Pub Date : 2023-03-01DOI: 10.3390/recycling8020031
I. Elokhova, K. Vyatkin, P. Ilyushin, A. Krutova, A. Pepelyaeva, N. Sliusar
One of the main tasks of the circular economy is the decoupling between economic growth and natural resource consumption at the input and the volume of generated waste at the output. The effectiveness of this process can be assessed by the dynamics of the eco-intensity indicators at the macro-, meso- and micro-levels. The article presents the assessment results of the decoupling and growth color of the mining sector in Russia, which show the dynamics of eco-intensity indicators and may reflect the trend towards a circular economy. For the period 2010–2021, it was revealed that negative expansion decoupling and “Black” growth have been observed in terms of generated waste and atmospheric pollution, strong decoupling and “Green” growth in terms of hydrosphere pollution, weak decoupling and “Brown” growth in terms of electricity consumption, and according to water intake from natural water bodies, expansion coupling and “Black” growth. During the study period, the gross value added (GVA) of the mining industry in Russia in comparable prices increased by 77%, while the industry’s negative impact on the atmosphere increased by 34%; the volume of production and consumption waste generation increased by 131%, and the negative impact on the hydrosphere decreased by 51%. The growth of the environmental and economic efficiency of any system can be achieved by influencing the drivers and barriers to moving towards a circular economy, so it is important to identify the most significant factors of influence for a particular industry, region or country in the current conditions. Using the ordinary least squares (OLS) method, it was revealed that factors reflecting innovative activities of the mining industry have a significant impact on reducing eco-intensity in the field of electricity consumption and water intake from natural water bodies. The significance of these factors’ influence has been confirmed not only at the macro-level, but also at the micro-level.
{"title":"Evaluating the Eco-Intensity Dynamics of the Mining Industry in Russia: Towards a Circular Economy","authors":"I. Elokhova, K. Vyatkin, P. Ilyushin, A. Krutova, A. Pepelyaeva, N. Sliusar","doi":"10.3390/recycling8020031","DOIUrl":"https://doi.org/10.3390/recycling8020031","url":null,"abstract":"One of the main tasks of the circular economy is the decoupling between economic growth and natural resource consumption at the input and the volume of generated waste at the output. The effectiveness of this process can be assessed by the dynamics of the eco-intensity indicators at the macro-, meso- and micro-levels. The article presents the assessment results of the decoupling and growth color of the mining sector in Russia, which show the dynamics of eco-intensity indicators and may reflect the trend towards a circular economy. For the period 2010–2021, it was revealed that negative expansion decoupling and “Black” growth have been observed in terms of generated waste and atmospheric pollution, strong decoupling and “Green” growth in terms of hydrosphere pollution, weak decoupling and “Brown” growth in terms of electricity consumption, and according to water intake from natural water bodies, expansion coupling and “Black” growth. During the study period, the gross value added (GVA) of the mining industry in Russia in comparable prices increased by 77%, while the industry’s negative impact on the atmosphere increased by 34%; the volume of production and consumption waste generation increased by 131%, and the negative impact on the hydrosphere decreased by 51%. The growth of the environmental and economic efficiency of any system can be achieved by influencing the drivers and barriers to moving towards a circular economy, so it is important to identify the most significant factors of influence for a particular industry, region or country in the current conditions. Using the ordinary least squares (OLS) method, it was revealed that factors reflecting innovative activities of the mining industry have a significant impact on reducing eco-intensity in the field of electricity consumption and water intake from natural water bodies. The significance of these factors’ influence has been confirmed not only at the macro-level, but also at the micro-level.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43121174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-23DOI: 10.3390/recycling8020030
S. Phon, Adit Ludfi Pradana, S. P. Thanasupsin
Fish processing produces large amounts of fish waste. Instead of disposing of it, it is wiser to recover the valuable resource for high-value-added products. Our study proposed a process using carbon dioxide-acidified water as a green solvent under supercritical conditions to successfully recover collagen/gelatin from the skin and bone of striped catfish. The optimum extraction conditions were obtained at 75 bar, 37 °C, and 24 h. The yields from the dry skin and bone mass were around 37% and 8%, respectively. The extracted products were characterized by Fourier-transformed infrared spectroscopy to study the functional groups, scanning electron microscopy to evaluate the morphology, sodium dodecyl-sulfate polyacrylamide gel electrophoresis to study the protein pattern, UV–vis analysis to measure the absorption peak, and thermal gravimetric analysis to determine the denaturation temperature. The results show the viability of the proposed method on an industrial scale. The characteristics of the extracted product show promising results and potential for being developed further in many applications such as biomaterial engineering in healthcare or natural polymer-based absorbent material for efficient removal of heavy metals from water and wastewater.
{"title":"Recovery of Collagen/Gelatin from Fish Waste with Carbon Dioxide as a Green Solvent: An Optimization and Characterization","authors":"S. Phon, Adit Ludfi Pradana, S. P. Thanasupsin","doi":"10.3390/recycling8020030","DOIUrl":"https://doi.org/10.3390/recycling8020030","url":null,"abstract":"Fish processing produces large amounts of fish waste. Instead of disposing of it, it is wiser to recover the valuable resource for high-value-added products. Our study proposed a process using carbon dioxide-acidified water as a green solvent under supercritical conditions to successfully recover collagen/gelatin from the skin and bone of striped catfish. The optimum extraction conditions were obtained at 75 bar, 37 °C, and 24 h. The yields from the dry skin and bone mass were around 37% and 8%, respectively. The extracted products were characterized by Fourier-transformed infrared spectroscopy to study the functional groups, scanning electron microscopy to evaluate the morphology, sodium dodecyl-sulfate polyacrylamide gel electrophoresis to study the protein pattern, UV–vis analysis to measure the absorption peak, and thermal gravimetric analysis to determine the denaturation temperature. The results show the viability of the proposed method on an industrial scale. The characteristics of the extracted product show promising results and potential for being developed further in many applications such as biomaterial engineering in healthcare or natural polymer-based absorbent material for efficient removal of heavy metals from water and wastewater.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49270972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.3390/recycling8020029
K. Anastasiades, J. Blom, A. Audenaert
The construction industry is responsible for half of the currently excavated amount of raw materials. In addition, a quarter of all waste in the European Union is construction waste. This construction waste comprises numerous materials that can still be reused or recycled. Thus, a shift to a circular construction sector is necessary. To make this shift, it is vital to enable the measurement of and the progress toward circularity. Therefore, this paper investigates the currently available circularity indicators with regard to the 4 Rs—Reduce, Reuse, Recycle, Recover. Subsequently, a comprehensive Circular Construction Indicator framework is introduced that evaluates a construction project according to the three typical construction phases: design, construction, and end-of-life. In this, new partial indicators to assess material scarcity, structural efficiency, and service life prediction should help designers consider these aspects already in the conceptual design stage. Lastly, suggestions for further research are defined to develop further said new partial indicators.
{"title":"Circular Construction Indicator: Assessing Circularity in the Design, Construction, and End-of-Life Phase","authors":"K. Anastasiades, J. Blom, A. Audenaert","doi":"10.3390/recycling8020029","DOIUrl":"https://doi.org/10.3390/recycling8020029","url":null,"abstract":"The construction industry is responsible for half of the currently excavated amount of raw materials. In addition, a quarter of all waste in the European Union is construction waste. This construction waste comprises numerous materials that can still be reused or recycled. Thus, a shift to a circular construction sector is necessary. To make this shift, it is vital to enable the measurement of and the progress toward circularity. Therefore, this paper investigates the currently available circularity indicators with regard to the 4 Rs—Reduce, Reuse, Recycle, Recover. Subsequently, a comprehensive Circular Construction Indicator framework is introduced that evaluates a construction project according to the three typical construction phases: design, construction, and end-of-life. In this, new partial indicators to assess material scarcity, structural efficiency, and service life prediction should help designers consider these aspects already in the conceptual design stage. Lastly, suggestions for further research are defined to develop further said new partial indicators.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48749525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.3390/recycling8010028
Dimitris Ziouzios, M. Dasygenis
As part of the European Green Deal, the EU aims to become climate-neutral and reach net-zero greenhouse gas emissions by 2050. Lignite has long dominated the electricity system of Greece, providing cheap and reliable energy, given the abundant and low-cost domestic resources at the cost of increased emission. In line with its national and international commitments to climate action, Greece needs to urgently transform its energy system and overcome its technological lock-ins, paving the way for a net-zero emission economy by the mid-century. The Internet of Things plays a significant role in this direction, providing with its technologies the protection of the environment and creating new jobs. The smart bins constitute an interesting proposal for areas in the energy transition. This research work reflects the current situation in the region of Western Macedonia and proposes the smart bin project as a part of the solution in the transition to the post-lignite era. For this purpose, survey research has been conducted in the municipalities of Greece on waste management technology.
{"title":"Effectiveness of the IoT in Regional Energy Transition: The Smart Bin Case Study","authors":"Dimitris Ziouzios, M. Dasygenis","doi":"10.3390/recycling8010028","DOIUrl":"https://doi.org/10.3390/recycling8010028","url":null,"abstract":"As part of the European Green Deal, the EU aims to become climate-neutral and reach net-zero greenhouse gas emissions by 2050. Lignite has long dominated the electricity system of Greece, providing cheap and reliable energy, given the abundant and low-cost domestic resources at the cost of increased emission. In line with its national and international commitments to climate action, Greece needs to urgently transform its energy system and overcome its technological lock-ins, paving the way for a net-zero emission economy by the mid-century. The Internet of Things plays a significant role in this direction, providing with its technologies the protection of the environment and creating new jobs. The smart bins constitute an interesting proposal for areas in the energy transition. This research work reflects the current situation in the region of Western Macedonia and proposes the smart bin project as a part of the solution in the transition to the post-lignite era. For this purpose, survey research has been conducted in the municipalities of Greece on waste management technology.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44980257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-18DOI: 10.3390/recycling8010027
Taher Ben Yahya, N. M. Jamal, B. Sundarakani, Siti Zaleha Omain
Mobile phones are the most heavily utilised electronic devices on a global scale. Since they are relatively smaller than other electronic devices, unlike other electronic waste (e-waste), they are not disposed of properly. Hence, this study examines the factors influencing mobile phone users’ overall intention to recycle their mobile phones. The factors used originate from the theory of planned behaviour (TPB), but additional factors were also included, namely, perceived benefits and data security, to allow for a more in-depth analysis of customer behaviour. Partial least squares structural equation modelling (PLS-SEM) was employed to analyse 601 results from the United Arab Emirates (UAE) through a self-administered online survey. The results demonstrate that perceived benefits (whether environmental or financial) and perceived behavioural control possess the most statistically significant positive effects on the UAE mobile phone users’ intention to participate in reverse supply chain (RSC) processes such as refurbishing or recycling. The impacts of attitude and subjective norms were the second most positive influences. Meanwhile, only 7% of UAE mobile phone users were significantly impacted by data security in participating in RSC processes. Additionally, recycling intention had no noticeable mediation effect on the relationship among the TPB variables and the extended variables (namely, data security and perceived benefits) and mobile phone recycling behaviour. The study offers confidence to industrial players in implementing these particular factors in their reverse supply chain management (RSCM) systems to influence more users to return end-of-life (EOL) or end-of-use (EOU) mobile phones, which could, in return, assist in resource preservation and environmental protection.
{"title":"The Effects of Data Security and Perceived Benefits on Mobile Phone Recycling Behaviour and the Recycling Intention Mediation Role","authors":"Taher Ben Yahya, N. M. Jamal, B. Sundarakani, Siti Zaleha Omain","doi":"10.3390/recycling8010027","DOIUrl":"https://doi.org/10.3390/recycling8010027","url":null,"abstract":"Mobile phones are the most heavily utilised electronic devices on a global scale. Since they are relatively smaller than other electronic devices, unlike other electronic waste (e-waste), they are not disposed of properly. Hence, this study examines the factors influencing mobile phone users’ overall intention to recycle their mobile phones. The factors used originate from the theory of planned behaviour (TPB), but additional factors were also included, namely, perceived benefits and data security, to allow for a more in-depth analysis of customer behaviour. Partial least squares structural equation modelling (PLS-SEM) was employed to analyse 601 results from the United Arab Emirates (UAE) through a self-administered online survey. The results demonstrate that perceived benefits (whether environmental or financial) and perceived behavioural control possess the most statistically significant positive effects on the UAE mobile phone users’ intention to participate in reverse supply chain (RSC) processes such as refurbishing or recycling. The impacts of attitude and subjective norms were the second most positive influences. Meanwhile, only 7% of UAE mobile phone users were significantly impacted by data security in participating in RSC processes. Additionally, recycling intention had no noticeable mediation effect on the relationship among the TPB variables and the extended variables (namely, data security and perceived benefits) and mobile phone recycling behaviour. The study offers confidence to industrial players in implementing these particular factors in their reverse supply chain management (RSCM) systems to influence more users to return end-of-life (EOL) or end-of-use (EOU) mobile phones, which could, in return, assist in resource preservation and environmental protection.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45007192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-16DOI: 10.3390/recycling8010026
F. Welle
The increase in plastic recycling is an essential pre-requisite for the transition to a circular economy. Polystyrene (PS) is a low diffusive polymer and therefore a promising candidate for recycling back into food contact similar to polyethylene terephthalate (PET). However, such a recycling of PS cups has been not established to date on a commercial scale. Even if recycling back into food contact is desired, the health of the consumer must not be at risk. As a consequence, recycling processes must go through a conservative assessment by relevant authorities. For PS, however, evaluation criteria are not published, which is a drawback for process developers. Within the study, post-consumer PS recyclates were evaluated in a similar way to existing evaluation criteria for PET and HDPE. For the recycling of post-consumer PS back into packages with direct contact with food, there are still some points open which cannot be answered conclusively today. Upon closer inspection, there appears to be enough information available to give a first indication as to whether recycling of post-consumer PS packaging materials back into direct food contact can be considered safe. The knowledge gaps in PS recycling were determined and discussed.
{"title":"Recycling of Post-Consumer Polystyrene Packaging Waste into New Food Packaging Applications—Part 1: Direct Food Contact","authors":"F. Welle","doi":"10.3390/recycling8010026","DOIUrl":"https://doi.org/10.3390/recycling8010026","url":null,"abstract":"The increase in plastic recycling is an essential pre-requisite for the transition to a circular economy. Polystyrene (PS) is a low diffusive polymer and therefore a promising candidate for recycling back into food contact similar to polyethylene terephthalate (PET). However, such a recycling of PS cups has been not established to date on a commercial scale. Even if recycling back into food contact is desired, the health of the consumer must not be at risk. As a consequence, recycling processes must go through a conservative assessment by relevant authorities. For PS, however, evaluation criteria are not published, which is a drawback for process developers. Within the study, post-consumer PS recyclates were evaluated in a similar way to existing evaluation criteria for PET and HDPE. For the recycling of post-consumer PS back into packages with direct contact with food, there are still some points open which cannot be answered conclusively today. Upon closer inspection, there appears to be enough information available to give a first indication as to whether recycling of post-consumer PS packaging materials back into direct food contact can be considered safe. The knowledge gaps in PS recycling were determined and discussed.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42612327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-12DOI: 10.3390/recycling8010025
G. Gadaleta, S. De Gisi, F. Todaro, Giuseppe D’Alessandro, S. Binetti, M. Notarnicola
The first step in reintroducing plastic waste into the recycling cycle is to use material recovery facilities (MRFs). However, while the composition and types of plastic waste are changing over time, the layout of MRFs does not always adapt to this change. In this paper, an existing MRF in Southern Italy was chosen as a reference to evaluate its current performance and to estimate possible improvements in sorting through a specific upgrade. First, an analysis of the amount, composition, and sources (in terms of type of waste and distance from the MRF) of the input waste was conducted. The composition of the input waste was then compared with the amount of selected output waste streams in order to calculate the current sorting efficiency of each stream and compare it with the values obtained from the upgrade. Lastly, the current performance of the plant was compared with a previous assessment of the same MRF in order to highlight possible variation. Results showed how the incoming waste was mainly composed of packaging plastic waste, and that some plastic waste not yet selected by the plant ended up in specific output streams. Therefore, the current performance of the MRF resulted high for PET and PE bottles (80.2% and 92.8%, respectively), in contrast to mixed or flexible packaging, where the efficiency achieved lower values (55–50%). These values were caused by a weakness in the 2D flow sorting line, which the upgrade mostly addressed. The upgraded configuration increased the production of recyclable waste from 34.32% to 50.39%, especially due to the recovery of small flexible packaging films in PE and biopolymers.
{"title":"Assessing the Sorting Efficiency of Plastic Packaging Waste in an Italian Material Recovery Facility: Current and Upgraded Configuration","authors":"G. Gadaleta, S. De Gisi, F. Todaro, Giuseppe D’Alessandro, S. Binetti, M. Notarnicola","doi":"10.3390/recycling8010025","DOIUrl":"https://doi.org/10.3390/recycling8010025","url":null,"abstract":"The first step in reintroducing plastic waste into the recycling cycle is to use material recovery facilities (MRFs). However, while the composition and types of plastic waste are changing over time, the layout of MRFs does not always adapt to this change. In this paper, an existing MRF in Southern Italy was chosen as a reference to evaluate its current performance and to estimate possible improvements in sorting through a specific upgrade. First, an analysis of the amount, composition, and sources (in terms of type of waste and distance from the MRF) of the input waste was conducted. The composition of the input waste was then compared with the amount of selected output waste streams in order to calculate the current sorting efficiency of each stream and compare it with the values obtained from the upgrade. Lastly, the current performance of the plant was compared with a previous assessment of the same MRF in order to highlight possible variation. Results showed how the incoming waste was mainly composed of packaging plastic waste, and that some plastic waste not yet selected by the plant ended up in specific output streams. Therefore, the current performance of the MRF resulted high for PET and PE bottles (80.2% and 92.8%, respectively), in contrast to mixed or flexible packaging, where the efficiency achieved lower values (55–50%). These values were caused by a weakness in the 2D flow sorting line, which the upgrade mostly addressed. The upgraded configuration increased the production of recyclable waste from 34.32% to 50.39%, especially due to the recovery of small flexible packaging films in PE and biopolymers.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48128834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-09DOI: 10.3390/recycling8010024
Christian Rung, F. Welle, A. Gruner, Arielle Springer, Z. Steinmetz, K. Muñoz
According to the European circular economy strategy, all plastic packaging placed on the market by 2030 has to be recyclable. However, for recycled plastics in direct contact with food, there are still major safety concerns because (non-)intentionally added substances can potentially migrate from recycled polymers into foodstuffs. Therefore, the European Food Safety Authority (EFSA) has derived very low migration limits (e.g., 0.1 µg/L for recycled polyethylene terephthalate (PET) and 0.06 µg/L for recycled high-density polyethylene (HDPE)) for recycled polymers. Thus, the use of recyclates from post-consumer waste materials in direct food contact is currently only possible for PET. A first step in assessing potential health hazards is, therefore, the identification and toxicological classification of detected substances. Within this study, samples of post-consumer recyclates from different packaging-relevant recycling materials (HDPE, LDPE, PE, PP, PET, and PS) were analyzed. The detected substances were identified and examined with a focus on their abundance, toxicity (Cramer classification), polarity (log P values), chemical diversity, and origin (post-consumer substances vs. virgin base polymer substances). It was demonstrated that polyolefins contain more substances classified as toxic than PET, potentially due to their higher diffusivity. In addition, despite its low diffusivity compared to polyolefins, a high number of substances was found in PS. Further, post-consumer substances were found to be significantly more toxicologically concerning than virgin base polymer substances. Additionally, a correlation between high log P values and a high Cramer classification was found. It was concluded that PET is currently the only polymer that complies with EFSA’s requirements for a circular economy. However, better-structured collection systems and cleaning processes, as well as more analytical methods that enable a highly sensitive detection and identification of substances, might offer the possibility of implementing other polymers into recycling processes in the future.
{"title":"Identification and Evaluation of (Non-)Intentionally Added Substances in Post-Consumer Recyclates and Their Toxicological Classification","authors":"Christian Rung, F. Welle, A. Gruner, Arielle Springer, Z. Steinmetz, K. Muñoz","doi":"10.3390/recycling8010024","DOIUrl":"https://doi.org/10.3390/recycling8010024","url":null,"abstract":"According to the European circular economy strategy, all plastic packaging placed on the market by 2030 has to be recyclable. However, for recycled plastics in direct contact with food, there are still major safety concerns because (non-)intentionally added substances can potentially migrate from recycled polymers into foodstuffs. Therefore, the European Food Safety Authority (EFSA) has derived very low migration limits (e.g., 0.1 µg/L for recycled polyethylene terephthalate (PET) and 0.06 µg/L for recycled high-density polyethylene (HDPE)) for recycled polymers. Thus, the use of recyclates from post-consumer waste materials in direct food contact is currently only possible for PET. A first step in assessing potential health hazards is, therefore, the identification and toxicological classification of detected substances. Within this study, samples of post-consumer recyclates from different packaging-relevant recycling materials (HDPE, LDPE, PE, PP, PET, and PS) were analyzed. The detected substances were identified and examined with a focus on their abundance, toxicity (Cramer classification), polarity (log P values), chemical diversity, and origin (post-consumer substances vs. virgin base polymer substances). It was demonstrated that polyolefins contain more substances classified as toxic than PET, potentially due to their higher diffusivity. In addition, despite its low diffusivity compared to polyolefins, a high number of substances was found in PS. Further, post-consumer substances were found to be significantly more toxicologically concerning than virgin base polymer substances. Additionally, a correlation between high log P values and a high Cramer classification was found. It was concluded that PET is currently the only polymer that complies with EFSA’s requirements for a circular economy. However, better-structured collection systems and cleaning processes, as well as more analytical methods that enable a highly sensitive detection and identification of substances, might offer the possibility of implementing other polymers into recycling processes in the future.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47485639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-09DOI: 10.3390/recycling8010023
Jarmo Alarinta, M. Närvä, G. Wirtanen
Recycling, depositing, and proper discarding of plastics are significant means to reduce plastics in the environment. The purpose of this study was to monitor both the type and amount of plastic food packages recycled, reused, and discarded in Finnish households with at least one university student. The participating students came from various universities of applied sciences. They participated in courses related to sustainable food systems at Seinäjoki University of Applied Sciences. In total, 785 approved participants from 363 households took part in one-week monitoring. The focus was to quantify the number of food packages used and specify how the respondents handled the food packages after use. This study shows that the recycling rate of plastic packages in Finnish households was 61%. Bigger households produce less packaging waste per person than one- or two-person households. Furthermore, the recycling activity in single-person households was lower than for two- and three-person households. The Finnish deposit system for drink packages encourages people to recycle packages. This reduces municipal waste. Recycling requires knowledge of the plastic material used in food packages.
{"title":"Recycling of Plastic Food Packages: A Case Study with Finnish University Students","authors":"Jarmo Alarinta, M. Närvä, G. Wirtanen","doi":"10.3390/recycling8010023","DOIUrl":"https://doi.org/10.3390/recycling8010023","url":null,"abstract":"Recycling, depositing, and proper discarding of plastics are significant means to reduce plastics in the environment. The purpose of this study was to monitor both the type and amount of plastic food packages recycled, reused, and discarded in Finnish households with at least one university student. The participating students came from various universities of applied sciences. They participated in courses related to sustainable food systems at Seinäjoki University of Applied Sciences. In total, 785 approved participants from 363 households took part in one-week monitoring. The focus was to quantify the number of food packages used and specify how the respondents handled the food packages after use. This study shows that the recycling rate of plastic packages in Finnish households was 61%. Bigger households produce less packaging waste per person than one- or two-person households. Furthermore, the recycling activity in single-person households was lower than for two- and three-person households. The Finnish deposit system for drink packages encourages people to recycle packages. This reduces municipal waste. Recycling requires knowledge of the plastic material used in food packages.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41729271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-07DOI: 10.3390/recycling8010022
N. Kozhukhova, N. Alfimova, M. Kozhukhova, I. Nikulin, Roman A. Glazkov, Anna I. Kolomytceva
In the last decades, gypsum-bearing industrial wastes become one of the common globally produced industrial and domestic wastes that are currently recycled and further utilized. In this study, the gypsum-bearing waste citrogypsum was used as a Ca2+-containing component to modify the properties of alkali-activated cement (AAC) based on granulated blast-furnace slag (GBFS). Citrogypsum was used in different AAC mixes activated with three different alkaline components: Na2CO3, NaOH, and Na2SiO3. Laser granulometry was applied to assess the granulometric characteristics of citrogypsum and GBFS. Specific gravity (SG), compressive strength, and water resistance were tested to evaluate the effect of citrogypsum on the physical and strength performance of AAC. Experimental results obtained over 4-day to 28-day time periods for the studied AACs showed that the addition of citrogypsum had a detrimental effect on the properties of AAC mixes, where decreases in compressive strength between 1 and 100%, decreases in specific gravity between 4 and 30%, and decreases in water resistance between 12 and 100% were observed. It was determined that AAC mixes modified with citrogypsum cured in ambient conditions had compressive strength values 61% to 90% lower than those cured in hydrothermal conditions. In terms of strength performance, specific gravity and water resistance, citrogypsum showed the greatest effect on AAC mixes activated with NaOH, and to a lesser extent, on mixes activated with Na2CO3. The highest water resistance value of 0.77 was observed for the AAC mixes activated with Na2CO3 cured in ambient conditions, and when cured in hydrothermal conditions, the highest water resistance reached up to 0.84 for the AAC mixes activated with NaOH. It was observed that the type of alkaline activator and curing conditions are both crucial factors that govern the response of citrogypsum as a supplementary mineral additive in GBFS-based AAC mixes in regard to compressive strength, specific gravity and water resistance.
{"title":"The Effect of Recycled Citrogypsum as a Supplementary Mineral Additive on the Physical and Mechanical Performance of Granulated Blast Furnace Slag-Based Alkali-Activated Binders","authors":"N. Kozhukhova, N. Alfimova, M. Kozhukhova, I. Nikulin, Roman A. Glazkov, Anna I. Kolomytceva","doi":"10.3390/recycling8010022","DOIUrl":"https://doi.org/10.3390/recycling8010022","url":null,"abstract":"In the last decades, gypsum-bearing industrial wastes become one of the common globally produced industrial and domestic wastes that are currently recycled and further utilized. In this study, the gypsum-bearing waste citrogypsum was used as a Ca2+-containing component to modify the properties of alkali-activated cement (AAC) based on granulated blast-furnace slag (GBFS). Citrogypsum was used in different AAC mixes activated with three different alkaline components: Na2CO3, NaOH, and Na2SiO3. Laser granulometry was applied to assess the granulometric characteristics of citrogypsum and GBFS. Specific gravity (SG), compressive strength, and water resistance were tested to evaluate the effect of citrogypsum on the physical and strength performance of AAC. Experimental results obtained over 4-day to 28-day time periods for the studied AACs showed that the addition of citrogypsum had a detrimental effect on the properties of AAC mixes, where decreases in compressive strength between 1 and 100%, decreases in specific gravity between 4 and 30%, and decreases in water resistance between 12 and 100% were observed. It was determined that AAC mixes modified with citrogypsum cured in ambient conditions had compressive strength values 61% to 90% lower than those cured in hydrothermal conditions. In terms of strength performance, specific gravity and water resistance, citrogypsum showed the greatest effect on AAC mixes activated with NaOH, and to a lesser extent, on mixes activated with Na2CO3. The highest water resistance value of 0.77 was observed for the AAC mixes activated with Na2CO3 cured in ambient conditions, and when cured in hydrothermal conditions, the highest water resistance reached up to 0.84 for the AAC mixes activated with NaOH. It was observed that the type of alkaline activator and curing conditions are both crucial factors that govern the response of citrogypsum as a supplementary mineral additive in GBFS-based AAC mixes in regard to compressive strength, specific gravity and water resistance.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48218931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}