳是减少炼油厂和发电厂烟道气中二氧化碳排放的有效方法之一。碳酸钾(K2CO3)溶液作为二氧化碳吸收剂,因其具有较高的二氧化碳吸收能力而被用于本研究。然而,K2CO3 有一个缺点,即与 CO2 的反应速度较慢。为了克服这一问题,我们使用了振荡褶流柱(OBC)作为接触器,以保持二氧化碳吸收系统中的高度混合,从而提高 K2CO3 和二氧化碳之间的反应速度,并增强传质速度。本研究探讨了不同的工艺操作条件(即入口烟气流速(15 % (v/v) CO2 与 N2 平衡)和振荡条件)对半间歇式 OBC 中 CO2 吸收的影响。实验在修正的振荡雷诺数(Reo′ = 0⎼1450)和曝气速率(0⎼1 vvm)范围内进行,使用 K2CO3 (100 g/L, 0.72 M)0.1.8-3.与障板柱(BC)(只有障板没有振荡)和平面气泡柱(PBC)(没有障板和振荡)相比,使用 OBC 所获得的二氧化碳吸收率分别提高了 5 倍。在振荡反应器(OBR)中使用 K₂CO₃ 作为溶剂来去除 CO₂ 是一种新方法,因为 K₂CO₃ 与 CO₂ 具有很高的反应活性,可形成稳定的碳酸氢盐和碳酸盐化合物。与传统反应器相比,OBR 增强的混合能力可提高传质速率和反应效率,从而更有效地捕获二氧化碳。这种组合充分利用了 K₂CO₃ 的化学反应性和 OBR 的机械优势,有可能带来更高效、更可扩展的二氧化碳去除工艺。
{"title":"Enhancement of CO2 removal from flue gas in an oscillatory baffled column using potassium carbonate solution","authors":"","doi":"10.1016/j.clet.2024.100815","DOIUrl":"10.1016/j.clet.2024.100815","url":null,"abstract":"<div><div>One of the efficient methods for reducing CO<sub>2</sub> emissions from flue gas streams in oil refineries and power plants is the CO<sub>2</sub>absorption process using alkali solution. Potassium carbonate (K<sub>2</sub>CO<sub>3</sub>) solution, as CO<sub>2</sub> absorbent, was used in the present study due to its high CO<sub>2</sub> absorption capacity. However, K<sub>2</sub>CO<sub>3</sub> has a drawback which is represented by its slow reaction with CO<sub>2</sub>. To overcome this issue, an oscillatory baffled column (OBC) was utilized as a contactor to maintain a high degree of mixing in the CO<sub>2</sub> absorption system and thereby increasing the reaction rate between K<sub>2</sub>CO<sub>3</sub> and CO<sub>2</sub> as well as enhancing the mass transfer rate. In this study the effect of different operation conditions of the process namely; inlet flue gas flow rate (15 % (v/v) CO<sub>2</sub> balanced with N<sub>2</sub>) and oscillation conditions on CO<sub>2</sub> absorption in a semi-batch OBC were investigated. The experiments were performed with range of modified Reynolds Number of Oscillation (<span><math><mrow><msubsup><mrow><mi>R</mi><mi>e</mi></mrow><mi>o</mi><mo>′</mo></msubsup></mrow></math></span> = 0⎼1450) and aeration rates (0⎼1 <em>vvm</em>) using K<sub>2</sub>CO<sub>3</sub> (100 g/L, 0.72 M)0.1.8–3.5-fold of enhancement of CO<sub>2</sub> absorption rates was achieved by using OBC with respect to that obtained by baffled column (BC) (only baffles without oscillation) and plane bubble column (PBC) (without baffles and oscillation), respectively.</div><div>The use of K₂CO₃ as a solvent in an oscillating reactor (OBR) to remove CO₂ represents a new method due to the high reactivity of K₂CO₃ with CO₂, forming stable bicarbonate and carbonate compounds. OBR's enhanced mixing capabilities improve mass transfer rates and reaction efficiency, allowing for more effective CO<sub>2</sub> capture compared to conventional reactors. This combination leverages the strengths of both the chemical reactivity of K₂CO₃ and the mechanical benefits of OBR, potentially leading to more efficient and scalable CO<sub>2</sub> removal processes.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Engineering and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1