首页 > 最新文献

Petroleum最新文献

英文 中文
Fracturing-flooding technology for low permeability reservoirs: A review 低渗透储层的压裂-注水技术:综述
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.11.004
Nianyin Li , Shijie Zhu , Yue Li , Jingrui Zhao , Bo Long , Fei Chen , Erzhen Wang , Wentao Feng , Yanan Hu , Shubei Wang , Chen Jiang

The development of low-permeability oil and gas resources presents a significant challenge to traditional development methods. To address the problem of “no injection and no production” in low -permeability reservoirs, a novel fracture-injection-production integration technology named fracturing-flooding has been proposed by oilfield sites. This technology combines the advantages of conventional fracturing, water flooding, and chemical flooding, resulting in improved reservoir physical properties, increased injection, replenished energy, and increased oil displacement efficiency. The technology is especially suitable for low-permeability reservoirs that suffer from lack of energy, and strong heterogeneity. Fracturing-flooding technology has shown significant results and broad development prospects in some oilfields in China. This paper analyzes the development status of fracturing-flooding technology from its development history, technical mechanism, technical characteristics, process flow, types of fracturing and oil displacement fluids, and field applications. Physical and numerical simulations of fracturing-flooding technology are also summarized. The results suggest that fracturing-flooding technology is more effective than conventional fracturing, water flooding, and chemical flooding in stimulating low-permeability tight reservoirs and improving oil recovery. Moreover, it has a high input-output ratio and can be utilized for future reservoir stimulation and transformation.

低渗透油气资源的开发对传统开发方法提出了巨大挑战。为了解决低渗透油气藏 "不注不采 "的问题,油田现场提出了一种名为 "压裂-水淹 "的新型压裂-注采一体化技术。该技术结合了常规压裂、水淹和化学水淹的优点,可改善储层物性,提高注采量,补充能量,提高排油效率。该技术尤其适用于缺乏能量和异质性较强的低渗透油藏。压裂-注水技术在我国一些油田取得了显著成效,发展前景广阔。本文从压裂-注水技术的发展历程、技术机理、技术特点、工艺流程、压裂液和驱油液类型、现场应用等方面分析了压裂-注水技术的发展现状。同时还对压裂-注水技术的物理和数值模拟进行了总结。研究结果表明,在刺激低渗透致密油藏和提高石油采收率方面,压裂-注水技术比常规压裂、水淹和化学水淹技术更有效。此外,它还具有较高的投入产出比,可用于未来的储层刺激和改造。
{"title":"Fracturing-flooding technology for low permeability reservoirs: A review","authors":"Nianyin Li ,&nbsp;Shijie Zhu ,&nbsp;Yue Li ,&nbsp;Jingrui Zhao ,&nbsp;Bo Long ,&nbsp;Fei Chen ,&nbsp;Erzhen Wang ,&nbsp;Wentao Feng ,&nbsp;Yanan Hu ,&nbsp;Shubei Wang ,&nbsp;Chen Jiang","doi":"10.1016/j.petlm.2023.11.004","DOIUrl":"10.1016/j.petlm.2023.11.004","url":null,"abstract":"<div><p>The development of low-permeability oil and gas resources presents a significant challenge to traditional development methods. To address the problem of “no injection and no production” in low -permeability reservoirs, a novel fracture-injection-production integration technology named fracturing-flooding has been proposed by oilfield sites. This technology combines the advantages of conventional fracturing, water flooding, and chemical flooding, resulting in improved reservoir physical properties, increased injection, replenished energy, and increased oil displacement efficiency. The technology is especially suitable for low-permeability reservoirs that suffer from lack of energy, and strong heterogeneity. Fracturing-flooding technology has shown significant results and broad development prospects in some oilfields in China. This paper analyzes the development status of fracturing-flooding technology from its development history, technical mechanism, technical characteristics, process flow, types of fracturing and oil displacement fluids, and field applications. Physical and numerical simulations of fracturing-flooding technology are also summarized. The results suggest that fracturing-flooding technology is more effective than conventional fracturing, water flooding, and chemical flooding in stimulating low-permeability tight reservoirs and improving oil recovery. Moreover, it has a high input-output ratio and can be utilized for future reservoir stimulation and transformation.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 202-215"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000755/pdfft?md5=b6e9dc70d1a6c12131e85a35717b3940&pid=1-s2.0-S2405656123000755-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A thermo-mechanical simulation for the stability analysis of a horizontal wellbore in underground coal gasification 地下煤炭气化过程中水平井筒稳定性分析的热力学模拟
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.11.003
Mohammadreza Shahbazi , Mehdi Najafi , Mohammad Fatehi Marji , Ramin Rafiee

The stability analysis of horizontal wells is essential for a successful underground coal gasification (UCG) operation. In this paper, a new 3D coupled thermo-mechanical numerical modeling is proposed for analyzing the stability of UCG horizontal wells. In this model, the effect of front abutment stresses, syngas pressure, syngas temperature and thermal stresses is considered to predict the mud weight window and drilling mud pressure during UCG process. The results show that the roof caving in UCG panel has a greatest impact on the stability of horizontal well. Moreover, when the time of coal gasification is increased, the well convergence increases and for more stability it is necessary to increase the drilling mud pressure. This research was carried out on the M2 coal seam in Mazino coal deposit (Iran). The results showed that the mud weight window for horizontal well drilling is between 0 and 33 MPa. The appropriate stress for the maximum stability of the horizontal well, taking all the thermal and mechanical parameters into account, is 28 MPa. The suggested numerical method is a comprehensive and consistent way for analyzing the stability of horizontal wells in UCG sites.

水平井的稳定性分析对于地下煤气化(UCG)的成功运行至关重要。本文提出了一种新的三维热力-机械耦合数值模型,用于分析 UCG 水平井的稳定性。在该模型中,考虑了前支墩应力、合成气压力、合成气温度和热应力的影响,以预测 UCG 过程中的泥浆重量窗口和钻井泥浆压力。结果表明,UCG 面板顶板塌陷对水平井稳定性的影响最大。此外,当煤炭气化时间增加时,井的收敛性增加,为了提高稳定性,有必要增加钻井泥浆压力。这项研究是在伊朗 Mazino 煤矿的 M2 煤层进行的。结果表明,水平井钻井的泥浆重量窗口在 0 至 33 兆帕之间。考虑到所有热参数和机械参数,水平井最大稳定性的适当应力为 28 兆帕。所建议的数值方法是分析铀转化天然气(UCG)场地水平井稳定性的一种全面、一致的方法。
{"title":"A thermo-mechanical simulation for the stability analysis of a horizontal wellbore in underground coal gasification","authors":"Mohammadreza Shahbazi ,&nbsp;Mehdi Najafi ,&nbsp;Mohammad Fatehi Marji ,&nbsp;Ramin Rafiee","doi":"10.1016/j.petlm.2023.11.003","DOIUrl":"10.1016/j.petlm.2023.11.003","url":null,"abstract":"<div><p>The stability analysis of horizontal wells is essential for a successful underground coal gasification (UCG) operation. In this paper, a new 3D coupled thermo-mechanical numerical modeling is proposed for analyzing the stability of UCG horizontal wells. In this model, the effect of front abutment stresses, syngas pressure, syngas temperature and thermal stresses is considered to predict the mud weight window and drilling mud pressure during UCG process. The results show that the roof caving in UCG panel has a greatest impact on the stability of horizontal well. Moreover, when the time of coal gasification is increased, the well convergence increases and for more stability it is necessary to increase the drilling mud pressure. This research was carried out on the M2 coal seam in Mazino coal deposit (Iran). The results showed that the mud weight window for horizontal well drilling is between 0 and 33 MPa. The appropriate stress for the maximum stability of the horizontal well, taking all the thermal and mechanical parameters into account, is 28 MPa. The suggested numerical method is a comprehensive and consistent way for analyzing the stability of horizontal wells in UCG sites.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 243-253"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000743/pdfft?md5=0de6c0fa8601ac5f32f18613d90f87c2&pid=1-s2.0-S2405656123000743-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139296314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky–Mendymsky horizon under hydrothermal conditions 塞米卢克斯基-门迪姆斯基地层碳酸盐沉积有机物在热液条件下的转化研究
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.07.001
S.M. Petrov , A.I. Lakhova , E.G. Moiseeva , A.G. Safiulina
<div><p>The paper presents the results of studies on the transformation of the organic matter of siliceous-clayey carbonate rocks of the Semiluksko–Mendymsky horizon of the Romashkino oil field in a hydrothermal fluid for an hour (with a water-to-rock ratio of 33) at 340°C and 380°C and pressures of 17 and 20 MPa. As a result of hydrothermal treatment, at 340°C and 17 MPa, based on nitrogen porosimetry and electron microscopy data, transformations of rock-forming minerals in the rock are observed. They lead to an increase in the volume and average diameter of mesopores in it and the formation of micropores, as well, which improve its filtration properties. At the same time, the amount of kerogen in the composition of the organic matter decreases and the yield of the petroleum hydrocarbon extract increases, in which, according to the SARA analysis, the content of asphaltenes increases and the content of resins, aromatic and saturated hydrocarbons decreases. In the composition of aroatic hydrocarbons, the proportion of alkyltrimethylbenzenes and dibenzothiophenes increases, phenanthrene homologues appear, and in the composition of saturated hydrocarbons, the amount of iso-structure alkanes decreases relative to the content of linear alkanes. Raising the temperature and pressure of the hydrothermal fluid to 380°С and 20 MPa increases the degree of kerogen conversion from 12.4% to 23.6%. At the same time, changes occurring in the component composition of petroleum hydrocarbon extracts remains similar to the experiments carried out at 340°C and 17 MPa; the content of naphthalenes decreases, the content of dibenzothiophenes increases and C<sub>11</sub>–C<sub>17</sub>, C<sub>19</sub>–C<sub>22</sub> alkyltrimethylbenzenes appear. According to IR spectroscopy, with increasing temperature and pressure of the hydrothermal fluid the intensity of the absorption bands of the aromatic ring, aliphatic fragments, and oxygen-containing groups increases in resins; the structural-group composition of asphaltenes changes little: aromaticity and the content of condensed structures slightly increase. The revealed distinctive features in the composition of organic matter after hydrothermal impact on siliceous-clayey carbonate rocks confirm the concept of staged destruction of kerogen, when large structural heteroatomic blocks (asphaltenes) are split off at the initial stages. Changes occurring in the composition of petroleum hydrocarbon extracts indicate their involvement in the process of hydrothermal transformation of organic matter of siliceous-clayey carmbonate rocks with the predominant reactions of dehydrogenation of naphthenic compounds and oxidative polycondensation of aromatic structures. The data of electron microscopy and nitrogen porosimetry of rocks after hydrothermal exposure at 380°С and 20 MPa indicate a deterioration in their reservoir properties. The most optimal thermobaric conditions of the hydrothermal fluid for the generation of petroleum hydrocarb
本文介绍了罗曼什金诺油田塞米卢克斯科-门迪姆斯基地层硅质粘土质碳酸盐岩有机物在 340°C 和 380°C、17 和 20 兆帕压力下的热液(水岩比为 33)中转化一小时的研究结果。根据氮气孔测定法和电子显微镜数据,在 340°C 和 17 兆帕压力下进行热液处理后,岩石中的成岩矿物发生了转变。这些变化导致中孔的体积和平均直径增大,并形成了微孔,从而改善了岩石的过滤性能。同时,有机物成分中的角质含量减少,石油烃提取物的产量增加,根据 SARA 分析,其中沥青质含量增加,树脂、芳香烃和饱和烃含量减少。在芳香烃的成分中,烷基三甲基苯和二苯并噻吩的比例增加,出现了菲同系物,而在饱和烃的成分中,等结构烷烃的含量相对于线性烷烃的含量有所减少。将热液的温度和压力提高到 380°С 和 20 兆帕,可将角质转化率从 12.4% 提高到 23.6%。同时,石油烃萃取物成分的变化与在 340°C 和 17 兆帕下进行的实验相似;萘的含量减少,二苯并噻吩的含量增加,并出现了 C11-C17、C19-C22 烷基三甲基苯。红外光谱显示,随着热液温度和压力的升高,树脂中芳香环、脂肪族片段和含氧基团的吸收带强度增加;沥青质的结构基团组成变化不大:芳香度和缩合结构的含量略有增加。热液冲击硅质粘土质碳酸盐岩后,有机物组成的显著特点证实了角质层分阶段破坏的概念,即大型结构异原子块(沥青质)在最初阶段被分裂。石油烃萃取物成分的变化表明,它们参与了硅质粘土质碳酸盐岩有机物的热液转化过程,主要反应为环烷化合物的脱氢和芳香结构的氧化缩聚。在 380°С 和 20 兆帕下对岩石进行热液曝晒后,电子显微镜和氮孔测定法的数据表明,岩石的储层特性有所下降。从罗马什基诺油田塞米卢克斯科-门迪姆斯基地层硅质粘土质碳酸盐矿床的角质中生成石油烃的最理想热液热压条件是 340°С 和 17 兆帕;这意味着难以回收的重烃资源和成熟的原地转化催化方法。
{"title":"Investigation of the transformation of organic matter of carbonate deposits of the Semiluksky–Mendymsky horizon under hydrothermal conditions","authors":"S.M. Petrov ,&nbsp;A.I. Lakhova ,&nbsp;E.G. Moiseeva ,&nbsp;A.G. Safiulina","doi":"10.1016/j.petlm.2023.07.001","DOIUrl":"10.1016/j.petlm.2023.07.001","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The paper presents the results of studies on the transformation of the organic matter of siliceous-clayey carbonate rocks of the Semiluksko–Mendymsky horizon of the Romashkino oil field in a hydrothermal fluid for an hour (with a water-to-rock ratio of 33) at 340°C and 380°C and pressures of 17 and 20 MPa. As a result of hydrothermal treatment, at 340°C and 17 MPa, based on nitrogen porosimetry and electron microscopy data, transformations of rock-forming minerals in the rock are observed. They lead to an increase in the volume and average diameter of mesopores in it and the formation of micropores, as well, which improve its filtration properties. At the same time, the amount of kerogen in the composition of the organic matter decreases and the yield of the petroleum hydrocarbon extract increases, in which, according to the SARA analysis, the content of asphaltenes increases and the content of resins, aromatic and saturated hydrocarbons decreases. In the composition of aroatic hydrocarbons, the proportion of alkyltrimethylbenzenes and dibenzothiophenes increases, phenanthrene homologues appear, and in the composition of saturated hydrocarbons, the amount of iso-structure alkanes decreases relative to the content of linear alkanes. Raising the temperature and pressure of the hydrothermal fluid to 380°С and 20 MPa increases the degree of kerogen conversion from 12.4% to 23.6%. At the same time, changes occurring in the component composition of petroleum hydrocarbon extracts remains similar to the experiments carried out at 340°C and 17 MPa; the content of naphthalenes decreases, the content of dibenzothiophenes increases and C&lt;sub&gt;11&lt;/sub&gt;–C&lt;sub&gt;17&lt;/sub&gt;, C&lt;sub&gt;19&lt;/sub&gt;–C&lt;sub&gt;22&lt;/sub&gt; alkyltrimethylbenzenes appear. According to IR spectroscopy, with increasing temperature and pressure of the hydrothermal fluid the intensity of the absorption bands of the aromatic ring, aliphatic fragments, and oxygen-containing groups increases in resins; the structural-group composition of asphaltenes changes little: aromaticity and the content of condensed structures slightly increase. The revealed distinctive features in the composition of organic matter after hydrothermal impact on siliceous-clayey carbonate rocks confirm the concept of staged destruction of kerogen, when large structural heteroatomic blocks (asphaltenes) are split off at the initial stages. Changes occurring in the composition of petroleum hydrocarbon extracts indicate their involvement in the process of hydrothermal transformation of organic matter of siliceous-clayey carmbonate rocks with the predominant reactions of dehydrogenation of naphthenic compounds and oxidative polycondensation of aromatic structures. The data of electron microscopy and nitrogen porosimetry of rocks after hydrothermal exposure at 380°С and 20 MPa indicate a deterioration in their reservoir properties. The most optimal thermobaric conditions of the hydrothermal fluid for the generation of petroleum hydrocarb","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 216-223"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000433/pdfft?md5=19a48947e03d9129a1ee0232ffcfa150&pid=1-s2.0-S2405656123000433-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86296810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sedimentary characteristics and lithofacies paleogeography of the Cambrian in Sichuan basin, Southwest China 中国西南四川盆地寒武纪沉积特征和岩相古地理
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2022.02.003
Lin Xie , Xuefei Yang , Yanhong Zhang , Yan Xu , Deming Zeng , Ruifeng Tang , Yao Du , Xingzhi Wang

Cambrian in Sichuan basin developed thick black shale, varies carbonate and clastic rock, which deposited in different sedimentary environment. Sichuan basin in the upper Yangtze platform contained a record of environment during the Cambrian. Detail facies analyses of Cambrian enable us to discuss the sedimentary environment and palaeogeographic setting. Sedimentation commenced in the Early Cambrian with the deposition of shelf facies (Qiongzhusi Formation and Canglangpu Formation). At this stage, thick shale and clastic rock deposited in Sichuan basin. At the end of the Early Cambrian, a carbonate platform developed in upper Yangtze platform, and Sichuan basin was located in restricted platform (Longwangmiao Formation). In the Middle Cambrian, tidal flat and restricted platform developed in Sichuan basin (Douposi Formation), because of continuous regression. During the Late Cambrian, Sichuan basin was located in carbonate platform again (Xixiangchi Formation). There are three types of sedimentary system in the Cambrian of Sichuan basin: clastic sedimentary system, clastics-carbonate mixed sedimentary system and carbonate sedimentary system. Vertically, the basin shows the evolutionary character of clastic-carbonate sedimentary systems. The three sedimentary systems correspond to three “transgression-regression” cycles of the Cambrian. The transgression in the initial period of the Early Cambrian led to the formation of clastic sedimentary system in the Qiongzhusi Formation of Lower Cambrian. The transgression in the later period of the Early Cambrian led to the formation of clastic-carbonate mixed sedimentary system in the Middle-Lower Cambrian. The transgression in the initial period of the Late Cambrian led to the formation of carbonate sedimentary system in the Xixiangchi Formation of Upper Cambrian. With the end of Late Sinian continental rifting ended, Sichuan basin entered a stable evolutionary stage of the craton basin, while the paleo-land developed in the north and southwest. In Qiongzhusi-Canglangpu period, the basin developed onshore-shelf sedimentary facies from west to east; In Longwangmiao-Xixiangchi period, the basin developed tidal flat-platform-slope sedimentary facies from west to east.

四川盆地的寒武纪发育了厚厚的黑色页岩、多种多样的碳酸盐岩和碎屑岩,它们沉积在不同的沉积环境中。位于长江上游地台的四川盆地记录了寒武纪的环境。通过对寒武纪详细的岩相分析,我们可以探讨当时的沉积环境和古地理环境。早寒武世沉积始于陆架层(琼珠寺层和沧浪铺层)的沉积。在这一阶段,四川盆地沉积了厚厚的页岩和碎屑岩。早寒武世末期,长江上游地台发育碳酸盐岩平台,四川盆地位于受限平台上(龙王庙地层)。中寒武统时期,四川盆地(豆豉溪地层)因不断退缩而形成滩涂和受限平台。在晚寒武世,四川盆地又位于碳酸盐岩平台(西乡池地层)。四川盆地寒武系有三种沉积体系:碎屑岩沉积体系、碎屑岩-碳酸盐混合沉积体系和碳酸盐沉积体系。纵向上,盆地呈现碎屑岩-碳酸盐岩沉积体系的演化特征。这三种沉积体系与寒武纪的三个 "过渡-回归 "周期相对应。早寒武纪初期的横断形成了下寒武统琼珠寺组的碎屑沉积系统。早寒武世后期的横断形成了中下寒武统的碎屑岩-碳酸盐混合沉积体系。晚寒武世初期的横断,形成了上寒武世西乡池组的碳酸盐沉积体系。随着晚新元大陆裂陷的结束,四川盆地进入稳定的克拉通盆地演化阶段,北部和西南部古陆发育。在琼珠寺-沧浪铺时期,盆地自西向东发育陆相沉积面;在龙王庙-西乡池时期,盆地自西向东发育潮汐平台-斜坡沉积面。
{"title":"Sedimentary characteristics and lithofacies paleogeography of the Cambrian in Sichuan basin, Southwest China","authors":"Lin Xie ,&nbsp;Xuefei Yang ,&nbsp;Yanhong Zhang ,&nbsp;Yan Xu ,&nbsp;Deming Zeng ,&nbsp;Ruifeng Tang ,&nbsp;Yao Du ,&nbsp;Xingzhi Wang","doi":"10.1016/j.petlm.2022.02.003","DOIUrl":"https://doi.org/10.1016/j.petlm.2022.02.003","url":null,"abstract":"<div><p>Cambrian in Sichuan basin developed thick black shale, varies carbonate and clastic rock, which deposited in different sedimentary environment. Sichuan basin in the upper Yangtze platform contained a record of environment during the Cambrian. Detail facies analyses of Cambrian enable us to discuss the sedimentary environment and palaeogeographic setting. Sedimentation commenced in the Early Cambrian with the deposition of shelf facies (Qiongzhusi Formation and Canglangpu Formation). At this stage, thick shale and clastic rock deposited in Sichuan basin. At the end of the Early Cambrian, a carbonate platform developed in upper Yangtze platform, and Sichuan basin was located in restricted platform (Longwangmiao Formation). In the Middle Cambrian, tidal flat and restricted platform developed in Sichuan basin (Douposi Formation), because of continuous regression. During the Late Cambrian, Sichuan basin was located in carbonate platform again (Xixiangchi Formation). There are three types of sedimentary system in the Cambrian of Sichuan basin: clastic sedimentary system, clastics-carbonate mixed sedimentary system and carbonate sedimentary system. Vertically, the basin shows the evolutionary character of clastic-carbonate sedimentary systems. The three sedimentary systems correspond to three “transgression-regression” cycles of the Cambrian. The transgression in the initial period of the Early Cambrian led to the formation of clastic sedimentary system in the Qiongzhusi Formation of Lower Cambrian. The transgression in the later period of the Early Cambrian led to the formation of clastic-carbonate mixed sedimentary system in the Middle-Lower Cambrian. The transgression in the initial period of the Late Cambrian led to the formation of carbonate sedimentary system in the Xixiangchi Formation of Upper Cambrian. With the end of Late Sinian continental rifting ended, Sichuan basin entered a stable evolutionary stage of the craton basin, while the paleo-land developed in the north and southwest. In Qiongzhusi-Canglangpu period, the basin developed onshore-shelf sedimentary facies from west to east; In Longwangmiao-Xixiangchi period, the basin developed tidal flat-platform-slope sedimentary facies from west to east.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 224-242"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656122000189/pdfft?md5=c376094741c0b25b805ce74a36dc7184&pid=1-s2.0-S2405656122000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141328541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iso-propyl caprylate and iso-propyl linolenate synthetic fluids as novel alternatives in deep-water drilling operations: Critical fluid properties and aerobic biodegradability assessments 辛酸异丙酯和亚麻酸异丙酯合成液作为深水钻井作业中的新型替代品:关键流体特性和好氧生物降解性评估
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.06.007
Adewale Johnson Folayan , Adewale Dosunmu , Aleruchi Boniface Oriji
<div><p>Present drilling fluids for deep water wells have severe degenerative effect on the environment with high operational and disposal costs. Thus, making them less desirable in recent times. Ester synthetic drilling fluid provides a novel environmentally friendly alternative but conventional ester-based drilling fluids exhibit high viscosities in deep-water wells causing excessive equivalent circulating density (ECD) and increased risk of lost circulation owing to narrow mud density window. This study experimentally investigates the critical fluid properties and aerobic biodegradability potentials of two newly developed deep-water synthetic ester drilling fluids namely: iso-propyl caprylate (COIPE) and iso-propyl linolenate (LOIPE) synthetic fluids and their comparison with synthetic-paraffin (SP-SBF) and isomerized-olefin (IO-SBF) synthetic hydrocarbon fluids. The esters of iso-propyl caprylate and iso-propyl linolenate were produced from the isolation of ester mixtures that were obtained from the homogeneous catalytic transesterification of coconut and linseed plant oil biomass respectively. The COIPE was isolated from the coconut oil iso-propyl ester mixture by low-pressure fractional distillation technique. While fractional distillation and crystallization were used to isolate the LOIPE ester from the linseed oil iso-propyl ester mixture. Meanwhile, the aerobic biodegradation investigation was conducted by a modified oxygen consumption respirometry technique. The GC-MS analysis of the COIPE and LOIPE showed that the former contains essentially of lower saturated carbon compounds (C8). Whereas the latter contains higher molecular weight and unsaturated carbon compounds (C18<sup>+</sup>). The COIPE and LOIPE kinematic viscosity values are in good agreement with that of the reference synthetic hydrocarbon fluid samples (SP-SBF and IO-SBF). Although, the COIPE synthetic ester has lower viscosity value owing to the presence of shorter chain and saturated carbon atoms (C8 esters). Similarly, the linolenic oil iso-propyl ester has excellent cold flow characteristics for deep-water well drilling owing to lower values of cloud and pour points as a result of higher concentration of poly-unsaturated linolenic esters. The iso-propyl caprylate and the iso-propyl linolenate ester synthetic fluids are readily biodegradable in the sea water inoculum under aerobic condition. However, the iso-propyl caprylate is inherently biodegradable because its degradation level and that of the reference chemical sample were already above 60% during the 10-day window period. The SP-SBF and the IO-SBF synthetic fluids have lower aerobic biodegradation values because they contain little quantity of poly aromatic hydrocarbons as evident in their GC-MS profiles. Finally, esters and unsaturated synthetic-based fluid are more rapidly biodegradable than paraffinic synthetic fluids and the rate of biodegradation of organic compounds decreases as molecular weight increases</p>
目前用于深水井的钻井液对环境有严重的恶化作用,而且操作和处理成本高昂。因此,近来这些钻井液已不再受欢迎。酯类合成钻井液提供了一种新型的环境友好型替代品,但传统的酯类钻井液在深水井中表现出较高的粘度,导致当量循环密度(ECD)过高,并由于泥浆密度窗口较窄而增加了循环损失的风险。本研究通过实验研究了两种新开发的深水合成酯类钻井液(辛酸异丙酯(COIPE)和亚麻酸异丙酯(LOIPE))的关键流体特性和好氧生物降解潜力,并将其与合成石蜡(SP-SBF)和异构化烯烃(IO-SBF)合成碳氢化合物流体进行了比较。辛酸异丙酯和亚麻酸异丙酯是分别从椰子油和亚麻籽植物油生物质的均相催化酯交换反应中分离得到的酯类混合物中生产出来的。通过低压分馏技术从椰子油异丙酯混合物中分离出 COIPE。亚麻籽油异丙酯混合物中的 LOIPE 酯则是通过分馏和结晶分离出来的。同时,采用改良的耗氧量呼吸测定法进行了有氧生物降解研究。COIPE 和 LOIPE 的气相色谱-质谱分析表明,前者主要含有低饱和碳化合物(C8)。而后者含有较高分子量和不饱和碳化合物(C18+)。COIPE 和 LOIPE 的运动粘度值与参考合成碳氢化合物流体样本(SP-SBF 和 IO-SBF)的运动粘度值非常一致。不过,COIPE 合成酯的粘度值较低,这是因为它含有较短的碳链和饱和碳原子(C8 酯)。同样,亚麻油异丙酯由于含有较高浓度的多不饱和亚麻酸酯,因此浊点和倾点值较低,在深水井钻探中具有优异的冷流特性。在好氧条件下,辛酸异丙酯和亚麻酸异丙酯合成液在海水接种体中很容易生物降解。不过,辛酸异丙酯本身是可以生物降解的,因为在 10 天的窗口期内,其降解水平和参考化学样本的降解水平都已超过 60%。SP-SBF 和 IO-SBF 合成液体的有氧生物降解值较低,因为从它们的 GC-MS 图谱可以看出,它们含有少量的多芳烃。最后,与石蜡合成液体相比,酯类和不饱和合成液体的生物降解速度更快,而且有机化合物的生物降解速度随着分子量的增加而降低。
{"title":"Iso-propyl caprylate and iso-propyl linolenate synthetic fluids as novel alternatives in deep-water drilling operations: Critical fluid properties and aerobic biodegradability assessments","authors":"Adewale Johnson Folayan ,&nbsp;Adewale Dosunmu ,&nbsp;Aleruchi Boniface Oriji","doi":"10.1016/j.petlm.2023.06.007","DOIUrl":"10.1016/j.petlm.2023.06.007","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Present drilling fluids for deep water wells have severe degenerative effect on the environment with high operational and disposal costs. Thus, making them less desirable in recent times. Ester synthetic drilling fluid provides a novel environmentally friendly alternative but conventional ester-based drilling fluids exhibit high viscosities in deep-water wells causing excessive equivalent circulating density (ECD) and increased risk of lost circulation owing to narrow mud density window. This study experimentally investigates the critical fluid properties and aerobic biodegradability potentials of two newly developed deep-water synthetic ester drilling fluids namely: iso-propyl caprylate (COIPE) and iso-propyl linolenate (LOIPE) synthetic fluids and their comparison with synthetic-paraffin (SP-SBF) and isomerized-olefin (IO-SBF) synthetic hydrocarbon fluids. The esters of iso-propyl caprylate and iso-propyl linolenate were produced from the isolation of ester mixtures that were obtained from the homogeneous catalytic transesterification of coconut and linseed plant oil biomass respectively. The COIPE was isolated from the coconut oil iso-propyl ester mixture by low-pressure fractional distillation technique. While fractional distillation and crystallization were used to isolate the LOIPE ester from the linseed oil iso-propyl ester mixture. Meanwhile, the aerobic biodegradation investigation was conducted by a modified oxygen consumption respirometry technique. The GC-MS analysis of the COIPE and LOIPE showed that the former contains essentially of lower saturated carbon compounds (C8). Whereas the latter contains higher molecular weight and unsaturated carbon compounds (C18&lt;sup&gt;+&lt;/sup&gt;). The COIPE and LOIPE kinematic viscosity values are in good agreement with that of the reference synthetic hydrocarbon fluid samples (SP-SBF and IO-SBF). Although, the COIPE synthetic ester has lower viscosity value owing to the presence of shorter chain and saturated carbon atoms (C8 esters). Similarly, the linolenic oil iso-propyl ester has excellent cold flow characteristics for deep-water well drilling owing to lower values of cloud and pour points as a result of higher concentration of poly-unsaturated linolenic esters. The iso-propyl caprylate and the iso-propyl linolenate ester synthetic fluids are readily biodegradable in the sea water inoculum under aerobic condition. However, the iso-propyl caprylate is inherently biodegradable because its degradation level and that of the reference chemical sample were already above 60% during the 10-day window period. The SP-SBF and the IO-SBF synthetic fluids have lower aerobic biodegradation values because they contain little quantity of poly aromatic hydrocarbons as evident in their GC-MS profiles. Finally, esters and unsaturated synthetic-based fluid are more rapidly biodegradable than paraffinic synthetic fluids and the rate of biodegradation of organic compounds decreases as molecular weight increases&lt;/p&gt;","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 254-264"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000421/pdfft?md5=d99ffd8fa8d4e5a057bc22835db9c4d5&pid=1-s2.0-S2405656123000421-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76720982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volumetric and viscometric properties of aqueous 1,2-dimethylethylenediamine solution for carbon capture application 用于碳捕获的 1,2-二甲基乙二胺水溶液的体积和粘度特性
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.06.005
Hossein Haghani , Teerawat Sema , Pipat Na Ranong , Thanthip Kiattinirachara , Benjapon Chalermsinsuwan , Hongxia Gao , Zhiwu Liang , Paitoon Tontiwachwuthikul

The present work investigates the volumetric and viscometric properties of an aqueous solution of 1,2-dimethylethylenediamine (DEEDA) over an entire concentration range and an absorber operating temperature range of 313.15K–333.15K at atmospheric pressure. The investigated volumetric properties included the density, excess molar volume, partial molar volume, and the investigated viscometric properties included the viscosity, viscosity deviation, free energy for activation of viscous flow, excess free energy for activation of viscous flow, and excess entropy for activation of viscous flow. The results indicated that there are strong intermolecular interactions and suitable molecular packing in the binary DEEDA–water mixture. Hence, the mixture was found to deviate from a real mixture according to the calculated excess properties. The DEEDA solvent's preliminary volumetric and viscometric properties revealed convincing potential as a novel amine for carbon capture. Additionally, the Redlich-Kister-based correlations showed favorable correlative performance for excess molar volume, viscosity deviation, and excess entropy for activation of viscous flow.

本研究调查了 1,2-二甲基乙二胺(DEEDA)水溶液在整个浓度范围和吸收器工作温度范围 313.15K-333.15K 大气压力下的体积和粘度特性。考察的体积特性包括密度、过量摩尔体积、部分摩尔体积,考察的粘度特性包括粘度、粘度偏差、激活粘流的自由能、激活粘流的过量自由能和激活粘流的过量熵。结果表明,二元 DEEDA-水混合物中存在强烈的分子间相互作用和适当的分子堆积。因此,根据计算的过量特性,发现该混合物偏离了真实混合物。DEEDA 溶剂的初步体积和粘度特性显示了其作为一种新型胺用于碳捕获的令人信服的潜力。此外,基于 Redlich-Kister 的相关性表明,过量摩尔体积、粘度偏差和过量熵对激活粘性流动具有良好的相关性。
{"title":"Volumetric and viscometric properties of aqueous 1,2-dimethylethylenediamine solution for carbon capture application","authors":"Hossein Haghani ,&nbsp;Teerawat Sema ,&nbsp;Pipat Na Ranong ,&nbsp;Thanthip Kiattinirachara ,&nbsp;Benjapon Chalermsinsuwan ,&nbsp;Hongxia Gao ,&nbsp;Zhiwu Liang ,&nbsp;Paitoon Tontiwachwuthikul","doi":"10.1016/j.petlm.2023.06.005","DOIUrl":"10.1016/j.petlm.2023.06.005","url":null,"abstract":"<div><p>The present work investigates the volumetric and viscometric properties of an aqueous solution of 1,2-dimethylethylenediamine (DEEDA) over an entire concentration range and an absorber operating temperature range of 313.15K–333.15K at atmospheric pressure. The investigated volumetric properties included the density, excess molar volume, partial molar volume, and the investigated viscometric properties included the viscosity, viscosity deviation, free energy for activation of viscous flow, excess free energy for activation of viscous flow, and excess entropy for activation of viscous flow. The results indicated that there are strong intermolecular interactions and suitable molecular packing in the binary DEEDA–water mixture. Hence, the mixture was found to deviate from a real mixture according to the calculated excess properties. The DEEDA solvent's preliminary volumetric and viscometric properties revealed convincing potential as a novel amine for carbon capture. Additionally, the Redlich-Kister-based correlations showed favorable correlative performance for excess molar volume, viscosity deviation, and excess entropy for activation of viscous flow.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 326-337"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000408/pdfft?md5=effa2e69c41a7bf15e2517cc4288b442&pid=1-s2.0-S2405656123000408-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75100077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in the application of graphene material in oilfield chemistry: A review 石墨烯材料在油田化学中的应用进展:综述
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.12.002
Jinsheng Sun , Yuanwei Sun , Yong Lai , Li Li , Gang Yang , Kaihe Lv , Taifeng Zhang , Xianfa Zhang , Zonglun Wang , Zhe Xu , Zhiwen Dai , Jingping Liu

Graphene is a single atom thick crystal composed of carbon atoms. It is the lightest, thinnest, strongest material that conducts heat and electricity well heretofore. In terms of application, by introducing oxygen-containing groups, graphene can be well dispersed in solvents, can be chemically modified and functionalized, or connected with other electroactive substances through covalent bond or non-covalent bond to form composite materials, which is conducive to further processing and promotion. The application of graphene in oilfield chemistry started late, but developed rapidly. Graphene has played an active role in drilling fluid, cementing fluid, fracturing fluid, displacement fluid and other oilfield working fluids. It can enhance the temperature and salt resistance of working fluid and improve the effect of working fluid. In this paper, several directions of graphene applications in oilfield chemistry, such as modified graphene, graphene copolymers and graphene nanoparticles, are reviewed in detail from the synthesis methods, action mechanisms and effects of graphene and its derivatives, and the frontier cases at this stage are given. On the basis of the existing research, suggestions for the development direction of graphene materials in oilfield chemistry are given for a variety of graphene materials, aiming to provide guidance for the application of graphene in oilfield chemistry.

石墨烯是由碳原子组成的单原子厚晶体。它是迄今为止最轻、最薄、强度最大、导热和导电性能最好的材料。在应用方面,通过引入含氧基团,石墨烯可以很好地分散在溶剂中,可以进行化学修饰和功能化,也可以通过共价键或非共价键与其他电活性物质连接形成复合材料,有利于进一步加工和推广。石墨烯在油田化学中的应用起步较晚,但发展迅速。石墨烯在钻井液、固井液、压裂液、置换液等油田工作液中发挥了积极作用。它可以提高工作液的耐温性和耐盐性,改善工作液的效果。本文从石墨烯及其衍生物的合成方法、作用机理和效果等方面详细综述了石墨烯在油田化学中的几个应用方向,如改性石墨烯、石墨烯共聚物和石墨烯纳米颗粒等,并给出了现阶段的前沿案例。在现有研究的基础上,针对多种石墨烯材料,给出了石墨烯材料在油田化学中的发展方向建议,旨在为石墨烯在油田化学中的应用提供指导。
{"title":"Progress in the application of graphene material in oilfield chemistry: A review","authors":"Jinsheng Sun ,&nbsp;Yuanwei Sun ,&nbsp;Yong Lai ,&nbsp;Li Li ,&nbsp;Gang Yang ,&nbsp;Kaihe Lv ,&nbsp;Taifeng Zhang ,&nbsp;Xianfa Zhang ,&nbsp;Zonglun Wang ,&nbsp;Zhe Xu ,&nbsp;Zhiwen Dai ,&nbsp;Jingping Liu","doi":"10.1016/j.petlm.2023.12.002","DOIUrl":"10.1016/j.petlm.2023.12.002","url":null,"abstract":"<div><p>Graphene is a single atom thick crystal composed of carbon atoms. It is the lightest, thinnest, strongest material that conducts heat and electricity well heretofore. In terms of application, by introducing oxygen-containing groups, graphene can be well dispersed in solvents, can be chemically modified and functionalized, or connected with other electroactive substances through covalent bond or non-covalent bond to form composite materials, which is conducive to further processing and promotion. The application of graphene in oilfield chemistry started late, but developed rapidly. Graphene has played an active role in drilling fluid, cementing fluid, fracturing fluid, displacement fluid and other oilfield working fluids. It can enhance the temperature and salt resistance of working fluid and improve the effect of working fluid. In this paper, several directions of graphene applications in oilfield chemistry, such as modified graphene, graphene copolymers and graphene nanoparticles, are reviewed in detail from the synthesis methods, action mechanisms and effects of graphene and its derivatives, and the frontier cases at this stage are given. On the basis of the existing research, suggestions for the development direction of graphene materials in oilfield chemistry are given for a variety of graphene materials, aiming to provide guidance for the application of graphene in oilfield chemistry.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 175-190"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000779/pdfft?md5=420b0cd9b426ea1833780724880eed5a&pid=1-s2.0-S2405656123000779-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139014832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production performance analysis of a continental shale oil reservoir in Bohai Bay basin 渤海湾盆地大陆性页岩油藏生产性能分析
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.11.002
Quansheng Guan , Changwei Chen , Xiugang Pu , Yonggang Wan , Jing Xu , Haiwei Zeng , Chen Jia , Huanhuan Gao , Wei Yang , Zesen Peng

Due to the extremely low permeability of shale formations, the combination of horizontal well and volume fracturing has been proposed as an effective technique to improve the production of Dagang continental shale oil reservoirs. Based on the flow material balance method (FMB) and straight-line analysis (SLA) method, the stimulated reservoir volume (SRV) and drainage volume are determined to identify the flow regimes of the seepage mechanism of shale oil reservoirs. To resolve the challenges of multi-scaled flow regimes and bottom hole pressure (BHP) variation before and after pumping in shale oil wells, a multi-linear analytical flow model was established to predict the future production and the final expected ultimate recoverable oil (EURo) after fitting the historical production dynamics. Based on the results, it can be concluded that the flow regime of a shale oil well in production can be divided into two stages consisting of linear flow within SRV and composite flow from the un-stimulated area to SRV. The effects of fracturing operation parameters, such as fracturing fluid volume and sand/liquid ratio, on shale oil productivity, are analyzed, and insightful suggestions are drawn for the future development of this pay zone.

由于页岩地层的渗透率极低,水平井与体积压裂相结合是提高大港大陆页岩油藏产量的有效技术。基于流动物质平衡法(FMB)和直线分析法(SLA),确定了激发储层体积(SRV)和排水体积,从而确定了页岩油藏渗流机制的流动制度。为解决页岩油井多尺度流动机制和抽油前后井底压力(BHP)变化的难题,建立了多线性分析流动模型,在拟合历史生产动态后预测未来产量和最终预期最终可采油量(EURo)。根据研究结果,可以得出结论:页岩油井在生产过程中的流动机制可分为两个阶段,包括 SRV 内部的线性流动和未受刺激区域至 SRV 的复合流动。分析了压裂液量、砂液比等压裂操作参数对页岩油生产率的影响,并对这一付油区的未来开发提出了独到的建议。
{"title":"Production performance analysis of a continental shale oil reservoir in Bohai Bay basin","authors":"Quansheng Guan ,&nbsp;Changwei Chen ,&nbsp;Xiugang Pu ,&nbsp;Yonggang Wan ,&nbsp;Jing Xu ,&nbsp;Haiwei Zeng ,&nbsp;Chen Jia ,&nbsp;Huanhuan Gao ,&nbsp;Wei Yang ,&nbsp;Zesen Peng","doi":"10.1016/j.petlm.2023.11.002","DOIUrl":"10.1016/j.petlm.2023.11.002","url":null,"abstract":"<div><p>Due to the extremely low permeability of shale formations, the combination of horizontal well and volume fracturing has been proposed as an effective technique to improve the production of Dagang continental shale oil reservoirs. Based on the flow material balance method (FMB) and straight-line analysis (SLA) method, the stimulated reservoir volume (SRV) and drainage volume are determined to identify the flow regimes of the seepage mechanism of shale oil reservoirs. To resolve the challenges of multi-scaled flow regimes and bottom hole pressure (BHP) variation before and after pumping in shale oil wells, a multi-linear analytical flow model was established to predict the future production and the final expected ultimate recoverable oil (EUR<sub>o</sub>) after fitting the historical production dynamics. Based on the results, it can be concluded that the flow regime of a shale oil well in production can be divided into two stages consisting of linear flow within SRV and composite flow from the un-stimulated area to SRV. The effects of fracturing operation parameters, such as fracturing fluid volume and sand/liquid ratio, on shale oil productivity, are analyzed, and insightful suggestions are drawn for the future development of this pay zone.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 294-305"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000731/pdfft?md5=596b80a7979ec82d280380e5a1c6156e&pid=1-s2.0-S2405656123000731-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139291291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel 基于聚丙烯酰胺的氧化铝和二氧化硅纳米复合材料对地层水存在下轻油和重油采收率的影响(使用微模型
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.03.001
Ashkan Maleki , Behnam Sedaee , Alireza Bahramian , Sajjad Gharechelou , Nahid Sarlak , Arash Mehdizad , Mohammad reza Rasaei , Aliakbar Dehghan

Increasing world request for energy has made oil extraction from reservoirs more desirable. Many novel EOR methods have been proposed and utilized for this purpose. Using nanocomposites in chemical flooding is one of these novel methods. In this study, we investigated the impact of six injection solutions on the recovery of light and heavy oil with the presence of two different brines as formation water using a homogenous glass micromodel. All of the injection solutions were based on a 40,000 ppm NaCl synthetic seawater (SSW), one of which was additive free and the others were prepared by dispersing nanocomposite silica-based polyacrylamide (NCSP), nanocomposite alumina-based polyacrylamide (NCAP), the combination of both nanocomposites silica and alumina based on polyacrylamide (NCSAP), surfactant (CTAB) and polyacrylamide (PAM) with a concentration of 1000 ppm as additives. The Stability of nanocomposites was tested against the salinity of the brine and temperature using salinity and DSC tests which were successful. Alongside stability tests, IFT, contact angle and oil recovery measurements were made. Visual results revealed that in addition to the effect of silica and alumina nanocomposite in reducing interfacial tension and wettability alteration, control of mobility ratio caused a major improvement in sweeping efficiency and oil recovery. According to the sweeping behavior of injected fluids, it was found that the main effect of surfactant was wettability alteration, for polyacrylamide was mobility control and for nanocomposites was the reduction of interfacial tension between oil and injected fluid, which was completely analyzed and checked out. Also, NCSAP with 95.83% and 70.33% and CTAB with 84.35% and 91% have the highest light oil recoveries at 250,000 ppm and 180,000 ppm salinity, respectively which is related to the superposition effect of interactions between nanocomposites, solution and oil. Based on our results it can be concluded that the most effective mechanism in oil recovery was IFT reduction which was done by CTAB reduction also by using a polymer-based nanocomposite such as NCSAP and adding the mobility control factor, the oil recovery can be further enhanced. In the case of heavy oil recovery, it can be concluded that the mobility control played a much more effective role when the PAM performed almost similarly to the CTAB and other nanocomposites with a recovery factor of around 17%. In this study, we tried to investigate the effect of different injection solutions and their related mechanisms on oil recovery.

全球对能源的需求日益增长,使得从储油层中开采石油变得更为迫切。为此,人们提出并使用了许多新型的 EOR 方法。在化学淹没中使用纳米复合材料就是这些新型方法之一。在本研究中,我们使用均质玻璃微模型研究了六种注入溶液对轻油和重油采收率的影响,其中存在两种不同的盐水作为地层水。所有注入液都基于 40,000 ppm 的氯化钠合成海水(SSW),其中一种不含添加剂,其他注入液则是通过分散纳米复合硅基聚丙烯酰胺(NCSP)制备的、以氧化铝为基础的纳米复合聚丙烯酰胺(NCAP)、以聚丙烯酰胺为基础的二氧化硅和氧化铝两种纳米复合材料的组合(NCSAP)、表面活性剂(CTAB)和聚丙烯酰胺(PAM)(添加剂浓度为 1000 ppm)。利用盐度和 DSC 试验,成功地测试了纳米复合材料在盐水和温度条件下的稳定性。除稳定性测试外,还进行了 IFT、接触角和油回收率测量。直观结果表明,除了二氧化硅和氧化铝纳米复合材料在降低界面张力和改变润湿性方面的作用外,控制流动比也大大提高了清扫效率和采油率。根据注入流体的清扫行为发现,表面活性剂的主要作用是改变润湿性,聚丙烯酰胺的主要作用是控制流动性,而纳米复合材料的主要作用是降低油与注入流体之间的界面张力,这一点得到了完整的分析和验证。此外,NCSAP(95.83% 和 70.33%)和 CTAB(84.35% 和 91%)在盐度分别为 250,000 ppm 和 180,000 ppm 时具有最高的轻油采收率,这与纳米复合材料、溶液和油之间相互作用的叠加效应有关。根据我们的研究结果,可以得出结论:最有效的采油机制是通过 CTAB 减少 IFT,而使用聚合物基纳米复合材料(如 NCSAP)并添加流动性控制因子,可以进一步提高采油率。就重油回收而言,当 PAM 与 CTAB 和其他纳米复合材料的性能几乎相似,回收率约为 17% 时,可以得出结论:流动性控制发挥了更有效的作用。在这项研究中,我们试图研究不同注入溶液及其相关机制对采油的影响。
{"title":"Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel","authors":"Ashkan Maleki ,&nbsp;Behnam Sedaee ,&nbsp;Alireza Bahramian ,&nbsp;Sajjad Gharechelou ,&nbsp;Nahid Sarlak ,&nbsp;Arash Mehdizad ,&nbsp;Mohammad reza Rasaei ,&nbsp;Aliakbar Dehghan","doi":"10.1016/j.petlm.2023.03.001","DOIUrl":"10.1016/j.petlm.2023.03.001","url":null,"abstract":"<div><p>Increasing world request for energy has made oil extraction from reservoirs more desirable. Many novel EOR methods have been proposed and utilized for this purpose. Using nanocomposites in chemical flooding is one of these novel methods. In this study, we investigated the impact of six injection solutions on the recovery of light and heavy oil with the presence of two different brines as formation water using a homogenous glass micromodel. All of the injection solutions were based on a 40,000 ppm NaCl synthetic seawater (SSW), one of which was additive free and the others were prepared by dispersing nanocomposite silica-based polyacrylamide (NCSP), nanocomposite alumina-based polyacrylamide (NCAP), the combination of both nanocomposites silica and alumina based on polyacrylamide (NCSAP), surfactant (CTAB) and polyacrylamide (PAM) with a concentration of 1000 ppm as additives. The Stability of nanocomposites was tested against the salinity of the brine and temperature using salinity and DSC tests which were successful. Alongside stability tests, IFT, contact angle and oil recovery measurements were made. Visual results revealed that in addition to the effect of silica and alumina nanocomposite in reducing interfacial tension and wettability alteration, control of mobility ratio caused a major improvement in sweeping efficiency and oil recovery. According to the sweeping behavior of injected fluids, it was found that the main effect of surfactant was wettability alteration, for polyacrylamide was mobility control and for nanocomposites was the reduction of interfacial tension between oil and injected fluid, which was completely analyzed and checked out. Also, NCSAP with 95.83% and 70.33% and CTAB with 84.35% and 91% have the highest light oil recoveries at 250,000 ppm and 180,000 ppm salinity, respectively which is related to the superposition effect of interactions between nanocomposites, solution and oil. Based on our results it can be concluded that the most effective mechanism in oil recovery was IFT reduction which was done by CTAB reduction also by using a polymer-based nanocomposite such as NCSAP and adding the mobility control factor, the oil recovery can be further enhanced. In the case of heavy oil recovery, it can be concluded that the mobility control played a much more effective role when the PAM performed almost similarly to the CTAB and other nanocomposites with a recovery factor of around 17%. In this study, we tried to investigate the effect of different injection solutions and their related mechanisms on oil recovery.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 338-353"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000160/pdfft?md5=52d08a6534126a88ee0da4e4564101a8&pid=1-s2.0-S2405656123000160-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74475501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of viscous oil–water–sand flow in horizontal pipes: Flow patterns and pressure gradient 水平管道中粘性油-水-砂流动的实验研究:流动模式和压力梯度
Q2 ENERGY & FUELS Pub Date : 2024-06-01 DOI: 10.1016/j.petlm.2023.09.005
Tarek Ganat

Fluid production from unconsolidated reservoirs often leads in sand production, which poses a number of issues. Sand deposition in flowlines can result in significant pressure dips, pipe and facility damage, and obstructions that decrease productivity. More research is needed to understand the movement and deposition of sand in oil–water–sand (O–W–S) fluxes. This article focuses on O–W–S flows in a 6-meter-long horizontal pipe with an inner diameter of 0.0381 m. The study looks at the flow behavior of high viscosity oil–water (O–W), water–sand (W–S), and oil–water–sand (O–W–S) flows. Experiments were carried out at 250 psig pressure in a laboratory flow test facility using various heavy synthetic oils (viscosities ranging from 3500 cP to 7500 cP at 25°C) and tap water. The sand concentration varied from 1% to 10%, with an average sand particle diameter of 145 μm and material density of 2630 kg/m3. Water cuts ranged from 0.0 to 1.0. The experimental results revealed a minor change in pressure gradient between (O–W) and (O–W–S) flows. However, increasing the sand concentration in (O–W–S) flow resulted in higher pressure losses. The reduction factor of pressure gradient indicated that the highest decrease in pressure drop occurred at higher superficial oil velocities. Furthermore, a direct relationship was observed between the reduction factor and the decrease in water cut. The results also showed that the minimum required transportation velocity for sand slurry decreased with increasing superficial oil velocity, while the minimum transportation condition increased with higher sand concentration. The comparison between the expected pressure gradient from Bannwart and McKibben et al. and the actual experimental data demonstrated significant accuracy for the oil viscosities and superficial oil velocities used in the study.

未固结储层的流体生产往往会导致产砂,从而引发一系列问题。砂沉积在输油管道中会导致压力骤降、管道和设施损坏以及阻碍生产,从而降低生产率。要了解油-水-砂(O-W-S)流中砂的移动和沉积情况,还需要进行更多的研究。本文重点研究了内径为 0.0381 米的 6 米长水平管道中的油-水-砂流动。实验在压力为 250 psig 的实验室流量测试设备中进行,使用的是各种重质合成油(25°C 时粘度从 3500 cP 到 7500 cP 不等)和自来水。砂的浓度从 1% 到 10% 不等,平均砂粒直径为 145 μm,材料密度为 2630 kg/m3。切水量从 0.0 到 1.0 不等。实验结果表明,(O-W)流和(O-W-S)流之间的压力梯度变化不大。然而,增加(O-W-S)流中的砂浓度会导致更高的压力损失。压力梯度的降低系数表明,在表层油速较高时,压力降的降低幅度最大。此外,还观察到降低系数与减水量之间存在直接关系。结果还表明,砂浆所需的最小输送速度随着表层油速的增加而降低,而最小输送条件则随着砂浓度的增加而提高。Bannwart 和 McKibben 等人的预期压力梯度与实际实验数据之间的比较表明,研究中使用的油粘度和表层油速非常准确。
{"title":"Experimental investigation of viscous oil–water–sand flow in horizontal pipes: Flow patterns and pressure gradient","authors":"Tarek Ganat","doi":"10.1016/j.petlm.2023.09.005","DOIUrl":"10.1016/j.petlm.2023.09.005","url":null,"abstract":"<div><p>Fluid production from unconsolidated reservoirs often leads in sand production, which poses a number of issues. Sand deposition in flowlines can result in significant pressure dips, pipe and facility damage, and obstructions that decrease productivity. More research is needed to understand the movement and deposition of sand in oil–water–sand (O–W–S) fluxes. This article focuses on O–W–S flows in a 6-meter-long horizontal pipe with an inner diameter of 0.0381 m. The study looks at the flow behavior of high viscosity oil–water (O–W), water–sand (W–S), and oil–water–sand (O–W–S) flows. Experiments were carried out at 250 psig pressure in a laboratory flow test facility using various heavy synthetic oils (viscosities ranging from 3500 cP to 7500 cP at 25°C) and tap water. The sand concentration varied from 1% to 10%, with an average sand particle diameter of 145 μm and material density of 2630 kg/m<sup>3</sup>. Water cuts ranged from 0.0 to 1.0. The experimental results revealed a minor change in pressure gradient between (O–W) and (O–W–S) flows. However, increasing the sand concentration in (O–W–S) flow resulted in higher pressure losses. The reduction factor of pressure gradient indicated that the highest decrease in pressure drop occurred at higher superficial oil velocities. Furthermore, a direct relationship was observed between the reduction factor and the decrease in water cut. The results also showed that the minimum required transportation velocity for sand slurry decreased with increasing superficial oil velocity, while the minimum transportation condition increased with higher sand concentration. The comparison between the expected pressure gradient from Bannwart and McKibben et al. and the actual experimental data demonstrated significant accuracy for the oil viscosities and superficial oil velocities used in the study.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 2","pages":"Pages 275-293"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000639/pdfft?md5=03f697400191bab413d488c867e4e0ac&pid=1-s2.0-S2405656123000639-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134994675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Petroleum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1