Pub Date : 2020-11-01DOI: 10.1016/j.revip.2020.100044
Shubhanshi Sharma, Rashmi Kumari, Shailendra K. Varshney, Basudev Lahiri
The recent development in the field of optical biosensors based on plasmonic metamaterials, all-dielectric metamaterials and two-dimensional (2D) materials inclusive of van der Waals heterostructure have been reviewed in this article. Plasmonic metamaterials are divided based on their geometrical design, such as thin metallic film structures, an array of periodic structures, and single nanoparticle that are governed by the physical phenomenon of plasmon resonance. On the contrary, all-dielectric metamaterials based sensors are governed by the Mie scattering. Two-dimensional material exhibits high surface area to volume ratios, which makes them a strong candidates for realizing high sensitivity. This review encompasses all the latest developments over the last decade and forecasts the roadmap.
{"title":"Optical biosensing with electromagnetic nanostructures","authors":"Shubhanshi Sharma, Rashmi Kumari, Shailendra K. Varshney, Basudev Lahiri","doi":"10.1016/j.revip.2020.100044","DOIUrl":"10.1016/j.revip.2020.100044","url":null,"abstract":"<div><p>The recent development in the field of optical biosensors based on plasmonic metamaterials, all-dielectric metamaterials and two-dimensional (2D) materials inclusive of van der Waals heterostructure have been reviewed in this article. Plasmonic metamaterials are divided based on their geometrical design, such as thin metallic film structures, an array of periodic structures, and single nanoparticle that are governed by the physical phenomenon of plasmon resonance. On the contrary, all-dielectric metamaterials based sensors are governed by the Mie scattering. Two-dimensional material exhibits high surface area to volume ratios, which makes them a strong candidates for realizing high sensitivity. This review encompasses all the latest developments over the last decade and forecasts the roadmap.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100044"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44305650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1016/j.revip.2020.100038
Lorenzo Bonechi , Raffaello D’Alessandro , Andrea Giammanco
Imaging methods based on the absorption or scattering of atmospheric muons, collectively named under the neologism “muography”, exploit the abundant natural flux of muons produced from cosmic-ray interactions in the atmosphere. Recent years have seen a steep rise in the development of muography methods in a variety of innovative multidisciplinary approaches to study the interior of natural or human-made structures, establishing synergies between usually disconnected academic disciplines such as particle physics, geology, and archaeology. Muography also bears promise of immediate societal impact through geotechnical investigations, nuclear waste surveys, homeland security, and natural hazard monitoring. Our aim is to provide an introduction to this vibrant research area, starting from the physical principles at the basis of the methods and describing the main detector technologies and imaging tools, including their combination with conventional techniques from other disciplines, where appropriate. Then, we discuss critically some outstanding issues that affect a broad variety of applications, and the current state of the art in addressing them. Finally, we review several recent developments in the application of muography methods to specific use cases, without any pretence of exhaustiveness.
{"title":"Atmospheric muons as an imaging tool","authors":"Lorenzo Bonechi , Raffaello D’Alessandro , Andrea Giammanco","doi":"10.1016/j.revip.2020.100038","DOIUrl":"10.1016/j.revip.2020.100038","url":null,"abstract":"<div><p>Imaging methods based on the absorption or scattering of atmospheric muons, collectively named under the neologism “muography”, exploit the abundant natural flux of muons produced from cosmic-ray interactions in the atmosphere. Recent years have seen a steep rise in the development of muography methods in a variety of innovative multidisciplinary approaches to study the interior of natural or human-made structures, establishing synergies between usually disconnected academic disciplines such as particle physics, geology, and archaeology. Muography also bears promise of immediate societal impact through geotechnical investigations, nuclear waste surveys, homeland security, and natural hazard monitoring. Our aim is to provide an introduction to this vibrant research area, starting from the physical principles at the basis of the methods and describing the main detector technologies and imaging tools, including their combination with conventional techniques from other disciplines, where appropriate. Then, we discuss critically some outstanding issues that affect a broad variety of applications, and the current state of the art in addressing them. Finally, we review several recent developments in the application of muography methods to specific use cases, without any pretence of exhaustiveness.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100038"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45587095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1016/j.revip.2020.100042
Alessandra Filippi , M. De Napoli
The existence of Dark Matter (DM) is a well established fact since many decades, thanks to the observation of the effects of its gravitational interaction with the ordinary matter in the Universe. However, our knowledge of the Dark Matter features is still rather scarce. Indeed, one of the biggest quests in fundamental science today is the investigation of Dark Matter nature, from its origin to its composition, and the way its constituents interact with the ordinary matter, apart from gravity. Huge and ambitious efforts have been spent in the last years into its identification, concentrating especially on the search of viable Weakly Interacting Massive Particle candidates. However, no positive results have been achieved so far along this direction. On the other hand, many fascinating new ideas and models for its interpretation have been blooming: among them, an intriguing hypothesis is that the Dark Matter constituents could be neutral under Standard Model interactions, but they could interact through a new, still unknown, force under a “hidden” charge. This new hidden symmetry would be mediated by a massive gauge boson, the dark photon, which is expected to couple to the Standard Model via a kinetic mixing. The search for such a massive mediator has been pursued with large enthusiasm and dedication in the latest years, as its observation could be within the reach of many already existing experimental facilities, both based on accelerators or in smaller scale setups. This report reviews the present status and progress of the experimental searches in this field.
{"title":"Searching in the dark: the hunt for the dark photon","authors":"Alessandra Filippi , M. De Napoli","doi":"10.1016/j.revip.2020.100042","DOIUrl":"10.1016/j.revip.2020.100042","url":null,"abstract":"<div><p>The existence of Dark Matter (DM) is a well established fact since many decades, thanks to the observation of the effects of its gravitational interaction with the ordinary matter in the Universe. However, our knowledge of the Dark Matter features is still rather scarce. Indeed, one of the biggest quests in fundamental science today is the investigation of Dark Matter nature, from its origin to its composition, and the way its constituents interact with the ordinary matter, apart from gravity. Huge and ambitious efforts have been spent in the last years into its identification, concentrating especially on the search of viable Weakly Interacting Massive Particle candidates. However, no positive results have been achieved so far along this direction. On the other hand, many fascinating new ideas and models for its interpretation have been blooming: among them, an intriguing hypothesis is that the Dark Matter constituents could be neutral under Standard Model interactions, but they could interact through a new, still unknown, force under a “hidden” charge. This new hidden symmetry would be mediated by a massive gauge boson, the dark photon, which is expected to couple to the Standard Model via a kinetic mixing. The search for such a massive mediator has been pursued with large enthusiasm and dedication in the latest years, as its observation could be within the reach of many already existing experimental facilities, both based on accelerators or in smaller scale setups. This report reviews the present status and progress of the experimental searches in this field.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100042"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77988192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1016/j.revip.2020.100043
Tatiana Avsievich , Ruixue Zhu , Alexey Popov , Alexander Bykov , Igor Meglinski
Demonstration of the light radiation pressure on a microscopic level by A. Ashkin led to the invention of optical tweezers (OT). Applied in the studies of living systems, OT have become a preferable instrument for the noninvasive study of microobjects, allowing manipulation and measurement of the mechanical properties of molecules, organelles, and cells. In the present paper, we overview OT applications in hemorheological research, placing emphasis on red blood cells but also discussing OT applications for the investigation of the biomechanics of leukocytes and platelets. Blood properties have always served as a primary parameter in medical diagnostics due to the interconnection with the physiological state of an organism. Despite blood testing being a well-established procedure of conventional medicine, there are still many complex processes that must be unraveled to improve our understanding and contribute to future medicine. OT are advancing single-cell research, promising new insights into individual cell characteristics compared to the traditional approaches. We review the fundamental and practical findings revealed in blood research through the optical manipulation, stretching, guiding, immobilization, and inter-/intracellular force measurements of single blood cells.
{"title":"The advancement of blood cell research by optical tweezers","authors":"Tatiana Avsievich , Ruixue Zhu , Alexey Popov , Alexander Bykov , Igor Meglinski","doi":"10.1016/j.revip.2020.100043","DOIUrl":"10.1016/j.revip.2020.100043","url":null,"abstract":"<div><p>Demonstration of the light radiation pressure on a microscopic level by A. Ashkin led to the invention of optical tweezers (OT). Applied in the studies of living systems, OT have become a preferable instrument for the noninvasive study of microobjects, allowing manipulation and measurement of the mechanical properties of molecules, organelles, and cells. In the present paper, we overview OT applications in hemorheological research, placing emphasis on red blood cells but also discussing OT applications for the investigation of the biomechanics of leukocytes and platelets. Blood properties have always served as a primary parameter in medical diagnostics due to the interconnection with the physiological state of an organism. Despite blood testing being a well-established procedure of conventional medicine, there are still many complex processes that must be unraveled to improve our understanding and contribute to future medicine. OT are advancing single-cell research, promising new insights into individual cell characteristics compared to the traditional approaches. We review the fundamental and practical findings revealed in blood research through the optical manipulation, stretching, guiding, immobilization, and inter-/intracellular force measurements of single blood cells.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100043"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43168773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1016/j.revip.2020.100039
Maxime Gouzevitch , Alexandra Carvalho
In 2012 the ATLAS and CMS collaborations discovered at the LHC the Higgs boson decaying to vector bosons. This discovery has provided a strong indication that the mechanism of Electroweak Symmetry Breaking (EWSB) is similar to the one predicted by Brout-Englert-Higgs (BEH) nearly 50 years before. Since then, one of the priorities of the LHC program, as well as of the majority of the future collider proposals, is to measure directly the parameters of the EWSB potential. The goal is to identify if it has indeed the straightforward quartic shape predicted by BEH or it is more complex, as the result of an unexplored physics nature. The answer to this major scientific question will have a considerable impact on our understanding of vacuum properties and the history of the universe through the EWSB during the Big Bang. The only direct way to probe these couplings is through the measure of the production of multiple Higgs bosons, two being the simplest case. In this paper, we present a comprehensive review of the current searches and the state of the art insights on the topic. In particular, we explain why this ambitious project is even more challenging than the discovery of the Higgs boson itself. Finally, we sketch the plans of the HEP community for how to access the parameters of the BEH mechanism. This review is adapted to a curious reader familiar with particle physics in general or a scientist who wants to have a landscape overview of the topic.
{"title":"A review of Higgs boson pair production","authors":"Maxime Gouzevitch , Alexandra Carvalho","doi":"10.1016/j.revip.2020.100039","DOIUrl":"10.1016/j.revip.2020.100039","url":null,"abstract":"<div><p>In 2012 the ATLAS and CMS collaborations discovered at the LHC the Higgs boson decaying to vector bosons. This discovery has provided a strong indication that the mechanism of Electroweak Symmetry Breaking (EWSB) is similar to the one predicted by Brout-Englert-Higgs (BEH) nearly 50 years before. Since then, one of the priorities of the LHC program, as well as of the majority of the future collider proposals, is to measure directly the parameters of the EWSB potential. The goal is to identify if it has indeed the straightforward quartic shape predicted by BEH or it is more complex, as the result of an unexplored physics nature. The answer to this major scientific question will have a considerable impact on our understanding of vacuum properties and the history of the universe through the EWSB during the Big Bang. The only direct way to probe these couplings is through the measure of the production of multiple Higgs bosons, two being the simplest case. In this paper, we present a comprehensive review of the current searches and the state of the art insights on the topic. In particular, we explain why this ambitious project is even more challenging than the discovery of the Higgs boson itself. Finally, we sketch the plans of the HEP community for how to access the parameters of the BEH mechanism. This review is adapted to a curious reader familiar with particle physics in general or a scientist who wants to have a landscape overview of the topic.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100039"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47546959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1016/j.revip.2020.100040
Manoj Gupta , Ranjan Singh
A toroidal dipole is a new class of electromagnetic excitations and are different from traditional electric and magnetic dipoles. Toroidal dipoles are described by the poloidal currents flowing on the surface of torus and have opened a new route to control radiative losses via near field coupling mechanism or radiation cancellation approach in the unit cell of metasurface. Radiative loss engineering in metamaterials is one of the most fundamental requirements to gauge the suitability of a metaphotonic device for a specific on-demand application. Here, we discuss strategies to excite toroidal dipolar modes in a planar metasurface which were initially thought to exist only in three-dimensional (3D) arrangements. Two dimensional (2D) toroidal metasurfaces are conceptual simplification of 3D toroid configurations, which pose fabrication challenges at micro-nanoscales. We further discuss the destructive interference between electric and toroidal dipoles to realize non-radiating modes in the form of an anapole excitation that fulfills the requirement for the excitation of extremely large quality factor resonances. Overall, the intriguing features of a toroidal dipole could have significant implications on the design of resonant metamaterials that are important for the development of low-loss sensors, modulators, filters, and efficient cavities for strong light matter interactions.
{"title":"Toroidal metasurfaces in a 2D flatland","authors":"Manoj Gupta , Ranjan Singh","doi":"10.1016/j.revip.2020.100040","DOIUrl":"10.1016/j.revip.2020.100040","url":null,"abstract":"<div><p>A toroidal dipole is a new class of electromagnetic excitations and are different from traditional electric and magnetic dipoles. Toroidal dipoles are described by the poloidal currents flowing on the surface of torus and have opened a new route to control radiative losses via near field coupling mechanism or radiation cancellation approach in the unit cell of metasurface. Radiative loss engineering in metamaterials is one of the most fundamental requirements to gauge the suitability of a metaphotonic device for a specific on-demand application. Here, we discuss strategies to excite toroidal dipolar modes in a planar metasurface which were initially thought to exist only in three-dimensional (3D) arrangements. Two dimensional (2D) toroidal metasurfaces are conceptual simplification of 3D toroid configurations, which pose fabrication challenges at micro-nanoscales. We further discuss the destructive interference between electric and toroidal dipoles to realize non-radiating modes in the form of an anapole excitation that fulfills the requirement for the excitation of extremely large quality factor resonances. Overall, the intriguing features of a toroidal dipole could have significant implications on the design of resonant metamaterials that are important for the development of low-loss sensors, modulators, filters, and efficient cavities for strong light matter interactions.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100040"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2020.100040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43123978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1016/j.revip.2019.100037
François Copie, Stéphane Randoux, Pierre Suret
We review the different dynamical mechanisms leading to the emergence of coherent structures in physical systems described by the integrable one-dimensional nonlinear Schrödinger equation (1DNLSE) in the focusing regime. In this context, localized and coherent structures are very often associated to rogue wave events. We focus on one-dimensional optical experiments and in particular on (single mode) optical fibers experiments. In the focusing regime of 1DNLSE, the so-called modulation instability (MI), arising from nonlocal perturbation of the plane waves, is the most common phenomenon. Alongside the standard MI, other mechanisms are responsible for the emergence of rogue waves. We classify the different scenarii by considering those induced by small perturbations of unstable stationary state (the plane waves) and the ones arising from the self-focusing of large pulses without any perturbation. In the former case, the perturbations can be local, global, random or deterministic. In the latter case, the self-focusing dynamics can be observed both with isolated pulses or with large initial fluctuations of the optical power. We review the dynamics of emergence of localized structures in all these different scenarii.
{"title":"The Physics of the one-dimensional nonlinear Schrödinger equation in fiber optics: Rogue waves, modulation instability and self-focusing phenomena","authors":"François Copie, Stéphane Randoux, Pierre Suret","doi":"10.1016/j.revip.2019.100037","DOIUrl":"10.1016/j.revip.2019.100037","url":null,"abstract":"<div><p>We review the different dynamical mechanisms leading to the emergence of coherent structures in physical systems described by the integrable one-dimensional nonlinear Schrödinger equation (1DNLSE) in the focusing regime. In this context, localized and coherent structures are very often associated to rogue wave events. We focus on one-dimensional optical experiments and in particular on (single mode) optical fibers experiments. In the focusing regime of 1DNLSE, the so-called modulation instability (MI), arising from nonlocal perturbation of the plane waves, is the most common phenomenon. Alongside the standard MI, other mechanisms are responsible for the emergence of rogue waves. We classify the different scenarii by considering those induced by small perturbations of unstable stationary state (the plane waves) and the ones arising from the self-focusing of large pulses without any perturbation. In the former case, the perturbations can be local, global, random or deterministic. In the latter case, the self-focusing dynamics can be observed both with isolated pulses or with large initial fluctuations of the optical power. We review the dynamics of emergence of localized structures in all these different scenarii.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"5 ","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2019.100037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43741990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-01DOI: 10.1016/j.revip.2019.100029
Francesco Renga
The study of muon properties and decays played a crucial role in the early years of particle physics and contributed over decades to build and consolidate the Standard Model. At present, searches for muon decays beyond the Standard Model are performed by exploiting intense beams of muons, and plans exist to upgrade the present facilities or build new ones, which would open new prospects for the quest of new physics in this sector. In this paper I review the present status of the search for muon decays beyond the Standard Model, with a special attention to the most conventional muon lepton flavor violation experiments, but also considering more exotic scenarios and future outlooks.
{"title":"Experimental searches for muon decays beyond the Standard Model","authors":"Francesco Renga","doi":"10.1016/j.revip.2019.100029","DOIUrl":"10.1016/j.revip.2019.100029","url":null,"abstract":"<div><p>The study of muon properties and decays played a crucial role in the early years of particle physics and contributed over decades to build and consolidate the Standard Model. At present, searches for muon decays beyond the Standard Model are performed by exploiting intense beams of muons, and plans exist to upgrade the present facilities or build new ones, which would open new prospects for the quest of new physics in this sector. In this paper I review the present status of the search for muon decays beyond the Standard Model, with a special attention to the most conventional muon lepton flavor violation experiments, but also considering more exotic scenarios and future outlooks.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"4 ","pages":"Article 100029"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2019.100029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42221591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-01DOI: 10.1016/j.revip.2019.100030
Si-Hui Tan , Peter P. Rohde
Linear optics has seen a resurgence for applications in quantum information processing owing to its miniaturisation on-chip, and increase in production efficiency and quality of single photons. Time-bin encodings have also become feasible owing to architectural breakthroughs, and new processing capabilities. Theoretical efforts have found new ways to implement universal quantum computations with linear optics requiring less resources, and to demonstrate the capabilities of linear optics without requiring a universal optical quantum computer.
{"title":"The resurgence of the linear optics quantum interferometer — recent advances & applications","authors":"Si-Hui Tan , Peter P. Rohde","doi":"10.1016/j.revip.2019.100030","DOIUrl":"10.1016/j.revip.2019.100030","url":null,"abstract":"<div><p>Linear optics has seen a resurgence for applications in quantum information processing owing to its miniaturisation on-chip, and increase in production efficiency and quality of single photons. Time-bin encodings have also become feasible owing to architectural breakthroughs, and new processing capabilities. Theoretical efforts have found new ways to implement universal quantum computations with linear optics requiring less resources, and to demonstrate the capabilities of linear optics without requiring a universal optical quantum computer.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"4 ","pages":"Article 100030"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2019.100030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44152388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-01DOI: 10.1016/j.revip.2019.100034
Tommaso Boccali
High Energy Physics Experiments (HEP experiments in the following) have been at least in the last 3 decades at the forefront of technology, in aspects like detector design and construction, number of collaborators, and complexity of data analyses. As uncommon in previous particle physics experiments, the computing and data handling aspects have not been marginal in their design and operations; the cost of the IT related components, from software development to storage systems and to distributed complex e-Infrastructures, has raised to a level which needs proper understanding and planning from the first moments in the lifetime of an experiment. In the following sections we will first try to explore the computing and software solutions developed and operated in the most relevant past and present experiments, with a focus on the technologies deployed; a technology tracking section is presented in order to pave the way to possible solutions for next decade experiments, and beyond. While the focus of this review is on offline computing model, the distinction is a shady one, and some experiments have already experienced contaminations between triggers selection and offline workflows; it is anticipated the trend will continue in the future.
{"title":"Computing models in high energy physics","authors":"Tommaso Boccali","doi":"10.1016/j.revip.2019.100034","DOIUrl":"10.1016/j.revip.2019.100034","url":null,"abstract":"<div><p>High Energy Physics Experiments (HEP experiments in the following) have been at least in the last 3 decades at the forefront of technology, in aspects like detector design and construction, number of collaborators, and complexity of data analyses. As uncommon in previous particle physics experiments, the computing and data handling aspects have not been marginal in their design and operations; the cost of the IT related components, from software development to storage systems and to distributed complex e-Infrastructures, has raised to a level which needs proper understanding and planning from the first moments in the lifetime of an experiment. In the following sections we will first try to explore the computing and software solutions developed and operated in the most relevant past and present experiments, with a focus on the technologies deployed; a technology tracking section is presented in order to pave the way to possible solutions for next decade experiments, and beyond. While the focus of this review is on offline computing model, the distinction is a shady one, and some experiments have already experienced contaminations between triggers selection and offline workflows; it is anticipated the trend will continue in the future.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"4 ","pages":"Article 100034"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2019.100034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48545508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}