首页 > 最新文献

IET Nanodielectrics最新文献

英文 中文
Synergetic optimisation of mechanical and electrical properties of aramid composite insulation paper by modulation of fibrid morphology 通过调节纤维形态协同优化芳纶复合绝缘纸的机械和电气性能
IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-04-01 DOI: 10.1049/nde2.12081
Meng Huang, Yuanxin Yao, Lu Wang, Sai Li, Yanxiao Su, Jie Ma

The fibrids in aramid insulation paper exhibit good adhesion ability. However, the effects of fibrids morphology on the mechanical and electrical properties of aramid insulation paper remains poorly understood. Aramid fibrids with different morphological structures were prepared by modifying the preparation process, and then they were used to fabricate aramid composite insulation paper under the same condition. The results showed that increasing the shear rate and aramid solution concentration affected the magnitude of the shear force and double diffusion process, thus affecting the average length, specific surface area, and crystallinity of the fibrids. When the rotor frequency is 25–30 Hz and the solution concentration is 15%, the fibrid has a large specific surface area while ensuring high crystallinity, which is beneficial to the improvement of breakdown strength. When the average length of fibrids is 0.8–1.4 mm, the fine content is 1.3%–2.3%, specific surface area is 57.5–62 m2 g−1, and crystallinity is 18.5%–27%, the aramid composite insulation paper has the optimal mechanical and electrical properties. Combined with the micromorphology test results, the influence mechanism of fibrids properties on the mechanical properties, dielectric properties, and AC and DC breakdown strength of aramid composite insulation paper was obtained. The result is of great theoretical significance and practical value for the preparation and application of high-performance aramid composite insulation paper.

芳纶绝缘纸中的纤维具有良好的粘附能力。然而,人们对纤维形态对芳纶绝缘纸机械和电气性能的影响仍然知之甚少。通过改进制备工艺,制备出不同形态结构的芳纶纤维,并在相同条件下用于制造芳纶复合绝缘纸。结果表明,提高剪切速率和芳纶溶液浓度会影响剪切力的大小和双重扩散过程,从而影响纤维的平均长度、比表面积和结晶度。当转子频率为 25-30 赫兹、溶液浓度为 15%时,纤维的比表面积大,同时结晶度高,有利于提高击穿强度。当纤维的平均长度为 0.8-1.4 mm、细度含量为 1.3%-2.3%、比表面积为 57.5-62 m2 g-1、结晶度为 18.5%-27% 时,芳纶复合绝缘纸具有最佳的机械和电气性能。结合微观形态测试结果,得出了纤维性能对芳纶复合绝缘纸机械性能、介电性能、交直流击穿强度的影响机理。该结果对高性能芳纶复合绝缘纸的制备和应用具有重要的理论意义和实用价值。
{"title":"Synergetic optimisation of mechanical and electrical properties of aramid composite insulation paper by modulation of fibrid morphology","authors":"Meng Huang,&nbsp;Yuanxin Yao,&nbsp;Lu Wang,&nbsp;Sai Li,&nbsp;Yanxiao Su,&nbsp;Jie Ma","doi":"10.1049/nde2.12081","DOIUrl":"10.1049/nde2.12081","url":null,"abstract":"<p>The fibrids in aramid insulation paper exhibit good adhesion ability. However, the effects of fibrids morphology on the mechanical and electrical properties of aramid insulation paper remains poorly understood. Aramid fibrids with different morphological structures were prepared by modifying the preparation process, and then they were used to fabricate aramid composite insulation paper under the same condition. The results showed that increasing the shear rate and aramid solution concentration affected the magnitude of the shear force and double diffusion process, thus affecting the average length, specific surface area, and crystallinity of the fibrids. When the rotor frequency is 25–30 Hz and the solution concentration is 15%, the fibrid has a large specific surface area while ensuring high crystallinity, which is beneficial to the improvement of breakdown strength. When the average length of fibrids is 0.8–1.4 mm, the fine content is 1.3%–2.3%, specific surface area is 57.5–62 m<sup>2</sup> g<sup>−1</sup>, and crystallinity is 18.5%–27%, the aramid composite insulation paper has the optimal mechanical and electrical properties. Combined with the micromorphology test results, the influence mechanism of fibrids properties on the mechanical properties, dielectric properties, and AC and DC breakdown strength of aramid composite insulation paper was obtained. The result is of great theoretical significance and practical value for the preparation and application of high-performance aramid composite insulation paper.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 4","pages":"203-215"},"PeriodicalIF":3.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced thermal conductivity and self-healing property of PUDA/boron nitride micro-sheets composites with a small number of graphene nano-platelets 含有少量石墨烯纳米片的 PUDA/ 氮化硼微片复合材料的导热性和自愈合性能得到增强
IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-21 DOI: 10.1049/nde2.12073
Shiyu Zhang, Zhihui Shang, Dongliang Ding, Xu Wang, Ya Wu, Shifeng Nian, Zhenguo Liu, Qiuyu Zhang, Yanhui Chen

Self-healing polyurethane diacrylate (PUDA) composites with outstanding thermal conductivity were prepared with variable boron nitride (BN) and a small number of graphene nanoplatelets (GNPs) (1 wt%). The thermal conductivity of PUDA composites containing 1 wt% GNPs and 29 wt% BN reached 1.73 W/(m·K), showing 27.2% increment compared to PUDA composites only with 30 wt% BN. BN and GNPs mutually promoted the dispersion in the PUDA matrix, and the small number of GNPs was enough to bridge the gaps between BN, so that GNPs and BN exerted a synergistic enhancement effect on the thermal conductivity of PUDA composites with a synergistic efficiency of 1.343. The PUDA composites maintained the tensile strength of 8.21 MPa with good electrical insulation (4.55 × 109 Ω cm). The high degrees of recovery of mechanical strength (>90%) and thermal conductivities (>84%) were also realised by the healing effect of the reversible DA reaction. The PUDA composites with excellent comprehensive properties show broad application potential in the thermal management of electronic devices.

利用可变氮化硼(BN)和少量石墨烯纳米颗粒(GNPs)(1 wt%)制备了具有出色导热性能的自愈合聚氨酯二丙烯酸酯(PUDA)复合材料。含有 1 wt% GNPs 和 29 wt% BN 的 PUDA 复合材料的热导率达到了 1.73 W/(m-K),与仅含有 30 wt% BN 的 PUDA 复合材料相比提高了 27.2%。BN 和 GNPs 相互促进在 PUDA 基体中的分散,少量的 GNPs 足以弥合 BN 之间的间隙,因此 GNPs 和 BN 对 PUDA 复合材料的热导率产生了协同增强效应,协同效率为 1.343。PUDA 复合材料保持了 8.21 MPa 的拉伸强度和良好的电绝缘性(4.55 × 109 Ω cm)。通过可逆 DA 反应的愈合作用,还实现了机械强度(大于 90%)和热导率(大于 84%)的高度恢复。具有优异综合性能的 PUDA 复合材料在电子设备的热管理方面具有广阔的应用前景。
{"title":"Enhanced thermal conductivity and self-healing property of PUDA/boron nitride micro-sheets composites with a small number of graphene nano-platelets","authors":"Shiyu Zhang,&nbsp;Zhihui Shang,&nbsp;Dongliang Ding,&nbsp;Xu Wang,&nbsp;Ya Wu,&nbsp;Shifeng Nian,&nbsp;Zhenguo Liu,&nbsp;Qiuyu Zhang,&nbsp;Yanhui Chen","doi":"10.1049/nde2.12073","DOIUrl":"10.1049/nde2.12073","url":null,"abstract":"<p>Self-healing polyurethane diacrylate (PUDA) composites with outstanding thermal conductivity were prepared with variable boron nitride (BN) and a small number of graphene nanoplatelets (GNPs) (1 wt%). The thermal conductivity of PUDA composites containing 1 wt% GNPs and 29 wt% BN reached 1.73 W/(m·K), showing 27.2% increment compared to PUDA composites only with 30 wt% BN. BN and GNPs mutually promoted the dispersion in the PUDA matrix, and the small number of GNPs was enough to bridge the gaps between BN, so that GNPs and BN exerted a synergistic enhancement effect on the thermal conductivity of PUDA composites with a synergistic efficiency of 1.343. The PUDA composites maintained the tensile strength of 8.21 MPa with good electrical insulation (4.55 × 10<sup>9</sup> Ω cm). The high degrees of recovery of mechanical strength (&gt;90%) and thermal conductivities (&gt;84%) were also realised by the healing effect of the reversible DA reaction. The PUDA composites with excellent comprehensive properties show broad application potential in the thermal management of electronic devices.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 3","pages":"150-161"},"PeriodicalIF":3.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140221894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the dielectric properties of polypropylene for metallised film capacitors based on cyclic olefin copolymer blending 基于环状烯烃共聚物混合物改善金属化薄膜电容器用聚丙烯的介电性能
IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-11 DOI: 10.1049/nde2.12072
Meng Xiao, Mengdie Zhang, Boxue Du, Kailun Fan

High conductivity loss and low breakdown strength of traditional polypropylene (PP) film in the high-temperature environment are the key factors limiting the application of metallised film capacitors (MFCs). The effect of cyclic olefin copolymers (COCs) with different glass transition temperatures (Tgs) on the dielectric performance of PP/COC composites at high temperature are studied. The results showed that the addition of COC enhanced the intermolecular interaction force, which led to the reduction of defects in the films. In addition, COC with high Tg inhibits the movement of molecular chains and enhances the thermal stability of the film, which limits the transport of carriers at high temperatures. The conductivity and breakdown strength of the modified films (with a Tg of 134°C for COC) at 125°C are 91.6% lower and 45.7% higher, respectively, than that of pure PP. This method shows great potential in improving the dielectric properties of PP at high temperatures.

传统聚丙烯(PP)薄膜在高温环境下的高电导损耗和低击穿强度是限制金属化薄膜电容器(MFC)应用的关键因素。研究了不同玻璃化转变温度(Tgs)的环烯烃共聚物(COC)对 PP/COC 复合材料高温下介电性能的影响。结果表明,COC 的加入增强了分子间的相互作用力,从而减少了薄膜中的缺陷。此外,高 Tg 的 COC 可抑制分子链的运动,增强薄膜的热稳定性,从而限制载流子在高温下的传输。改性薄膜(COC 的 Tg 为 134°C)在 125°C 时的导电率和击穿强度分别比纯 PP 低 91.6% 和高 45.7%。这种方法在改善 PP 在高温下的介电性能方面显示出巨大的潜力。
{"title":"Improving the dielectric properties of polypropylene for metallised film capacitors based on cyclic olefin copolymer blending","authors":"Meng Xiao,&nbsp;Mengdie Zhang,&nbsp;Boxue Du,&nbsp;Kailun Fan","doi":"10.1049/nde2.12072","DOIUrl":"10.1049/nde2.12072","url":null,"abstract":"<p>High conductivity loss and low breakdown strength of traditional polypropylene (PP) film in the high-temperature environment are the key factors limiting the application of metallised film capacitors (MFCs). The effect of cyclic olefin copolymers (COCs) with different glass transition temperatures (Tgs) on the dielectric performance of PP/COC composites at high temperature are studied. The results showed that the addition of COC enhanced the intermolecular interaction force, which led to the reduction of defects in the films. In addition, COC with high Tg inhibits the movement of molecular chains and enhances the thermal stability of the film, which limits the transport of carriers at high temperatures. The conductivity and breakdown strength of the modified films (with a Tg of 134°C for COC) at 125°C are 91.6% lower and 45.7% higher, respectively, than that of pure PP. This method shows great potential in improving the dielectric properties of PP at high temperatures.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 3","pages":"140-149"},"PeriodicalIF":3.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140252647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data sonification of film capacitors 薄膜电容器的数据超声处理
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-07 DOI: 10.1049/nde2.12078
Yong-Xin Zhang, Di-Fan Liu, Xin-Yi Wei, Xin-Jie Wang, Fang-Yi Chen, Qi-Kun Feng, Wen-Yuan Cao, Wen-Zhuo Dong, Faisal Mehmood Shah, Yu-Xiao Liu, Zhi-Yuan Wu, Jian-Tao Wang, Shao-Long Zhong, Zhi-Min Dang

Film capacitors are playing an increasingly important role in power-related fields, driven by the continuous development of dielectric materials and practical needs. Long-term accumulation has also led to an increasing wealth of data related to film capacitors. Sonification opens up a new way for people to make good use of data from film capacitors. A framework for sonifying film capacitors data based on TwoTone is presented. Based on the analysis and discussion, it is clear that the sonification results can easily represent the monotonic variation pattern of film capacitors data. What's more, the sonification results increase the possibility that people pay attention to the changing trend of film capacitors data when there is no significant difference in the visual perception of the data. In addition to providing a new way of music generation of electrical equipment, the method proposed is expected to contribute to theory reference in typical scenarios, such as factory calibration of film capacitors, monitoring of film capacitor operation status, and presentation of statistical data of film capacitors' dielectric materials, which will help us to better understand the distribution characteristics of polymer films.

在介电材料不断发展和实际需求的推动下,薄膜电容器在电力相关领域发挥着越来越重要的作用。长期的积累也使得与薄膜电容器相关的数据日益丰富。声学技术为人们充分利用薄膜电容器的数据开辟了一条新途径。本文介绍了基于 TwoTone 的薄膜电容器数据声化框架。通过分析和讨论,我们可以清楚地看到,声化结果可以轻松地表示薄膜电容器数据的单调变化规律。更重要的是,当人们对薄膜电容器数据的视觉感知没有明显差异时,声化结果增加了人们关注薄膜电容器数据变化趋势的可能性。除了提供一种新的电气设备音乐生成方式外,所提出的方法还有望在典型场景中为理论参考做出贡献,例如薄膜电容器的工厂校准、薄膜电容器运行状态的监测以及薄膜电容器介电材料统计数据的呈现,这将有助于我们更好地了解聚合物薄膜的分布特性。
{"title":"Data sonification of film capacitors","authors":"Yong-Xin Zhang,&nbsp;Di-Fan Liu,&nbsp;Xin-Yi Wei,&nbsp;Xin-Jie Wang,&nbsp;Fang-Yi Chen,&nbsp;Qi-Kun Feng,&nbsp;Wen-Yuan Cao,&nbsp;Wen-Zhuo Dong,&nbsp;Faisal Mehmood Shah,&nbsp;Yu-Xiao Liu,&nbsp;Zhi-Yuan Wu,&nbsp;Jian-Tao Wang,&nbsp;Shao-Long Zhong,&nbsp;Zhi-Min Dang","doi":"10.1049/nde2.12078","DOIUrl":"10.1049/nde2.12078","url":null,"abstract":"<p>Film capacitors are playing an increasingly important role in power-related fields, driven by the continuous development of dielectric materials and practical needs. Long-term accumulation has also led to an increasing wealth of data related to film capacitors. Sonification opens up a new way for people to make good use of data from film capacitors. A framework for sonifying film capacitors data based on TwoTone is presented. Based on the analysis and discussion, it is clear that the sonification results can easily represent the monotonic variation pattern of film capacitors data. What's more, the sonification results increase the possibility that people pay attention to the changing trend of film capacitors data when there is no significant difference in the visual perception of the data. In addition to providing a new way of music generation of electrical equipment, the method proposed is expected to contribute to theory reference in typical scenarios, such as factory calibration of film capacitors, monitoring of film capacitor operation status, and presentation of statistical data of film capacitors' dielectric materials, which will help us to better understand the distribution characteristics of polymer films.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 2","pages":"88-95"},"PeriodicalIF":2.7,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140077412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic optimization of piezoelectric ceramic and its application in mechanical antenna 压电陶瓷的电磁优化及其在机械天线中的应用
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-18 DOI: 10.1049/nde2.12077
Song Gao, Liwei Wang, Jingtong Lu, Shuai Zhang, Hongyu Sun, Kai Huang, Jianchun Xu, Yanan Hao

Mechanical antennas have garnered considerable attention due to their ability to address the challenges posed by the significant size and high energy consumption associated with traditional electric antennas when operating at low frequencies. Here, a compact and structurally stable mechanical antenna design is presented. The proposed antenna is constructed using cylindrical piezoelectric ceramics, which have dimensions smaller than 1/1000 of the wavelength. The scrutiny of the influence exerted by the antenna feed area and material thickness on the radiation performance was undertaken, followed by an exhaustive discourse on these effects. Experimental measurements demonstrate the practical functionalities of signal coding, transmission, and reception in the low-frequency communication system. Notably, at a frequency of 288 kHz, a single proposed antenna achieves an effective information transmission distance of 60 m using binary information coding. This remarkable outcome underscores the potential of this design in facilitating the development of portable and cost-effective wireless communication equipment for low-frequency applications.

机械天线能够解决传统电动天线在低频工作时体积大、能耗高的难题,因此备受关注。本文介绍了一种结构紧凑、性能稳定的机械天线设计。该天线采用圆柱形压电陶瓷制成,其尺寸小于波长的 1/1000。我们仔细研究了天线馈电面积和材料厚度对辐射性能的影响,并对这些影响进行了详尽的论述。实验测量证明了低频通信系统中信号编码、传输和接收的实用功能。值得注意的是,在频率为 288 kHz 时,使用二进制信息编码,单个拟议的天线可实现 60 米的有效信息传输距离。这一引人注目的成果凸显了这一设计在促进低频应用领域便携式、低成本无线通信设备开发方面的潜力。
{"title":"Electromagnetic optimization of piezoelectric ceramic and its application in mechanical antenna","authors":"Song Gao,&nbsp;Liwei Wang,&nbsp;Jingtong Lu,&nbsp;Shuai Zhang,&nbsp;Hongyu Sun,&nbsp;Kai Huang,&nbsp;Jianchun Xu,&nbsp;Yanan Hao","doi":"10.1049/nde2.12077","DOIUrl":"10.1049/nde2.12077","url":null,"abstract":"<p>Mechanical antennas have garnered considerable attention due to their ability to address the challenges posed by the significant size and high energy consumption associated with traditional electric antennas when operating at low frequencies. Here, a compact and structurally stable mechanical antenna design is presented. The proposed antenna is constructed using cylindrical piezoelectric ceramics, which have dimensions smaller than 1/1000 of the wavelength. The scrutiny of the influence exerted by the antenna feed area and material thickness on the radiation performance was undertaken, followed by an exhaustive discourse on these effects. Experimental measurements demonstrate the practical functionalities of signal coding, transmission, and reception in the low-frequency communication system. Notably, at a frequency of 288 kHz, a single proposed antenna achieves an effective information transmission distance of 60 m using binary information coding. This remarkable outcome underscores the potential of this design in facilitating the development of portable and cost-effective wireless communication equipment for low-frequency applications.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 1","pages":"1-6"},"PeriodicalIF":2.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139615665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A strong dependence of sputtering power on c-axis oriented aluminium nitride on Si (111): A structural and electrical study 溅射功率对 Si (111) 上 c 轴取向氮化铝的强烈依赖性:结构和电学研究
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-03 DOI: 10.1049/nde2.12076
Sandeep Sanjeeva, Jyothilakshmi Rudresh, K. B. Vinayakumar, K. K. Nagaraja

Growing and controlling the c-axis orientation of the aluminium nitride (AlN) thin film on unheated Si (111) substrates using reactive magnetron sputtering are challenging. Sputtering parameters such as nitrogen concentration and sputtering power were effectively tuned to grow the c-axis oriented AlN thin film. The results show that a low concentration of (25%) N2 is enough for forming AlN at a reduced flow rate, whereas a higher flow rate requires a higher concentration of N2. Low concentration with a low flow rate is preferred to grow AlN at low temperature and power. The poor crystallinity of AlN with (100) orientation was improved by varying the power from 75 to 175 W. The X-ray diffraction results confirmed the improvisation of crystallinity of grown AlN films and indicated the strong dependence of preferred c-axis orientation on sputtering power. Also, the dependence of sputtering power on microstrain and stress was analysed. The surface morphology study by field emission scanning electron microscopy and topography measured by an atomic force microscope shows a dependence on sputtering power. The high c-axis orientation was observed at 175 W with low surface roughness, low leakage current density (2 × 10−9 A/cm2) and low dielectric constant (6.8).

利用反应磁控溅射技术在未加热的硅(111)基板上生长和控制氮化铝(AlN)薄膜的 c 轴取向是一项挑战。我们对氮浓度和溅射功率等溅射参数进行了有效调整,以生长出 c 轴取向的氮化铝薄膜。结果表明,低浓度(25%)的氮气足以在较低的流速下形成氮化铝,而较高的流速则需要较高浓度的氮气。要在低温和低功率条件下生长氮化铝,最好采用低浓度和低流速。X 射线衍射结果证实了生长的 AlN 薄膜结晶度的提高,并表明优先 c 轴取向与溅射功率密切相关。此外,还分析了溅射功率对微应变和应力的影响。通过场发射扫描电子显微镜进行的表面形貌研究和原子力显微镜测量的形貌显示了对溅射功率的依赖性。在表面粗糙度低、漏电流密度低(2 × 10-9 A/cm2)和介电常数低(6.8)的情况下,175 W 时观察到高 c 轴取向。
{"title":"A strong dependence of sputtering power on c-axis oriented aluminium nitride on Si (111): A structural and electrical study","authors":"Sandeep Sanjeeva,&nbsp;Jyothilakshmi Rudresh,&nbsp;K. B. Vinayakumar,&nbsp;K. K. Nagaraja","doi":"10.1049/nde2.12076","DOIUrl":"10.1049/nde2.12076","url":null,"abstract":"<p>Growing and controlling the c-axis orientation of the aluminium nitride (AlN) thin film on unheated Si (111) substrates using reactive magnetron sputtering are challenging. Sputtering parameters such as nitrogen concentration and sputtering power were effectively tuned to grow the <i>c</i>-axis oriented AlN thin film. The results show that a low concentration of (25%) N<sub>2</sub> is enough for forming AlN at a reduced flow rate, whereas a higher flow rate requires a higher concentration of N<sub>2</sub>. Low concentration with a low flow rate is preferred to grow AlN at low temperature and power. The poor crystallinity of AlN with (100) orientation was improved by varying the power from 75 to 175 W. The X-ray diffraction results confirmed the improvisation of crystallinity of grown AlN films and indicated the strong dependence of preferred <i>c</i>-axis orientation on sputtering power. Also, the dependence of sputtering power on microstrain and stress was analysed. The surface morphology study by field emission scanning electron microscopy and topography measured by an atomic force microscope shows a dependence on sputtering power. The high <i>c</i>-axis orientation was observed at 175 W with low surface roughness, low leakage current density (2 × 10<sup>−9</sup> A/cm<sup>2</sup>) and low dielectric constant (6.8).</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 1","pages":"7-17"},"PeriodicalIF":2.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of chlorotrifluoroethylene (CTFE) units on the dielectric and energy storage properties of P(VDF-CTFE) 三氟氯乙烯 (CTFE) 单元对 P(VDF-CTFE) 介电和储能特性的影响
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-03 DOI: 10.1049/nde2.12075
Haoran Xie, Xi Yuan, Hang Luo, Dou Zhang

Polyvinylidene fluoride-based ferroelectric polymers are favoured in the field of advanced high-energy-storage dielectric capacitors due to their strong spontaneous polarisation and high dielectric constant (εr). It has been confirmed that the ferroelectric behaviour and energy storage performance can be regulated by copolymerising polyvinylidene fluoride with bulky monomers such as chlorotrifluoroethylene, and hexafluoropropylene. Past research based on these copolymers mostly focused on the preparation of composites, yet with limited discussion on the effect of copolymer composition. In this work, a series of P(VDF-CTFE) films with different chlorotrifluoroethylene contents were fabricated through a solution-casting method. The introduction of bulky chlorotrifluoroethylene units can tune the polymer crystal structure and crystallinity, alter the state of polymer chains and the response of dipoles to electric fields, and lead to dramatic changes in dielectric properties, breakdown strength (Eb), and energy storage density (Ue). As a result, the copolymer with a chlorotrifluoroethylene content of 15 wt% obtained the best overall performance, and the Ue reached 16.73 J/cm3 at 650 kV/mm. This work provides a basis for the optimisation of the properties of polyvinylidene fluoride-based ferroelectric polymers and the development of high Ue dielectric.

聚偏氟乙烯基铁电聚合物具有强自发极化性和高介电常数(εr),因此在先进的高储能介质电容器领域备受青睐。研究证实,聚偏氟乙烯与氯三氟乙烯和六氟丙烯等大体积单体共聚可调节铁电行为和储能性能。以往基于这些共聚物的研究大多集中于复合材料的制备,但对共聚物成分的影响讨论有限。在这项研究中,我们通过溶液浇铸法制备了一系列氯代三氟乙烯含量不同的 P(VDF-CTFE)薄膜。引入大体积的三氟氯乙烯单元可以调整聚合物晶体结构和结晶度,改变聚合物链的状态和偶极子对电场的响应,并导致介电性能、击穿强度(Eb)和储能密度(Ue)发生巨大变化。结果,氯三氟乙烯含量为 15 wt% 的共聚物获得了最佳的综合性能,在 650 kV/mm 时,Ue 达到 16.73 J/cm3。这项研究为优化聚偏氟乙烯基铁电聚合物的性能和开发高 Ue 介电体奠定了基础。
{"title":"The effects of chlorotrifluoroethylene (CTFE) units on the dielectric and energy storage properties of P(VDF-CTFE)","authors":"Haoran Xie,&nbsp;Xi Yuan,&nbsp;Hang Luo,&nbsp;Dou Zhang","doi":"10.1049/nde2.12075","DOIUrl":"10.1049/nde2.12075","url":null,"abstract":"<p>Polyvinylidene fluoride-based ferroelectric polymers are favoured in the field of advanced high-energy-storage dielectric capacitors due to their strong spontaneous polarisation and high dielectric constant (<i>ε</i><sub>r</sub>). It has been confirmed that the ferroelectric behaviour and energy storage performance can be regulated by copolymerising polyvinylidene fluoride with bulky monomers such as chlorotrifluoroethylene, and hexafluoropropylene. Past research based on these copolymers mostly focused on the preparation of composites, yet with limited discussion on the effect of copolymer composition. In this work, a series of P(VDF-CTFE) films with different chlorotrifluoroethylene contents were fabricated through a solution-casting method. The introduction of bulky chlorotrifluoroethylene units can tune the polymer crystal structure and crystallinity, alter the state of polymer chains and the response of dipoles to electric fields, and lead to dramatic changes in dielectric properties, breakdown strength (<i>E</i><sub>b</sub>), and energy storage density (<i>U</i><sub>e</sub>). As a result, the copolymer with a chlorotrifluoroethylene content of 15 wt% obtained the best overall performance, and the <i>U</i><sub>e</sub> reached 16.73 J/cm<sup>3</sup> at 650 kV/mm. This work provides a basis for the optimisation of the properties of polyvinylidene fluoride-based ferroelectric polymers and the development of high <i>U</i><sub>e</sub> dielectric.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 1","pages":"18-25"},"PeriodicalIF":2.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible smart surface coating for GIS/GIL epoxy insulators 用于 GIS/GIL 环氧绝缘子的柔性智能表面涂层
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-02 DOI: 10.1049/nde2.12074
Yu-Huai Wang, Zhuo Chen, Jin Li, Zhi-Xiang Liu, Rong Chen, Hein Htet Aung, Hu-Cheng Liang, Bo-Xue Du

A flexible smart coating with electroluminescence effect was designed and fabricated on the surface of gas insulated switch gear (GIS)/gas insulated transmission line (GIL) epoxy insulators based on two-step curing process. As the AC voltage increases, the luminous area on the insulator surface expands from the centre to the periphery, and the light intensity shows a linear relationship with the applied voltage. Besides, the flexible smart coating can effectively identify the location of metal particle defects and the degree of electric field distortion. The flexible smart coating enhances the surface flashover voltage due to its higher dielectric constant. Simultaneously, metal particle contamination can substantially reduce the insulation performance of epoxy insulators, particularly when they are located near the high-voltage side. It is hoped that this study can provide a reference for the smart detection of surface defects GIS/GIL basin insulators.

基于两步固化工艺,在气体绝缘开关设备(GIS)/气体绝缘输电线路(GIL)环氧绝缘子表面设计并制造了一种具有电致发光效果的柔性智能涂层。随着交流电压的增加,绝缘体表面的发光面积从中心向外围扩展,发光强度与所加电压呈线性关系。此外,柔性智能涂层还能有效识别金属颗粒缺陷的位置和电场畸变程度。由于柔性智能涂层的介电常数较高,它能增强表面闪络电压。同时,金属颗粒污染会大大降低环氧绝缘体的绝缘性能,尤其是当它们位于高压侧附近时。希望本研究能为 GIS/GIL 盆式绝缘子表面缺陷的智能检测提供参考。
{"title":"Flexible smart surface coating for GIS/GIL epoxy insulators","authors":"Yu-Huai Wang,&nbsp;Zhuo Chen,&nbsp;Jin Li,&nbsp;Zhi-Xiang Liu,&nbsp;Rong Chen,&nbsp;Hein Htet Aung,&nbsp;Hu-Cheng Liang,&nbsp;Bo-Xue Du","doi":"10.1049/nde2.12074","DOIUrl":"10.1049/nde2.12074","url":null,"abstract":"<p>A flexible smart coating with electroluminescence effect was designed and fabricated on the surface of gas insulated switch gear (GIS)/gas insulated transmission line (GIL) epoxy insulators based on two-step curing process. As the AC voltage increases, the luminous area on the insulator surface expands from the centre to the periphery, and the light intensity shows a linear relationship with the applied voltage. Besides, the flexible smart coating can effectively identify the location of metal particle defects and the degree of electric field distortion. The flexible smart coating enhances the surface flashover voltage due to its higher dielectric constant. Simultaneously, metal particle contamination can substantially reduce the insulation performance of epoxy insulators, particularly when they are located near the high-voltage side. It is hoped that this study can provide a reference for the smart detection of surface defects GIS/GIL basin insulators.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 1","pages":"26-32"},"PeriodicalIF":2.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139391328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced electrocaloric effect over a broad temperature range in lead-free Na0.5Bi0.5TiO3-based relaxor ferroelectrics via doping with Bi(Mg0.5Zr0.5)O3 通过掺杂 Bi(Mg0.5Zr0.5)O3,在无铅 Na0.5Bi0.5TiO3 基弛豫铁电体中增强宽温度范围内的电致发光效应
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-06 DOI: 10.1049/nde2.12069
Xiang Niu, Yuleng Jiang, Junying Lai, Wei Liang, Huanwei Liu, Xiaodong Jian, Xiaobo Zhao, Yingbang Yao, Bo Liang, Tao Tao, Sheng-Guo Lu

With an increasing demand for environmentally friendly refrigeration, the solid-state refrigeration based on the electrocaloric effect (ECE) has been drawn extensive attention. It is a challenge to maintain a large adiabatic temperature change (∆T) over a broad temperature span. Herein, the authors designed and synthesised (0.74-x) Na0.5Bi0.5TiO3-0.06BaTiO3-0.2SrTiO3-xBi(Mg0.5Zr0.5)O3 (abbreviated as NBT-xBMZ) (x = 0, 0.02, 0.04, 0.06 and 0.08) lead-free relaxor ferroelectrics. Their microstructures, dielectric properties, ferroelectric properties, ECEs and the structure-property relationships were investigated. Via doping with BMZ, an enhanced relaxor feature and a wider temperature range where multi-phases coexist were achieved. The relaxor ferroelectric characteristics were illustrated using the Vogel-Fulcher relation. The indirectly calculated ECE results showed that the optimal ΔT of 1.11 K was obtained for the x = 0.02 sample at 90°C and 70 kV/cm over a wide Tspan of 120°C, providing a potential ECE material. The direct ECE results procured using thermocouple indicated that the maximal ∆T of 2.14 K and ∆T/∆E of 0.31 K m/MV were achieved in the same sample at 70°C and 7 MV/m and the variation trend of ECE results was consistent with the indirect results. Moreover, the multi-phases coexistent strategy can be extended to other materials system to generate a large ΔT over a wide temperature range.

随着人们对环保制冷的需求日益增加,基于电热效应(ECE)的固态制冷受到了广泛的关注。在较宽的温度范围内保持较大的绝热温度变化(∆T)是一项挑战。在此,作者设计并合成了(0.74‐x) Na0.5Bi0.5TiO3‐0.06 batio3‐0.2SrTiO3‐xBi(Mg0.5Zr0.5)O3(缩写为NBT‐xBMZ) (x = 0,0.02, 0.04, 0.06和0.08)无铅弛豫铁电体。研究了它们的显微结构、介电性能、铁电性能、电化学性能和结构-性能关系。通过掺杂BMZ,实现了增强的弛豫特性和更宽的多相共存温度范围。利用Vogel - Fulcher关系说明了弛豫铁电特性。间接计算的ECE结果表明,在90°C和70 kV/cm的120°C宽Tspan下,x = 0.02样品获得了1.11 K的最佳ΔT,提供了一种潜在的ECE材料。采用热电偶直接测得的ECE结果表明,同一样品在70℃、7 MV/m条件下,最大∆T为2.14 K,∆T/∆E为0.31 K m/MV, ECE结果的变化趋势与间接测得结果一致。此外,多相共存策略可以扩展到其他材料体系,在宽温度范围内产生大的ΔT。
{"title":"Enhanced electrocaloric effect over a broad temperature range in lead-free Na0.5Bi0.5TiO3-based relaxor ferroelectrics via doping with Bi(Mg0.5Zr0.5)O3","authors":"Xiang Niu,&nbsp;Yuleng Jiang,&nbsp;Junying Lai,&nbsp;Wei Liang,&nbsp;Huanwei Liu,&nbsp;Xiaodong Jian,&nbsp;Xiaobo Zhao,&nbsp;Yingbang Yao,&nbsp;Bo Liang,&nbsp;Tao Tao,&nbsp;Sheng-Guo Lu","doi":"10.1049/nde2.12069","DOIUrl":"10.1049/nde2.12069","url":null,"abstract":"<p>With an increasing demand for environmentally friendly refrigeration, the solid-state refrigeration based on the electrocaloric effect (ECE) has been drawn extensive attention. It is a challenge to maintain a large adiabatic temperature change (∆<i>T</i>) over a broad temperature span. Herein, the authors designed and synthesised (0.74-<i>x</i>) Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-0.06BaTiO<sub>3</sub>-0.2SrTiO<sub>3</sub>-<i>x</i>Bi(Mg<sub>0.5</sub>Zr<sub>0.5</sub>)O<sub>3</sub> (abbreviated as NBT-<i>x</i>BMZ) (<i>x</i> = 0, 0.02, 0.04, 0.06 and 0.08) lead-free relaxor ferroelectrics. Their microstructures, dielectric properties, ferroelectric properties, ECEs and the structure-property relationships were investigated. Via doping with BMZ, an enhanced relaxor feature and a wider temperature range where multi-phases coexist were achieved. The relaxor ferroelectric characteristics were illustrated using the Vogel-Fulcher relation. The indirectly calculated ECE results showed that the optimal Δ<i>T</i> of 1.11 K was obtained for the <i>x</i> = 0.02 sample at 90°C and 70 kV/cm over a wide <i>T</i><sub>span</sub> of 120°C, providing a potential ECE material. The direct ECE results procured using thermocouple indicated that the maximal ∆<i>T</i> of 2.14 K and ∆<i>T</i>/∆<i>E</i> of 0.31 K m/MV were achieved in the same sample at 70°C and 7 MV/m and the variation trend of ECE results was consistent with the indirect results. Moreover, the multi-phases coexistent strategy can be extended to other materials system to generate a large Δ<i>T</i> over a wide temperature range.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 2","pages":"59-67"},"PeriodicalIF":2.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138595188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress in insulating and thermal conductivity of fluorinated graphene and its polyimide composites 氟化石墨烯及其聚酰亚胺复合材料的绝缘性和导热性研究进展
IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-04 DOI: 10.1049/nde2.12068
Xin Wang, Shuyan Liu, Haoyu Han, Xiangyang Liu, Xu Wang

The demand for innovative thermal management materials with superior thermal conductivity and electrical insulating properties has significantly increased with the development of portable and flexible electronic gadgets. Fluorinated graphene (FG) has recently attracted the attention of the scientific community because of its exceptional thermal conductivity and electrical insulating qualities. This work aims to provide a detailed analysis of the structure-property relationships inherent in FG, including both chemical and physical properties, and to explain the FG manufacturing process. Special attention should be paid to a thorough analysis of the thermodynamic conduction mechanism exhibited by FG, including the effects of corrugation size, fluorine coverage, and fluorine atom distribution on its thermal conductivity. The essay also examines in-depth the most current and cutting-edge developments addressing the utilisation of FG as a functional filler in composite-modified polyimide (PI) materials. Furthermore, it has been noted as a crucial component in answering the needs for possible applications by maximising thermal conductivity and mechanical qualities in FG/PI composites through particular FG structural engineering and increased FG-PI interaction. As a result, these elements serve as the main focus of ongoing research projects, highlighting important directions for development and investigation.

随着便携式和柔性电子产品的发展,对具有优异导热性和电绝缘性能的创新热管理材料的需求显著增加。氟化石墨烯(FG)由于其优异的导热性和电绝缘性能,最近引起了科学界的关注。这项工作的目的是提供FG固有的结构-性质关系的详细分析,包括化学和物理性质,并解释FG的制造过程。特别需要注意的是对FG所表现出的热力学传导机制进行深入的分析,包括波纹尺寸、氟覆盖范围和氟原子分布对其导热性的影响。本文还深入研究了在复合改性聚酰亚胺(PI)材料中使用FG作为功能填料的最新和最前沿的发展。此外,它被认为是通过特殊的FG结构工程和增加FG - PI相互作用来最大限度地提高FG/PI复合材料的导热性和机械质量,以满足潜在应用需求的关键组成部分。因此,这些元素成为正在进行的研究项目的主要焦点,突出了发展和研究的重要方向。
{"title":"Research progress in insulating and thermal conductivity of fluorinated graphene and its polyimide composites","authors":"Xin Wang,&nbsp;Shuyan Liu,&nbsp;Haoyu Han,&nbsp;Xiangyang Liu,&nbsp;Xu Wang","doi":"10.1049/nde2.12068","DOIUrl":"10.1049/nde2.12068","url":null,"abstract":"<p>The demand for innovative thermal management materials with superior thermal conductivity and electrical insulating properties has significantly increased with the development of portable and flexible electronic gadgets. Fluorinated graphene (FG) has recently attracted the attention of the scientific community because of its exceptional thermal conductivity and electrical insulating qualities. This work aims to provide a detailed analysis of the structure-property relationships inherent in FG, including both chemical and physical properties, and to explain the FG manufacturing process. Special attention should be paid to a thorough analysis of the thermodynamic conduction mechanism exhibited by FG, including the effects of corrugation size, fluorine coverage, and fluorine atom distribution on its thermal conductivity. The essay also examines in-depth the most current and cutting-edge developments addressing the utilisation of FG as a functional filler in composite-modified polyimide (PI) materials. Furthermore, it has been noted as a crucial component in answering the needs for possible applications by maximising thermal conductivity and mechanical qualities in FG/PI composites through particular FG structural engineering and increased FG-PI interaction. As a result, these elements serve as the main focus of ongoing research projects, highlighting important directions for development and investigation.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 2","pages":"47-58"},"PeriodicalIF":2.7,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Nanodielectrics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1