Pub Date : 2024-01-15DOI: 10.3390/recycling9010005
José Alfredo Torres Tovar, H. Servín-Campuzano, M. González-Avilés, Hugo Sobral, Francisco Javier Sánchez-Ruiz
Plastic waste signifies a global predicament, aggravated by deficient management practices. Unearthing methods to repurpose energy from this waste is pivotal. This study delves into the pyrolytic degradation of low-density plastics to convert plastic waste into valuable products on a modest scale. A small-scale, low-CO2 emitting distiller was employed in the process. A zeolite was harnessed as a catalyst to augment the temperature and hasten the pyrolysis process. A comprehensive life cycle analysis was executed to assess the environmental impact of the process. In this scenario, zeolite-facilitated pyrolysis was more proficient compared to traditional thermal pyrolysis, generating a yield of 22.5% with the catalyst, contrasting with 18% without. A kinetic model was formulated, observing reaction mechanisms and temperature escalation and culminating in the extraction of aromatic oils. These oils were further distilled to produce liquid hydrocarbons, beginning the distillation at 60 °C with the catalyst. Characterization of the secured hydrocarbons was conducted using infrared, Raman spectroscopy, and gas chromatography, discovering compounds akin to gasoline, such as benzene, toluene, and xylenes. Additionally, the procedure exhibited a minimal environmental detriment, as validated by the life cycle analysis. This study concludes by highlighting the potential of small-scale, low-CO2 emitting pyrolytic degradation of low-density plastics for energy recovery from plastic waste, demonstrating the practical and environmental benefits of this avant-garde method.
塑料垃圾是一个全球性的难题,由于管理不善而愈演愈烈。找到从这些废物中重新获得能源的方法至关重要。本研究深入探讨了低密度塑料的热解降解问题,以适度规模将塑料垃圾转化为有价值的产品。在此过程中采用了一种小型、低二氧化碳排放的蒸馏器。沸石被用作催化剂,以提高温度并加速热解过程。为评估该工艺对环境的影响,进行了全面的生命周期分析。在这种情况下,沸石促进的热解比传统的热解更有效,使用催化剂的产率为 22.5%,而不使用催化剂的产率为 18%。研究人员建立了一个动力学模型,观察反应机制和温度升高,最终提取出芳香油。在使用催化剂的情况下,这些油在 60 °C 的温度下开始蒸馏,进一步蒸馏产生液态烃。利用红外线、拉曼光谱和气相色谱法对获得的碳氢化合物进行了表征,发现了类似汽油的化合物,如苯、甲苯和二甲苯。此外,该程序对环境的危害极小,生命周期分析也证实了这一点。本研究最后强调了小规模、低二氧化碳排放的低密度塑料热解降解从塑料废弃物中回收能源的潜力,展示了这种前卫方法的实用性和环境效益。
{"title":"Degradation of Plastic Materials through Small-Scale Pyrolysis: Characterization of the Obtained Hydrocarbons and Life Cycle Analysis","authors":"José Alfredo Torres Tovar, H. Servín-Campuzano, M. González-Avilés, Hugo Sobral, Francisco Javier Sánchez-Ruiz","doi":"10.3390/recycling9010005","DOIUrl":"https://doi.org/10.3390/recycling9010005","url":null,"abstract":"Plastic waste signifies a global predicament, aggravated by deficient management practices. Unearthing methods to repurpose energy from this waste is pivotal. This study delves into the pyrolytic degradation of low-density plastics to convert plastic waste into valuable products on a modest scale. A small-scale, low-CO2 emitting distiller was employed in the process. A zeolite was harnessed as a catalyst to augment the temperature and hasten the pyrolysis process. A comprehensive life cycle analysis was executed to assess the environmental impact of the process. In this scenario, zeolite-facilitated pyrolysis was more proficient compared to traditional thermal pyrolysis, generating a yield of 22.5% with the catalyst, contrasting with 18% without. A kinetic model was formulated, observing reaction mechanisms and temperature escalation and culminating in the extraction of aromatic oils. These oils were further distilled to produce liquid hydrocarbons, beginning the distillation at 60 °C with the catalyst. Characterization of the secured hydrocarbons was conducted using infrared, Raman spectroscopy, and gas chromatography, discovering compounds akin to gasoline, such as benzene, toluene, and xylenes. Additionally, the procedure exhibited a minimal environmental detriment, as validated by the life cycle analysis. This study concludes by highlighting the potential of small-scale, low-CO2 emitting pyrolytic degradation of low-density plastics for energy recovery from plastic waste, demonstrating the practical and environmental benefits of this avant-garde method.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139621542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.3390/recycling9010004
L. Al-Khatib, F. Fraige
The rising concerns about electric and electronic equipment waste (WEEE) come from the rapid increase in demand for appliances and the decreasing lifetimes of equipment. Setting a sustainable WEEE management system that exploits this secondary resource is paramount to maximize resource efficiency, mitigate its environmental impact, and stimulate the circular economy. This paper aims, for the first time, to quantify the material flow expected from recycling the generated WEEE, propose the number of plants required to recycle this secondary resource, and outline the expected economic and environmental benefits that could be achieved from recycling operations. The findings of material flow calculations show that the amount of steel, copper, and aluminum is predominant in the WEEE composition. Also, the expected metal content in WEEE in 2022 is approximately 26 kt, 3.3 kt, and 2.5 kt, respectively. These are expected to substantially increase to approximately 109 kt, 11.9 kt, and 9 kt for the three metals in 2050, respectively. Other valuable metals are doubling their quantities between 2022 and 2050 to reach approximately 1133 kg silver and 475 kg gold. Approximately, four treatment plants are required to recover these materials in 2030 with relative installation costs of USD 100 million. The forecasted financial revenues of recovering materials included in WEEE and indicators for environmental impact based on life cycle assessment (LCA) are calculated. The results of this study can serve as a preliminary reference for future usage in guiding effective planning for WEEE recycling and sustainable management in the country.
{"title":"The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan","authors":"L. Al-Khatib, F. Fraige","doi":"10.3390/recycling9010004","DOIUrl":"https://doi.org/10.3390/recycling9010004","url":null,"abstract":"The rising concerns about electric and electronic equipment waste (WEEE) come from the rapid increase in demand for appliances and the decreasing lifetimes of equipment. Setting a sustainable WEEE management system that exploits this secondary resource is paramount to maximize resource efficiency, mitigate its environmental impact, and stimulate the circular economy. This paper aims, for the first time, to quantify the material flow expected from recycling the generated WEEE, propose the number of plants required to recycle this secondary resource, and outline the expected economic and environmental benefits that could be achieved from recycling operations. The findings of material flow calculations show that the amount of steel, copper, and aluminum is predominant in the WEEE composition. Also, the expected metal content in WEEE in 2022 is approximately 26 kt, 3.3 kt, and 2.5 kt, respectively. These are expected to substantially increase to approximately 109 kt, 11.9 kt, and 9 kt for the three metals in 2050, respectively. Other valuable metals are doubling their quantities between 2022 and 2050 to reach approximately 1133 kg silver and 475 kg gold. Approximately, four treatment plants are required to recover these materials in 2030 with relative installation costs of USD 100 million. The forecasted financial revenues of recovering materials included in WEEE and indicators for environmental impact based on life cycle assessment (LCA) are calculated. The results of this study can serve as a preliminary reference for future usage in guiding effective planning for WEEE recycling and sustainable management in the country.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.3390/recycling9010003
Enrique Blázquez-Blázquez, R. Barranco-García, Tamara M. Díez-Rodríguez, Pilar Posadas, Ernesto Pérez, M. Cerrada
The deficient management of plastic waste has caused a serious worldwide environmental problem. Thus, one of the main challenges for the industry in the plastics sector in contributing to sustainability and a circular economy consists of providing a subsequent service life to this waste. For that purpose, the appropriate incorporation of antioxidants will play a key role in preventing or postponing the degradation of plastic waste, where the formation of radicals is initiated during its previous lifetime by the action of degrading agents. Functionalized particles, based on mesoporous MCM-41 silica with Irganox 1076, were prepared with two different protocols and were further incorporated into a material containing virgin PP and 30 wt.% of recycled PP, with the purpose of guaranteeing thermal stability during its next service life. A very significant increase in the thermal stability of the resulting composites was found, attributable to the synergistic action between the Irganox 1076 antioxidant and the MCM-41 particles. In addition, the presence of hybrid particles leads to an important nucleating effect for the crystallization of PP. Moreover, a reinforcing role was also played by these modified mesoporous silicas in the resultant systems. The presented methodology constitutes, therefore, a promising strategy for contributing to the circular economy—since the synergy between the Irganox 1076 antioxidant and MCM-41 particles was found to play an important role in the ultimate performance of recycled polyolefins.
{"title":"Improvement of Thermal Protection in Recycled Polyolefins through Hybrid Mesoporous Silica–Antioxidant Particles","authors":"Enrique Blázquez-Blázquez, R. Barranco-García, Tamara M. Díez-Rodríguez, Pilar Posadas, Ernesto Pérez, M. Cerrada","doi":"10.3390/recycling9010003","DOIUrl":"https://doi.org/10.3390/recycling9010003","url":null,"abstract":"The deficient management of plastic waste has caused a serious worldwide environmental problem. Thus, one of the main challenges for the industry in the plastics sector in contributing to sustainability and a circular economy consists of providing a subsequent service life to this waste. For that purpose, the appropriate incorporation of antioxidants will play a key role in preventing or postponing the degradation of plastic waste, where the formation of radicals is initiated during its previous lifetime by the action of degrading agents. Functionalized particles, based on mesoporous MCM-41 silica with Irganox 1076, were prepared with two different protocols and were further incorporated into a material containing virgin PP and 30 wt.% of recycled PP, with the purpose of guaranteeing thermal stability during its next service life. A very significant increase in the thermal stability of the resulting composites was found, attributable to the synergistic action between the Irganox 1076 antioxidant and the MCM-41 particles. In addition, the presence of hybrid particles leads to an important nucleating effect for the crystallization of PP. Moreover, a reinforcing role was also played by these modified mesoporous silicas in the resultant systems. The presented methodology constitutes, therefore, a promising strategy for contributing to the circular economy—since the synergy between the Irganox 1076 antioxidant and MCM-41 particles was found to play an important role in the ultimate performance of recycled polyolefins.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139453008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-29DOI: 10.3390/recycling9010002
F. Karaca, Aidana Tleuken
This paper investigates the advantages of enhancing construction and demolition waste (CDW) recycling facilities to conform to circular economy (CE) models in Kazakhstan’s construction sector. The industry is experiencing significant growth due to urbanization, but it faces difficulties managing CDW, frequently resulting in landfill disposal. In response, this paper provides a cost–benefit analysis of upgrading the CDW recycling centres aligned with CE needs. Reflecting legislative changes in Kazakhstan’s Environmental Code, which prohibited CDW in landfills starting December 2020, the initiative to establish modern CDW recycling centres is gaining momentum in major cities. The primary objective is to maximize material recovery and eliminate contaminants that curtail the utilization of recycled sand and aggregate products. The analysis yields compelling results, indicating that the project has the potential to recycle up to 84 million tons of CDW over eight years, with an annual 25% capacity increase and a maximum possible 95% recycling efficiency. Despite an estimated cost of USD 48 million, the project demonstrates a payback period of 9.9 years, signalling eventual cost recovery. These findings underscore the project’s capacity to mitigate CDW issues while generating economic benefits and contributing to a sustainable environment. In conclusion, implementing modern CDW recycling centres in Kazakhstan represents a potent solution for the construction industry as it transitions toward a CE model. This transition addresses both pressing environmental challenges and promising economic prospects.
{"title":"Reforming Construction Waste Management for Circular Economy in Kazakhstan: A Cost–Benefit Analysis of Upgrading Construction and Demolition Waste Recycling Centres","authors":"F. Karaca, Aidana Tleuken","doi":"10.3390/recycling9010002","DOIUrl":"https://doi.org/10.3390/recycling9010002","url":null,"abstract":"This paper investigates the advantages of enhancing construction and demolition waste (CDW) recycling facilities to conform to circular economy (CE) models in Kazakhstan’s construction sector. The industry is experiencing significant growth due to urbanization, but it faces difficulties managing CDW, frequently resulting in landfill disposal. In response, this paper provides a cost–benefit analysis of upgrading the CDW recycling centres aligned with CE needs. Reflecting legislative changes in Kazakhstan’s Environmental Code, which prohibited CDW in landfills starting December 2020, the initiative to establish modern CDW recycling centres is gaining momentum in major cities. The primary objective is to maximize material recovery and eliminate contaminants that curtail the utilization of recycled sand and aggregate products. The analysis yields compelling results, indicating that the project has the potential to recycle up to 84 million tons of CDW over eight years, with an annual 25% capacity increase and a maximum possible 95% recycling efficiency. Despite an estimated cost of USD 48 million, the project demonstrates a payback period of 9.9 years, signalling eventual cost recovery. These findings underscore the project’s capacity to mitigate CDW issues while generating economic benefits and contributing to a sustainable environment. In conclusion, implementing modern CDW recycling centres in Kazakhstan represents a potent solution for the construction industry as it transitions toward a CE model. This transition addresses both pressing environmental challenges and promising economic prospects.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139146076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.3390/recycling9010001
Leslie Cristell Canto-Borges, J. C. Cruz, Javier Rodrigo Nahuat-Sansores, José Antonio Domínguez-Lepe, M. P. Gurrola
This research work is focused on the development of an alternative method for manufacturing Wood Plastic Composite (WPC) panels based on Wood Veneers (WVs) and High-Density Polyethylene (HDPE) through compression molding, which enhances the physical properties, particularly, water absorption and moisture content. The aim of the present research was to develop alternative panels to replace commercial ones, which are heavily affected by hot, humid climates. In this context, the study began with the design process, which consisted of the collection and processing of primary material, production of the additional components necessary for the manufacturing process, determination of the WV ratio, and preparation of the samples. Thereafter, physical and mechanical tests were carried out on WPC, HDPE (control), commercial gypsum boards (GBs), plywood (PW), and medium density fiberboard (MDF) samples. The results indicate that the method applied to manufacture the WPC samples improved physical properties, achieving a water uptake of less than 4% in both proportions of replacement tested, in contrast to commercial panels, which reached values between 10% and 40%. In addition, a greater load capacity was achieved for lower thick elements.
{"title":"Sustainable WPC Production: A Novel Method Using Recycled High-Density Polyethylene and Wood Veneer","authors":"Leslie Cristell Canto-Borges, J. C. Cruz, Javier Rodrigo Nahuat-Sansores, José Antonio Domínguez-Lepe, M. P. Gurrola","doi":"10.3390/recycling9010001","DOIUrl":"https://doi.org/10.3390/recycling9010001","url":null,"abstract":"This research work is focused on the development of an alternative method for manufacturing Wood Plastic Composite (WPC) panels based on Wood Veneers (WVs) and High-Density Polyethylene (HDPE) through compression molding, which enhances the physical properties, particularly, water absorption and moisture content. The aim of the present research was to develop alternative panels to replace commercial ones, which are heavily affected by hot, humid climates. In this context, the study began with the design process, which consisted of the collection and processing of primary material, production of the additional components necessary for the manufacturing process, determination of the WV ratio, and preparation of the samples. Thereafter, physical and mechanical tests were carried out on WPC, HDPE (control), commercial gypsum boards (GBs), plywood (PW), and medium density fiberboard (MDF) samples. The results indicate that the method applied to manufacture the WPC samples improved physical properties, achieving a water uptake of less than 4% in both proportions of replacement tested, in contrast to commercial panels, which reached values between 10% and 40%. In addition, a greater load capacity was achieved for lower thick elements.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139149911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.3390/recycling8060100
Venkatsushanth Revelli, Ayman Ali
The usage of Reclaimed Asphalt Pavement (RAP) material is a highly resource-conservative, economical, and sustainable practice in flexible pavement construction. However, its usage in hot mix asphalt (HMA) is capped at 25% by the majority of state transportation agencies due to its aging levels, stiffness characteristics, and handling capabilities, which may result in early-age pavement distress. Though researchers suggest methodologies to increase RAP usage, higher RAP percentages in asphalt pavements require the support of state authorities. The main objective of this paper is to provide information on how different states design their mixtures with high RAP percentages. This study reviewed the current state of practice of fifty (50) state DOTs in the United States (US) with respect to RAP usage and the factors governing its regulations. It was observed that the limit of RAP content is mainly governed by traffic levels, gradation, binder content, and stiffness contributed by RAP and layer position in a pavement structure. The specifications also suggest that apart from volumetric and performance justification, blending charts, fractionation, and virgin binder grade selection would facilitate the use of higher RAP content in HMA. Controlled mixture design abiding by state specifications can increase the allowable RAP to 40–100%.
{"title":"Understanding the State Agency Policies toward RAP Usage in the United States: State of Practice","authors":"Venkatsushanth Revelli, Ayman Ali","doi":"10.3390/recycling8060100","DOIUrl":"https://doi.org/10.3390/recycling8060100","url":null,"abstract":"The usage of Reclaimed Asphalt Pavement (RAP) material is a highly resource-conservative, economical, and sustainable practice in flexible pavement construction. However, its usage in hot mix asphalt (HMA) is capped at 25% by the majority of state transportation agencies due to its aging levels, stiffness characteristics, and handling capabilities, which may result in early-age pavement distress. Though researchers suggest methodologies to increase RAP usage, higher RAP percentages in asphalt pavements require the support of state authorities. The main objective of this paper is to provide information on how different states design their mixtures with high RAP percentages. This study reviewed the current state of practice of fifty (50) state DOTs in the United States (US) with respect to RAP usage and the factors governing its regulations. It was observed that the limit of RAP content is mainly governed by traffic levels, gradation, binder content, and stiffness contributed by RAP and layer position in a pavement structure. The specifications also suggest that apart from volumetric and performance justification, blending charts, fractionation, and virgin binder grade selection would facilitate the use of higher RAP content in HMA. Controlled mixture design abiding by state specifications can increase the allowable RAP to 40–100%.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138963743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.3390/recycling8060099
M. E. Correa-Cano, Kerry Burton, Markus Mueller, Victor Kouloumpis, Xiaoyu Yan
The use of plastics in agriculture and in fisheries has been vital to increase food production and meet the demands of an increasingly growing global population. However, there are several drawbacks to the use of plastics in these industries. Most plastics used in agriculture are disposed of after one single use and are highly susceptible to weathering. Abandoned, lost, or discarded fishing gear cause considerable damage to marine life. Quantification of plastic waste generation in these industries is scarce or non-existent in the case of fisheries. In this paper, we estimate the amount of plastic waste generated by agriculture and fisheries at a regional scale, considering the South West of the UK as a case study. We followed a mass balance approach to quantify the potential plastic waste generated by these industries. We find a generation of 49 kt of plastic waste in agriculture, 47% of which has an unknown fate. We estimate 454 t/year of fishing gear waste, with unclear end-of-life pathways. A detailed quantitative understanding of plastic waste generation per sector at a regional scale is fundamental for tracking plastic waste flows, locating hotspots of pollution, and planning actions to reduce the amount of plastic waste along the chain of end-users.
{"title":"Quantification of Plastics in Agriculture and Fisheries at a Regional Scale: A Case Study of South West England","authors":"M. E. Correa-Cano, Kerry Burton, Markus Mueller, Victor Kouloumpis, Xiaoyu Yan","doi":"10.3390/recycling8060099","DOIUrl":"https://doi.org/10.3390/recycling8060099","url":null,"abstract":"The use of plastics in agriculture and in fisheries has been vital to increase food production and meet the demands of an increasingly growing global population. However, there are several drawbacks to the use of plastics in these industries. Most plastics used in agriculture are disposed of after one single use and are highly susceptible to weathering. Abandoned, lost, or discarded fishing gear cause considerable damage to marine life. Quantification of plastic waste generation in these industries is scarce or non-existent in the case of fisheries. In this paper, we estimate the amount of plastic waste generated by agriculture and fisheries at a regional scale, considering the South West of the UK as a case study. We followed a mass balance approach to quantify the potential plastic waste generated by these industries. We find a generation of 49 kt of plastic waste in agriculture, 47% of which has an unknown fate. We estimate 454 t/year of fishing gear waste, with unclear end-of-life pathways. A detailed quantitative understanding of plastic waste generation per sector at a regional scale is fundamental for tracking plastic waste flows, locating hotspots of pollution, and planning actions to reduce the amount of plastic waste along the chain of end-users.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138971569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using a trace polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/Fs) stabilizing generator, an experimental study related to the influence of temperature (150, 165, and 180 °C) and activated carbon (AC) dosage (0.10, 0.15, and 0.20 g) on the adsorption effect of gas-phase PCDD/Fs via coal-based AC was conducted. Increasing the AC dosage is the most efficient method to improve the PCDD/Fs adsorption efficiency from 65.8% (0.10 g) to 93.0% (0.20 g) at 150 °C in an exponential trend. Both the polychlorinated-ρ-dibenzodioxins (PCDD)/polychlorinated dibenzofurans (PCDF) ratio and the Cl-PCDD/Fs value showed positive correlations, with the AC dosage under the same temperature. Increasing adsorption temperature declined the adsorption capacity of AC, resulting in the exponentially decreased average I-TEQ value adsorbed per gram of AC, from 131.3 ng TEQ/Nm3 (150 °C) to 55.9 ng TEQ/Nm3 (180 °C). The coal-based AC used in this study preferred to adsorb lower chlorinated PCDD/Fs, tetrachlorianted dibenzo-p-dioxin and dibenzofurans (TCDD/Fs), and pentachlorianted dibenzo-p-dioxin and dibenzofurans (PeCDD/Fs) than highly chlorinated PCDD/Fs, heptachlorianted dibenzo-p-dioxin and dibenzofurans (HpCDD/Fs), hexachlorinated dibenzo-p-dioxin and dibenzofurans (HxCDD/Fs), and octachlorianted dibenzo-p-dioxin and dibenzofurans (OCDD/Fs), which was aggravated by the increasing temperature. The characterization of the surface properties of AC revealed that slight oxidation occurred on the AC surface during the adsorption process, introducing oxygen to the competitive adsorption. In addition, it was found in this study that an increased temperature led to a higher content of hydrophilic carboxyl and anhydride groups and weakened π-π interactions, which were also partly responsible for the negative impact of the increasing temperature on the AC adsorption capacity. The results of this study can contribute to the operation optimization for controlling PCDD/F emissions from municipal solid waste incineration (MSWI).
利用痕量多氯-ρ-二苯并二噁英和二苯并呋喃(PCDD/Fs)稳定发生器,就温度(150、165 和 180 °C)和活性炭(AC)用量(0.10、0.15 和 0.20 克)对煤基 AC 吸附气相多氯-ρ-二苯并二噁英和二苯并呋喃(PCDD/Fs)效果的影响进行了实验研究。在 150 °C条件下,增加活性炭用量是提高多氯二苯并对二恶英和多氯二苯并呋喃吸附效率的最有效方法,吸附效率从 65.8%(0.10 克)提高到 93.0%(0.20 克),且呈指数增长趋势。在相同温度下,多氯-ρ-二苯并二恶英(PCDD)/多氯二苯并呋喃(PCDF)比值和 Cl-PCDD/Fs 值均与 AC 的用量呈正相关。吸附温度升高会降低 AC 的吸附容量,导致每克 AC 平均吸附的 I-TEQ 值呈指数下降,从 131.3 ng TEQ/Nm3 (150 °C) 降至 55.9 ng TEQ/Nm3 (180 °C) 。与高度氯化的多氯二苯并对二恶英和多氯二苯并呋喃(PCDD/Fs)相比,本研究中使用的煤基 AC 更倾向于吸附氯化程度较低的多氯二苯并对二恶英和多氯二苯并呋喃(PCDD/Fs)、四氯二苯并对二恶英和二苯并呋喃(TCDD/Fs)以及五氯二苯并对二恶英和二苯并呋喃(PeCDD/Fs)、和六氯二苯并对二恶英和二苯并呋喃(HxCDD/Fs)以及八氯二苯并对二恶英和二苯并呋喃(OCDD/Fs)相比,温度升高会加剧这种情况。对 AC 表面特性的表征表明,在吸附过程中,AC 表面发生了轻微氧化,在竞争性吸附中引入了氧气。此外,本研究还发现,温度升高导致亲水性羧基和酸酐基团含量增加,π-π 相互作用减弱,这也是温度升高对 AC 吸附能力产生负面影响的部分原因。本研究的结果有助于优化城市固体废物焚烧(MSWI)的操作,以控制多氯二苯并对二恶英和多氯二苯并呋喃的排放。
{"title":"A Study on the Influence and Mechanism of Temperature and Dosage on PCDD/Fs Adsorption via Coal-Based Activated Carbon","authors":"Peiyue Wang, Jianwen Lai, Xiaoqing Lin, Xiaodong Li, Shuaixi Xu","doi":"10.3390/recycling8060098","DOIUrl":"https://doi.org/10.3390/recycling8060098","url":null,"abstract":"Using a trace polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/Fs) stabilizing generator, an experimental study related to the influence of temperature (150, 165, and 180 °C) and activated carbon (AC) dosage (0.10, 0.15, and 0.20 g) on the adsorption effect of gas-phase PCDD/Fs via coal-based AC was conducted. Increasing the AC dosage is the most efficient method to improve the PCDD/Fs adsorption efficiency from 65.8% (0.10 g) to 93.0% (0.20 g) at 150 °C in an exponential trend. Both the polychlorinated-ρ-dibenzodioxins (PCDD)/polychlorinated dibenzofurans (PCDF) ratio and the Cl-PCDD/Fs value showed positive correlations, with the AC dosage under the same temperature. Increasing adsorption temperature declined the adsorption capacity of AC, resulting in the exponentially decreased average I-TEQ value adsorbed per gram of AC, from 131.3 ng TEQ/Nm3 (150 °C) to 55.9 ng TEQ/Nm3 (180 °C). The coal-based AC used in this study preferred to adsorb lower chlorinated PCDD/Fs, tetrachlorianted dibenzo-p-dioxin and dibenzofurans (TCDD/Fs), and pentachlorianted dibenzo-p-dioxin and dibenzofurans (PeCDD/Fs) than highly chlorinated PCDD/Fs, heptachlorianted dibenzo-p-dioxin and dibenzofurans (HpCDD/Fs), hexachlorinated dibenzo-p-dioxin and dibenzofurans (HxCDD/Fs), and octachlorianted dibenzo-p-dioxin and dibenzofurans (OCDD/Fs), which was aggravated by the increasing temperature. The characterization of the surface properties of AC revealed that slight oxidation occurred on the AC surface during the adsorption process, introducing oxygen to the competitive adsorption. In addition, it was found in this study that an increased temperature led to a higher content of hydrophilic carboxyl and anhydride groups and weakened π-π interactions, which were also partly responsible for the negative impact of the increasing temperature on the AC adsorption capacity. The results of this study can contribute to the operation optimization for controlling PCDD/F emissions from municipal solid waste incineration (MSWI).","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138979281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-04DOI: 10.3390/recycling8060096
J. Vega-baudrit, Melissa Camacho, Diego Batista-Menezes, Y. Corrales-Ureña, Juan Miguel Zúñiga, Arturo Mora Chacón, N. Lecot, Luis Castillo Henríquez, M. Lopretti
This study reviews the many uses for waste generated from acerola (Malpighia spp.) production, a tropical fruit renowned for its nutrient-rich content. Traditionally considered an environmental burden, this waste is now gaining attention for its sustainable applications in green technology. This review outlines the extraction of valuable bioactive compounds, like polyphenols, carotenoids, and pectin, that can be extracted from the acerola fruit and acerola waste, and it also delves into its potential in materials science, particularly in the creation of pharmaceutical formulations, nanomaterials, composites, biofuels, and energy applications. On the medical front, the paper highlights the promise that acerola waste holds in anti-inflammatory, antihyperglycemic, and anticancer therapies. By outlining challenges and opportunities, the review emphasizes the untapped potential of acerola waste as a resource for high-value products. These findings suggest a paradigm shift, turning what has been considered waste into a sustainable asset, thereby encouraging environmentally responsible practices within the fruit industry.
{"title":"Acerola (Malpighia spp.) Waste: A Sustainable Approach to Nutraceutical, Pharmaceutical, and Energy Applications","authors":"J. Vega-baudrit, Melissa Camacho, Diego Batista-Menezes, Y. Corrales-Ureña, Juan Miguel Zúñiga, Arturo Mora Chacón, N. Lecot, Luis Castillo Henríquez, M. Lopretti","doi":"10.3390/recycling8060096","DOIUrl":"https://doi.org/10.3390/recycling8060096","url":null,"abstract":"This study reviews the many uses for waste generated from acerola (Malpighia spp.) production, a tropical fruit renowned for its nutrient-rich content. Traditionally considered an environmental burden, this waste is now gaining attention for its sustainable applications in green technology. This review outlines the extraction of valuable bioactive compounds, like polyphenols, carotenoids, and pectin, that can be extracted from the acerola fruit and acerola waste, and it also delves into its potential in materials science, particularly in the creation of pharmaceutical formulations, nanomaterials, composites, biofuels, and energy applications. On the medical front, the paper highlights the promise that acerola waste holds in anti-inflammatory, antihyperglycemic, and anticancer therapies. By outlining challenges and opportunities, the review emphasizes the untapped potential of acerola waste as a resource for high-value products. These findings suggest a paradigm shift, turning what has been considered waste into a sustainable asset, thereby encouraging environmentally responsible practices within the fruit industry.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.3390/recycling8060095
Aron Pazzaglia, Beatrice Castellani
Cigarette butts (CBs) are the most diffuse waste in the world, often abandoned into the environment without proper disposal. They are dangerous because of the numerous harmful chemicals potentially released by them into the environment. In the literature, there are several technological options for CB recycling, but some critical concerns could affect their effectiveness due to the quality and quantity of CB litter that is collected in the proper way. The extended producer responsibility scheme for CBs is proposed at the Europe level as an action to tackle CB litter and encourage sustainable product development. The present paper focuses on analyzing the existing literature to identify critical issues within the policy framework, social behavior, waste collection and transport, and technological processes. The collection and transport of CB waste is a major issue, being a key step for bringing CB to the recycling process. The main concern is the small quantity of CBs collected: 0.06% of the municipal waste and 0.18% of the unsorted waste in the case study’s administrative area of Perugia. Another crucial issue is the need for behavioral interventions to increase education and awareness of citizens that are smokers, addressing the discrepancy between smokers’ behaviors and beliefs. The main results, along with the critical issues related to the topics, are highlighted.
{"title":"Review of the Policy, Social, Operational, and Technological Factors Affecting Cigarette Butt Recycling Potential in Extended Producer Responsibility Programs","authors":"Aron Pazzaglia, Beatrice Castellani","doi":"10.3390/recycling8060095","DOIUrl":"https://doi.org/10.3390/recycling8060095","url":null,"abstract":"Cigarette butts (CBs) are the most diffuse waste in the world, often abandoned into the environment without proper disposal. They are dangerous because of the numerous harmful chemicals potentially released by them into the environment. In the literature, there are several technological options for CB recycling, but some critical concerns could affect their effectiveness due to the quality and quantity of CB litter that is collected in the proper way. The extended producer responsibility scheme for CBs is proposed at the Europe level as an action to tackle CB litter and encourage sustainable product development. The present paper focuses on analyzing the existing literature to identify critical issues within the policy framework, social behavior, waste collection and transport, and technological processes. The collection and transport of CB waste is a major issue, being a key step for bringing CB to the recycling process. The main concern is the small quantity of CBs collected: 0.06% of the municipal waste and 0.18% of the unsorted waste in the case study’s administrative area of Perugia. Another crucial issue is the need for behavioral interventions to increase education and awareness of citizens that are smokers, addressing the discrepancy between smokers’ behaviors and beliefs. The main results, along with the critical issues related to the topics, are highlighted.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138616616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}