The world confronts significant energy issues, propelled by increasing energy consumption in buildings and escalating apprehensions regarding carbon emissions from the industry. Inefficient building practices exacerbate energy instability, especially in areas experiencing increased urbanization. Nearly-zero Energy Buildings (NZEBs) present an effective remedy to these challenges, markedly decreasing energy usage and carbon emissions while fostering sustainability.
This research thoroughly assesses the development of NZEBs from 1995 to 2024, emphasizing design concepts, technological innovations, and their impact on energy efficiency. An analysis of key impediments to implementation reveals high prices, limited technological feasibility, regulatory limitations, and insufficient stakeholder participation. The paper examines the revolutionary impact of artificial intelligence (AI) on enhancing NZEB performance, highlighting applications such as predictive energy analytics, intelligent HVAC systems, and real-time energy management. Focusing on Egypt within the larger MENA region, this article emphasizes the unique difficulties faced by the country due to its varied climates and different stages of regulatory development. The research delineates region-specific ways to surmount challenges, including the integration of sophisticated renewable energy systems, the optimization of building envelopes, and the promotion of multi-stakeholder engagement.
The results highlight the necessity for customized solutions and improved regional and worldwide cooperation to expedite the implementation of NZEBs, fostering a sustainable and resilient built environment. This analysis offers practical insights for researchers, policymakers, and industry stakeholders aiming to promote NZEB adoption in the MENA area and beyond.