首页 > 最新文献

Petroleum最新文献

英文 中文
Effect of monovalent/divalent ions and SiO2-based nanocomposite dosage on thermochemical stability of HPAM polymeric solutions 单价/二价离子和基于二氧化硅的纳米复合材料用量对 HPAM 聚合物溶液热化学稳定性的影响
IF 4.2 Q2 ENERGY & FUELS Pub Date : 2024-12-01 DOI: 10.1016/j.petlm.2024.07.001
Jhon F. Gallego , Lady J. Giraldo , Henderson I. Quintero , Hugo A. García , Karol Zapata , Samira Heidari , Masoud Riazi , Camilo A. Franco , Farid B. Cortés
This study evaluated the effect of monovalent and divalent ions and the dosage of a SiO2-based nanocomposite on the thermochemical stability of HPAM polymeric solution. Chelating amine–functionalized NPs (AFNPs) were used to enhance the thermochemical stability of HPAM based on capturing monovalent/divalent ions after seven days at 70°C. Different polymer solutions prepared with calcium chloride dihydrate (CaCl2·2H2O) at 2000 mg/L and sodium chloride (NaCl) at 10000 mg/L, and two different dosages of HPAM (1000 and 2000 mg/L) were assessed in the presence and absence of AFNPs at dosages of 200, 500 and 1000 mg/L. The nanocomposite was characterized by N2 adsorption, Fourier-transformed infrared spectrophotometry (FTIR), thermogravimetric analysis (TGA), dynamic Light Scattering (DLS), and Zeta potential (ZP). Stability tests over time confirmed the positive effect of nanocomposite on increasing the thermochemical stability of polymer solutions. Results revealed that adding 0, 200, and 500 mg/L of nanocomposite to the polymeric solution at 1000 mg/L of HPAM, 10000 mg/L of NaCl, and 2000 mg/L of CaCl2·2H2O led to the viscosity reductions of 73.5%, 18%, and less than 1% after 7 days (70°C), respectively. Nanocomposite at 200 mg/L reduces the polymer degradation in the presence of the two salts evaluated separately, i.e., 20% for 10000 mg/L of NaCl and 15% for 2000 mg/L of CaCl2·2H2O. The adsorption tests on AFNPs and SiO2 NPs concluded that AFNPs had higher adsorption of cations in comparison to SiO2 NPs and that greater adsorption of cations is related to a reduction in polymer degradation.
{"title":"Effect of monovalent/divalent ions and SiO2-based nanocomposite dosage on thermochemical stability of HPAM polymeric solutions","authors":"Jhon F. Gallego ,&nbsp;Lady J. Giraldo ,&nbsp;Henderson I. Quintero ,&nbsp;Hugo A. García ,&nbsp;Karol Zapata ,&nbsp;Samira Heidari ,&nbsp;Masoud Riazi ,&nbsp;Camilo A. Franco ,&nbsp;Farid B. Cortés","doi":"10.1016/j.petlm.2024.07.001","DOIUrl":"10.1016/j.petlm.2024.07.001","url":null,"abstract":"<div><div>This study evaluated the effect of monovalent and divalent ions and the dosage of a SiO<sub>2</sub>-based nanocomposite on the thermochemical stability of HPAM polymeric solution. Chelating amine–functionalized NPs (AFNPs) were used to enhance the thermochemical stability of HPAM based on capturing monovalent/divalent ions after seven days at 70°C. Different polymer solutions prepared with calcium chloride dihydrate (CaCl<sub>2</sub>·2H<sub>2</sub>O) at 2000 mg/L and sodium chloride (NaCl) at 10000 mg/L, and two different dosages of HPAM (1000 and 2000 mg/L) were assessed in the presence and absence of AFNPs at dosages of 200, 500 and 1000 mg/L. The nanocomposite was characterized by N<sub>2</sub> adsorption, Fourier-transformed infrared spectrophotometry (FTIR), thermogravimetric analysis (TGA), dynamic Light Scattering (DLS), and Zeta potential (ZP). Stability tests over time confirmed the positive effect of nanocomposite on increasing the thermochemical stability of polymer solutions. Results revealed that adding 0, 200, and 500 mg/L of nanocomposite to the polymeric solution at 1000 mg/L of HPAM, 10000 mg/L of NaCl, and 2000 mg/L of CaCl<sub>2</sub>·2H<sub>2</sub>O led to the viscosity reductions of 73.5%, 18%, and less than 1% after 7 days (70°C), respectively. Nanocomposite at 200 mg/L reduces the polymer degradation in the presence of the two salts evaluated separately, i.e., 20% for 10000 mg/L of NaCl and 15% for 2000 mg/L of CaCl<sub>2</sub>·2H<sub>2</sub>O. The adsorption tests on AFNPs and SiO<sub>2</sub> NPs concluded that AFNPs had higher adsorption of cations in comparison to SiO<sub>2</sub> NPs and that greater adsorption of cations is related to a reduction in polymer degradation.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 719-735"},"PeriodicalIF":4.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141712075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle-stabilized CO2 foam flooding for enhanced heavy oil recovery: A micro-optical analysis 纳米颗粒稳定的二氧化碳泡沫用于重油强化采收:微光学分析
IF 4.2 Q2 ENERGY & FUELS Pub Date : 2024-12-01 DOI: 10.1016/j.petlm.2024.06.002
Arifur Rahman , Ezeddin Shirif , Farshid Torabi
Surfactant flooding is a well-known chemical approach for enhancing oil recovery. Surfactant flooding has the disadvantage that it cannot withstand the harsh reservoir conditions. Improvements in oil recovery and release are made possible by the use of nanoparticles and surfactants and CO2 co-injection because they generate stable foam, reduce the interfacial tension (IFT) between water and oil, cause emulsions to spontaneously form, change the wettability of porous media, and change the characteristics of flow. In the current work, the simultaneous injection of SiO2, Al2O3 nanoparticles, anionic surfactant SDS, and CO2 in various scenarios were evaluated to determine the microscopic and macroscopic efficacy of heavy oil recovery. IFT (interfacial tension) was reduced by 44% when the nanoparticles and SDS (2000 ppm) were added, compared to a reduction of roughly 57% with SDS only. SDS-stabilized CO2 foam flooding, however, is unstable due to the adsorption of SDS in the rock surfaces as well as in heavy oil. To assess foam's potential to shift CO2 from the high permeability zone (the thief zone) into the low permeability zone, directly visualizing micromodel flooding was successfully executed (upswept oil-rich zone). Based on typical reservoir permeability fluctuations, the permeability contrast (defined as the ratio of high permeability to low permeability) for the micromodel flooding was selected. However, the results of the experiment demonstrated that by utilizing SDS and nanoparticles, minimal IFT was reached. The addition of nanoparticles to surfactant solutions, however, greatly boosted oil recovery, according to the findings of flooding studies. The ultimate oil recovery was generally improved more by the anionic surfactant (SDS) solution including nanoparticles than by the anionic surfactant (SDS) alone.
{"title":"Nanoparticle-stabilized CO2 foam flooding for enhanced heavy oil recovery: A micro-optical analysis","authors":"Arifur Rahman ,&nbsp;Ezeddin Shirif ,&nbsp;Farshid Torabi","doi":"10.1016/j.petlm.2024.06.002","DOIUrl":"10.1016/j.petlm.2024.06.002","url":null,"abstract":"<div><div>Surfactant flooding is a well-known chemical approach for enhancing oil recovery. Surfactant flooding has the disadvantage that it cannot withstand the harsh reservoir conditions. Improvements in oil recovery and release are made possible by the use of nanoparticles and surfactants and CO<sub>2</sub> co-injection because they generate stable foam, reduce the interfacial tension (IFT) between water and oil, cause emulsions to spontaneously form, change the wettability of porous media, and change the characteristics of flow. In the current work, the simultaneous injection of SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> nanoparticles, anionic surfactant SDS, and CO<sub>2</sub> in various scenarios were evaluated to determine the microscopic and macroscopic efficacy of heavy oil recovery. IFT (interfacial tension) was reduced by 44% when the nanoparticles and SDS (2000 ppm) were added, compared to a reduction of roughly 57% with SDS only. SDS-stabilized CO<sub>2</sub> foam flooding, however, is unstable due to the adsorption of SDS in the rock surfaces as well as in heavy oil. To assess foam's potential to shift CO<sub>2</sub> from the high permeability zone (the thief zone) into the low permeability zone, directly visualizing micromodel flooding was successfully executed (upswept oil-rich zone). Based on typical reservoir permeability fluctuations, the permeability contrast (defined as the ratio of high permeability to low permeability) for the micromodel flooding was selected. However, the results of the experiment demonstrated that by utilizing SDS and nanoparticles, minimal IFT was reached. The addition of nanoparticles to surfactant solutions, however, greatly boosted oil recovery, according to the findings of flooding studies. The ultimate oil recovery was generally improved more by the anionic surfactant (SDS) solution including nanoparticles than by the anionic surfactant (SDS) alone.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 696-704"},"PeriodicalIF":4.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141405929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphase flow challenges in drilling, completions, and injection: Part 1 钻井、完井和注浆过程中的多相流挑战:第一部分
IF 4.2 Q2 ENERGY & FUELS Pub Date : 2024-12-01 DOI: 10.1016/j.petlm.2024.05.001
C.E. Obi , A.R. Hasan , M.A. Rahman , D. Banerjee
This review addresses the diverse applications of multiphase flows, focusing on drilling, completions, and injection activities in the oil and gas industry. Identifying contemporary challenges and suggesting future research directions, it comprehensively reviews evolving applications in these multidisciplinary topics. In drilling, challenges such as gas kicks, cutting transport, and hole cleaning are explored. The application of immersion cooling technology in surface facilities for gas fields utilized in integrated bitcoin mining is also discussed. Nanotechnology, particularly the use of nanoparticles and nanofluids, shows promise in mitigating particulate flow issues and controlling macroscopic fluid behavior. Nanofluids find applications in drilling for formation strengthening and mitigating formation damage in completions as highlighted in this work, as well as in subsurface injection for enhanced oil recovery (EOR), waterflooding, reservoir mapping, and sequestration tracking. The review emphasizes the need for techno-economic analyses using multiphase flow models, particularly in scenarios involving fluid injection for energy storage. Addressing these multiphase flow challenges is crucial for the future of energy diversity and transition initiatives, offering benefits such as financial stability, resilience, sustainability, and reliable supply chains. The first part of this review presents the application of multiphase (typical gas, liquid, solid) flow models and technology for drilling, completion, and injection operations. While the second part reviews the applications of multiphase particulate (nanofluid) flow technology, the use of computational fluid dynamics (CFD), machine learning (ML), and system modeling for multiphase flow models in drilling, completions, and injection operations.
{"title":"Multiphase flow challenges in drilling, completions, and injection: Part 1","authors":"C.E. Obi ,&nbsp;A.R. Hasan ,&nbsp;M.A. Rahman ,&nbsp;D. Banerjee","doi":"10.1016/j.petlm.2024.05.001","DOIUrl":"10.1016/j.petlm.2024.05.001","url":null,"abstract":"<div><div>This review addresses the diverse applications of multiphase flows, focusing on drilling, completions, and injection activities in the oil and gas industry. Identifying contemporary challenges and suggesting future research directions, it comprehensively reviews evolving applications in these multidisciplinary topics. In drilling, challenges such as gas kicks, cutting transport, and hole cleaning are explored. The application of immersion cooling technology in surface facilities for gas fields utilized in integrated bitcoin mining is also discussed. Nanotechnology, particularly the use of nanoparticles and nanofluids, shows promise in mitigating particulate flow issues and controlling macroscopic fluid behavior. Nanofluids find applications in drilling for formation strengthening and mitigating formation damage in completions as highlighted in this work, as well as in subsurface injection for enhanced oil recovery (EOR), waterflooding, reservoir mapping, and sequestration tracking. The review emphasizes the need for techno-economic analyses using multiphase flow models, particularly in scenarios involving fluid injection for energy storage. Addressing these multiphase flow challenges is crucial for the future of energy diversity and transition initiatives, offering benefits such as financial stability, resilience, sustainability, and reliable supply chains. The first part of this review presents the application of multiphase (typical gas, liquid, solid) flow models and technology for drilling, completion, and injection operations. While the second part reviews the applications of multiphase particulate (nanofluid) flow technology, the use of computational fluid dynamics (CFD), machine learning (ML), and system modeling for multiphase flow models in drilling, completions, and injection operations.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 557-569"},"PeriodicalIF":4.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141026376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel phase field model of hydraulic fracture propagation in poroelastic media and numerical investigation of interaction between hydraulic fracture and natural fracture 孔隙弹性介质中水力裂缝扩展相场模型及水力裂缝与天然裂缝相互作用的数值研究
IF 4.2 Q2 ENERGY & FUELS Pub Date : 2024-12-01 DOI: 10.1016/j.petlm.2023.01.003
Sang Yu , Yi Song , Shouyi Wang , Yongjun Xiao , Junjie Hu , Yiting Wang , Liangping Yi , Zhaozhong Yang
A novel numerical model is established to study the hydraulic fracture extend in poroelastic media with natural fractures based on the phase field method. In this new model, the poroelasticity parameter (Biot's coefficient, Biot's modulus, and porosity) of rock is a function of the phase field value. Therefore, a new phase field evolution equation is derived. The finite element numerical discretization method and Newton–Raphson (NR) iterative method are adopted to establish the corresponding numerical solution iterative scheme. The stability and correctness of the model were verified by a series of numerical simulation cases. The fluid pressure within the fracture, the fracture length, and the fracture width calculated by the model that regards the poroelasticity parameter as a constant would be larger, longer, and smaller, respectively, compared with those calculated by the model established in this study. The effect of certain formation factors and engineering factors on the intersection behavior between hydraulic fracture and natural fracture is investigated based on the established model.
{"title":"Novel phase field model of hydraulic fracture propagation in poroelastic media and numerical investigation of interaction between hydraulic fracture and natural fracture","authors":"Sang Yu ,&nbsp;Yi Song ,&nbsp;Shouyi Wang ,&nbsp;Yongjun Xiao ,&nbsp;Junjie Hu ,&nbsp;Yiting Wang ,&nbsp;Liangping Yi ,&nbsp;Zhaozhong Yang","doi":"10.1016/j.petlm.2023.01.003","DOIUrl":"10.1016/j.petlm.2023.01.003","url":null,"abstract":"<div><div>A novel numerical model is established to study the hydraulic fracture extend in poroelastic media with natural fractures based on the phase field method. In this new model, the poroelasticity parameter (Biot's coefficient, Biot's modulus, and porosity) of rock is a function of the phase field value. Therefore, a new phase field evolution equation is derived. The finite element numerical discretization method and Newton–Raphson (NR) iterative method are adopted to establish the corresponding numerical solution iterative scheme. The stability and correctness of the model were verified by a series of numerical simulation cases. The fluid pressure within the fracture, the fracture length, and the fracture width calculated by the model that regards the poroelasticity parameter as a constant would be larger, longer, and smaller, respectively, compared with those calculated by the model established in this study. The effect of certain formation factors and engineering factors on the intersection behavior between hydraulic fracture and natural fracture is investigated based on the established model.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 672-695"},"PeriodicalIF":4.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88026927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of SARA composition of crudes purely from density and viscosity using machine learning based models 利用基于机器学习的模型纯粹从密度和粘度估算原油的 SARA 成分
IF 4.2 Q2 ENERGY & FUELS Pub Date : 2024-12-01 DOI: 10.1016/j.petlm.2024.06.001
Anand D. Kulkarni , Pratiksha D. Khurpade , Somnath Nandi
Accurate characterization of crude oils by determining the composition of saturates, aromatics, resins and asphaltenes (SARA) has always been a challenging task in the petroleum industry. However, conventional experimental methods for determination of SARA composition are labour intensive, time-consuming and expensive. In the present study, artificial neural network (ANN) models were developed to predict the SARA composition from easily measurable parameters like density and viscosity. A dataset of 216 crude oil samples covering wide range of geographical locations was compiled from various literature sources. The ANN models with one hidden layer and six neurons are trained, tested and validated using MATLAB neural network toolbox. Results obtained on analysis revealed reasonably good accuracy of prediction of SARA components except for aromatics. The performance of developed ANN models was compared with various correlations reported in literature and found to be better in terms of mean squared error and coefficient of determination. The developed models hence provide a cost-effective and time-efficient alternative to the conventional SARA characterization techniques.
{"title":"Estimation of SARA composition of crudes purely from density and viscosity using machine learning based models","authors":"Anand D. Kulkarni ,&nbsp;Pratiksha D. Khurpade ,&nbsp;Somnath Nandi","doi":"10.1016/j.petlm.2024.06.001","DOIUrl":"10.1016/j.petlm.2024.06.001","url":null,"abstract":"<div><div>Accurate characterization of crude oils by determining the composition of saturates, aromatics, resins and asphaltenes (SARA) has always been a challenging task in the petroleum industry. However, conventional experimental methods for determination of SARA composition are labour intensive, time-consuming and expensive. In the present study, artificial neural network (ANN) models were developed to predict the SARA composition from easily measurable parameters like density and viscosity. A dataset of 216 crude oil samples covering wide range of geographical locations was compiled from various literature sources. The ANN models with one hidden layer and six neurons are trained, tested and validated using MATLAB neural network toolbox. Results obtained on analysis revealed reasonably good accuracy of prediction of SARA components except for aromatics. The performance of developed ANN models was compared with various correlations reported in literature and found to be better in terms of mean squared error and coefficient of determination. The developed models hence provide a cost-effective and time-efficient alternative to the conventional SARA characterization techniques.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 620-630"},"PeriodicalIF":4.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing 水力压裂后超临界水处理对页岩基质孔隙结构改变和渗透性增强的研究
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2022.05.002
Yili Kang , Peisong Li , Wangkun Cao , Mingjun Chen , Lijun You , Jiang Liu , Zhehan Lai

Shale gas reservoirs are unconventional tight gas reservoirs, in which horizontal wells and hydraulic fracturing are required to achieve commercial development. The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery. However, large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation, will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation. Supercritical water (SCW) treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state (at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa). An experiment was conducted to simulate the reaction between shale and SCW, and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment. The experimental results show that the shale porosity and permeability increase by 213.43% and 2198.37%, respectively. The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment. The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals, acid-catalyzed decomposition of carbonate minerals and feldspar minerals, hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension. SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation, which will broaden the scope and scale of shale formation stimulation.

页岩气藏属于非常规致密气藏,需要通过水平井和水力压裂技术实现商业开发。水力压裂所形成的裂缝网络可以大量增加排水面积,从而提高页岩气的采收率。然而,大量压裂液难以流回地表,滞留在页岩层中,势必会对页岩层造成破坏,限制增产效果。水力压裂后的超临界水(SCW)处理是一种提高页岩气采收率的新方法,它针对特定地层采用适当的热处理方法,将保留的压裂液转化为超临界状态(温度超过 373.946°C,压力超过 22.064 兆帕)。实验模拟了页岩与超临界水的反应,并通过测量页岩孔隙度和渗透率对超临界水处理的响应,评估了超临界水处理提高页岩渗透率的能力。实验结果表明,页岩的孔隙率和渗透率分别增加了 213.43% 和 2198.37%。通过分析超临界水处理后孔隙结构和矿物成分的变化,确定了页岩基质孔隙结构的改变和渗透率的提高。影响孔隙结构和矿物组成的机制包括有机物和还原性矿物的氧化催化分解、碳酸盐矿物和长石矿物的酸催化分解、热液催化诱导裂缝扩展以及胶结弱化诱导裂缝扩展。超临界水处理通过减少有害物质对页岩地层的侵入,化害为利,这将扩大页岩地层激励的范围和规模。
{"title":"Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing","authors":"Yili Kang ,&nbsp;Peisong Li ,&nbsp;Wangkun Cao ,&nbsp;Mingjun Chen ,&nbsp;Lijun You ,&nbsp;Jiang Liu ,&nbsp;Zhehan Lai","doi":"10.1016/j.petlm.2022.05.002","DOIUrl":"10.1016/j.petlm.2022.05.002","url":null,"abstract":"<div><p>Shale gas reservoirs are unconventional tight gas reservoirs, in which horizontal wells and hydraulic fracturing are required to achieve commercial development. The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery. However, large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation, will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation. Supercritical water (SCW) treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state (at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa). An experiment was conducted to simulate the reaction between shale and SCW, and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment. The experimental results show that the shale porosity and permeability increase by 213.43% and 2198.37%, respectively. The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment. The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals, acid-catalyzed decomposition of carbonate minerals and feldspar minerals, hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension. SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation, which will broaden the scope and scale of shale formation stimulation.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 265-274"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656122000451/pdfft?md5=c75b04cced6f21452f74642907fd950b&pid=1-s2.0-S2405656122000451-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91095546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid machine learning approach based study of production forecasting and factors influencing the multiphase flow through surface chokes 基于混合机器学习方法的生产预测和多相流通过表面扼流圈的影响因素研究
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.06.001
Waquar Kaleem , Saurabh Tewari , Mrigya Fogat , Dmitriy A. Martyushev

Surface chokes are widely utilized equipment installed on wellheads to control hydrocarbon flow rates. Several correlations have been suggested to model the multiphase flow of oil and gas via surface chokes. However, substantial errors have been reported in empirical fitting models and correlations to estimate hydrocarbon flow because of the reservoir's heterogeneity, anisotropism, variance in reservoir fluid characteristics at diverse subsurface depths, which introduces complexity in production data. Therefore, the estimation of daily oil and gas production rates is still challenging for the petroleum industry. Recently, hybrid data-driven techniques have been reported to be effective for estimation problems in various aspects of the petroleum domain. This paper investigates hybrid ensemble data-driven approaches to forecast multiphase flow rates through the surface choke (viz. stacked generalization and voting architectures), followed by an assessment of the impact of input production control variables. Otherwise, machine learning models are also trained and tested individually on the production data of hydrocarbon wells located in North Sea. Feature engineering has been properly applied to select the most suitable contributing control variables for daily production rate forecasting. This study provides a chronological explanation of the data analytics required for the interpretation of production data. The test results reveal the estimation performance of the stacked generalization architecture has outperformed other significant paradigms considered for production forecasting.

地面扼流圈是安装在井口的广泛使用的设备,用于控制碳氢化合物的流速。已经提出了几种相关方法来模拟油气通过表层扼流圈的多相流动。然而,由于储层的异质性、各向异性、不同地下深度储层流体特性的差异,以及生产数据的复杂性,估算碳氢化合物流量的经验拟合模型和相关系数存在很大误差。因此,对石油工业而言,估算石油和天然气的日产量仍是一项挑战。最近,有报道称混合数据驱动技术可有效解决石油领域各方面的估算问题。本文研究了混合集合数据驱动方法(即堆叠泛化和投票架构)来预测通过地表卡口的多相流量,然后评估了输入生产控制变量的影响。此外,还在北海碳氢化合物井的生产数据上对机器学习模型进行了单独训练和测试。特征工程学已被恰当地应用于为日产量预测选择最合适的贡献控制变量。本研究按时间顺序解释了解释生产数据所需的数据分析。测试结果表明,堆叠泛化架构的估算性能优于用于产量预测的其他重要范例。
{"title":"A hybrid machine learning approach based study of production forecasting and factors influencing the multiphase flow through surface chokes","authors":"Waquar Kaleem ,&nbsp;Saurabh Tewari ,&nbsp;Mrigya Fogat ,&nbsp;Dmitriy A. Martyushev","doi":"10.1016/j.petlm.2023.06.001","DOIUrl":"10.1016/j.petlm.2023.06.001","url":null,"abstract":"<div><p>Surface chokes are widely utilized equipment installed on wellheads to control hydrocarbon flow rates. Several correlations have been suggested to model the multiphase flow of oil and gas via surface chokes. However, substantial errors have been reported in empirical fitting models and correlations to estimate hydrocarbon flow because of the reservoir's heterogeneity, anisotropism, variance in reservoir fluid characteristics at diverse subsurface depths, which introduces complexity in production data. Therefore, the estimation of daily oil and gas production rates is still challenging for the petroleum industry. Recently, hybrid data-driven techniques have been reported to be effective for estimation problems in various aspects of the petroleum domain. This paper investigates hybrid ensemble data-driven approaches to forecast multiphase flow rates through the surface choke (viz. stacked generalization and voting architectures), followed by an assessment of the impact of input production control variables. Otherwise, machine learning models are also trained and tested individually on the production data of hydrocarbon wells located in North Sea. Feature engineering has been properly applied to select the most suitable contributing control variables for daily production rate forecasting. This study provides a chronological explanation of the data analytics required for the interpretation of production data. The test results reveal the estimation performance of the stacked generalization architecture has outperformed other significant paradigms considered for production forecasting.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 354-371"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000366/pdfft?md5=bfbc1ac106deb5949c0fb09de0b85ec9&pid=1-s2.0-S2405656123000366-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88698110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leakage and diffusion characteristics of underground hydrogen pipeline 地下氢气管道的泄漏和扩散特性
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.06.002
Wenkang Zhang, Guanghui Zhao

Soil corrosion and hydrogen embrittlement are the main factors of hydrogen pipeline failure. The gas escapes, diffuses and accumulates in the soil and enters the atmosphere when leak occurs. The mechanism of gas diffusion in buried pipelines is very complicated. Mastering the evolution law of hydrogen leakage diffusion is conducive to quickly locating the leakage point and reducing the loss. The leakage model of the underground hydrogen pipeline is established in this paper. The effect of leakage hole, soil type, pipeline pressure, pipeline diameter on hydrogen leakage diffusion were investigated. The results show that when the hydrogen pipeline leaks, the hydrogen concentration increases with the increase of leakage time, showing a symmetrical distribution trend. With the pipeline pressure increase, hydrogen leakage speed is accelerated, and longitudinal diffusion gradually becomes the dominant direction. As the leakage diameter increases, hydrogen leakage per unit of time increases sharply. Hydrogen diffuses more easily in sandy soil, and its diffusion speed, concentration, and range are higher than that in clay soil. The research content provides a reference and basis for the detection and evaluation of buried hydrogen pipeline leakage.

土壤腐蚀和氢脆是氢气管道失效的主要因素。发生泄漏时,气体会在土壤中逸出、扩散和积聚,并进入大气。气体在埋地管道中的扩散机理非常复杂。掌握氢气泄漏扩散的演变规律,有利于快速定位泄漏点,减少损失。本文建立了地下氢气管道的泄漏模型。研究了泄漏孔、土壤类型、管道压力、管道直径对氢气泄漏扩散的影响。结果表明,氢气管道泄漏时,氢气浓度随泄漏时间的增加而增加,呈对称分布趋势。随着管道压力的增加,氢气泄漏速度加快,纵向扩散逐渐成为主导方向。随着泄漏直径的增大,单位时间内的氢气泄漏量急剧增加。氢气在砂土中更容易扩散,其扩散速度、浓度和范围均高于粘土。研究内容为埋地氢气管道泄漏的检测和评估提供了参考和依据。
{"title":"Leakage and diffusion characteristics of underground hydrogen pipeline","authors":"Wenkang Zhang,&nbsp;Guanghui Zhao","doi":"10.1016/j.petlm.2023.06.002","DOIUrl":"10.1016/j.petlm.2023.06.002","url":null,"abstract":"<div><p>Soil corrosion and hydrogen embrittlement are the main factors of hydrogen pipeline failure. The gas escapes, diffuses and accumulates in the soil and enters the atmosphere when leak occurs. The mechanism of gas diffusion in buried pipelines is very complicated. Mastering the evolution law of hydrogen leakage diffusion is conducive to quickly locating the leakage point and reducing the loss. The leakage model of the underground hydrogen pipeline is established in this paper. The effect of leakage hole, soil type, pipeline pressure, pipeline diameter on hydrogen leakage diffusion were investigated. The results show that when the hydrogen pipeline leaks, the hydrogen concentration increases with the increase of leakage time, showing a symmetrical distribution trend. With the pipeline pressure increase, hydrogen leakage speed is accelerated, and longitudinal diffusion gradually becomes the dominant direction. As the leakage diameter increases, hydrogen leakage per unit of time increases sharply. Hydrogen diffuses more easily in sandy soil, and its diffusion speed, concentration, and range are higher than that in clay soil. The research content provides a reference and basis for the detection and evaluation of buried hydrogen pipeline leakage.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 319-325"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000378/pdfft?md5=8fdd518068c30907b6a649155aae6f9b&pid=1-s2.0-S2405656123000378-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85133866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asphaltene onset pressure measurement and calculation techniques: A review 沥青质起始压力测量和计算技术:综述
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.04.001
Sherif Fakher, Amr Yousef, Aseel Al-Sakkaf, Shams Eldakar

Asphaltene precipitation can result in several production, operational, and transportation problems during oil recovery. If asphaltene precipitates and deposits, it can reduce reservoir permeability, damage wellbore equipment, and plug the pipelines. It is therefore extremely important to evaluate the conditions at which asphaltene precipitation occurs; this is referred to as the asphaltene onset pressure. Asphaltene onset pressure has been measured using many different experimental techniques. There have also been many attempts along the years to predict asphaltene onset pressure using mathematical correlations and models. This research provides an up-to-date comprehensive review of the methods by which asphaltene onset pressure can be measured using laboratory experiments and mathematical models. The research explains the main mechanisms of all the laboratory experiments to measure asphaltene onset pressure under static conditions and how to conduct them and highlights the advantages and limitations of each method. The research also provides a summary of the commonly used mathematical models to quantify asphaltene onset pressure directly and indirectly.

在采油过程中,沥青质沉淀会导致一些生产、操作和运输问题。如果沥青质析出并沉积,会降低储油层的渗透性,损坏井筒设备,堵塞管道。因此,评估沥青质析出的条件极为重要,这被称为沥青质起始压力。沥青质析出压力的测量采用了多种不同的实验技术。多年来,也有很多人尝试使用数学关联和模型来预测沥青质析出压力。本研究全面回顾了利用实验室实验和数学模型测量沥青质起始压力的最新方法。研究解释了在静态条件下测量沥青质起始压力的所有实验室实验的主要机制以及如何进行这些实验,并强调了每种方法的优势和局限性。研究还总结了直接和间接量化沥青质起始压力的常用数学模型。
{"title":"Asphaltene onset pressure measurement and calculation techniques: A review","authors":"Sherif Fakher,&nbsp;Amr Yousef,&nbsp;Aseel Al-Sakkaf,&nbsp;Shams Eldakar","doi":"10.1016/j.petlm.2023.04.001","DOIUrl":"10.1016/j.petlm.2023.04.001","url":null,"abstract":"<div><p>Asphaltene precipitation can result in several production, operational, and transportation problems during oil recovery. If asphaltene precipitates and deposits, it can reduce reservoir permeability, damage wellbore equipment, and plug the pipelines. It is therefore extremely important to evaluate the conditions at which asphaltene precipitation occurs; this is referred to as the asphaltene onset pressure. Asphaltene onset pressure has been measured using many different experimental techniques. There have also been many attempts along the years to predict asphaltene onset pressure using mathematical correlations and models. This research provides an up-to-date comprehensive review of the methods by which asphaltene onset pressure can be measured using laboratory experiments and mathematical models. The research explains the main mechanisms of all the laboratory experiments to measure asphaltene onset pressure under static conditions and how to conduct them and highlights the advantages and limitations of each method. The research also provides a summary of the commonly used mathematical models to quantify asphaltene onset pressure directly and indirectly.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 191-201"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000202/pdfft?md5=0797f321455963448035d12a584912b3&pid=1-s2.0-S2405656123000202-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87610133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the effect of surfactant assisted low-salinity water flooding on clay-rich sandstones 研究表面活性剂辅助低盐度水浸对富粘土砂岩的影响
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.09.006
Saeed Khezerloo-ye Aghdam , Alireza Kazemi , Mohammad Ahmadi

Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding. In this study, the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.

First, the impact of surfactants on interparticle forces in fine-matrix, fine-fine, and oil-matrix systems was modeled. The results showed that both CTAB (cetyltrimethyl ammonium bromide) and QS (quillaja saponin) cause EDL compaction, weakening the repulsive forces. However, SDS (sodium dodecyl sulfate) and TX (triton X-100) do not affect the EDL. Next, the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated. All surfactants reduced IFT due to the surface excessive concentration mechanism. The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation, they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil, respectively.

Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks, which resulted in increased oil recovery. However, the mechanisms leading to enhanced oil recovery variedby surfactant type. CTAB increased recovery by 10% through IFT reduction and wettability alteration, while SDS and TX increased recovery by 12% and 9%, respectively, through wettability alteration and extreme fine migration. In contrast, partial fine migration in the QS flooding experiment reached a recovery increase of 18%. Permeability trends through experiments were also recorded. During CTAB injection, permeability did not reduce, while QS aqueous solution reduced rock permeability to 5 mD. SDS and TX reduced the magnitude of permeability to 2 mD.

In conclusion, this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces, reducing IFT, and changing wettability. The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir.

砂岩储层通常含有粘土颗粒,在低盐度水淹时会造成破坏并降低渗透率。在这项研究中,研究了表面活性剂对富含粘土的砂岩中细粒迁移的影响及其对采油的影响。首先,模拟了表面活性剂对细粒-基质、细粒-细粒和油-基质体系中颗粒间作用力的影响。结果表明,CTAB(十六烷基三甲基溴化铵)和 QS(诃子皂苷)都会导致 EDL 压缩,削弱排斥力。然而,SDS(十二烷基硫酸钠)和 TX(triton X-100)对 EDL 没有影响。接下来,实验研究了表面活性剂对减少 IFT 和改变润湿性的影响。由于表面过度浓缩机制,所有表面活性剂都降低了 IFT。润湿性改变实验表明,虽然 QS 和 CTAB 可压实油和基质颗粒周围的 EDL,从而增强吸引力,但它们都分别通过吸附基质和原油中的羧基来改变润湿性。然而,表面活性剂类型不同,导致采油率提高的机制也不同。CTAB 通过降低 IFT 和改变润湿性使采收率提高了 10%,而 SDS 和 TX 则通过改变润湿性和极度细微迁移使采收率分别提高了 12% 和 9%。相比之下,QS 淹没实验中的部分细微迁移使回收率提高了 18%。实验还记录了渗透率的变化趋势。在注入 CTAB 时,渗透率没有降低,而 QS 水溶液则将岩石渗透率降低到 5 mD。总之,这项研究表明,表面活性剂可以通过改变颗粒间作用力、降低 IFT 和改变润湿性来有效提高富粘砂岩的采油率。研究结果表明,应谨慎选择所使用的表面活性剂类型,以便在不影响储层渗透性的情况下实现理想的提高采收率效果。
{"title":"Studying the effect of surfactant assisted low-salinity water flooding on clay-rich sandstones","authors":"Saeed Khezerloo-ye Aghdam ,&nbsp;Alireza Kazemi ,&nbsp;Mohammad Ahmadi","doi":"10.1016/j.petlm.2023.09.006","DOIUrl":"10.1016/j.petlm.2023.09.006","url":null,"abstract":"<div><p>Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding. In this study, the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.</p><p>First, the impact of surfactants on interparticle forces in fine-matrix, fine-fine, and oil-matrix systems was modeled. The results showed that both CTAB (cetyltrimethyl ammonium bromide) and QS (quillaja saponin) cause EDL compaction, weakening the repulsive forces. However, SDS (sodium dodecyl sulfate) and TX (triton X-100) do not affect the EDL. Next, the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated. All surfactants reduced IFT due to the surface excessive concentration mechanism. The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation, they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil, respectively.</p><p>Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks, which resulted in increased oil recovery. However, the mechanisms leading to enhanced oil recovery variedby surfactant type. CTAB increased recovery by 10% through IFT reduction and wettability alteration, while SDS and TX increased recovery by 12% and 9%, respectively, through wettability alteration and extreme fine migration. In contrast, partial fine migration in the QS flooding experiment reached a recovery increase of 18%. Permeability trends through experiments were also recorded. During CTAB injection, permeability did not reduce, while QS aqueous solution reduced rock permeability to 5 mD. SDS and TX reduced the magnitude of permeability to 2 mD.</p><p>In conclusion, this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces, reducing IFT, and changing wettability. The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 306-318"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000640/pdfft?md5=db1c947c4dd6b393aad4cbc74d35ac13&pid=1-s2.0-S2405656123000640-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135389456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Petroleum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1