Pub Date : 2018-11-01DOI: 10.1016/j.revip.2018.11.001
Ballestrero Alessandro , Bellan Riccardo , Biedermann Benedikt , Bittrich Carsten , Brivio Ilaria , Cardini Andrea , Gomez-Ceballos Guillelmo , Charlot Claude , Ciulli Vitaliano , Covarelli Roberto , Cuevas Javier , Denner Ansgar , Dittmaier Stefan , Di Ciaccio Lucia , Duric Senka , E. Jasper Gerard Lauwers , Farrington Sinead , Ferrari Pamela , Ferreira Silva Pedro , Finco Linda , Zeppenfeld Dieter
This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
{"title":"Vector boson scattering: Recent experimental and theory developments","authors":"Ballestrero Alessandro , Bellan Riccardo , Biedermann Benedikt , Bittrich Carsten , Brivio Ilaria , Cardini Andrea , Gomez-Ceballos Guillelmo , Charlot Claude , Ciulli Vitaliano , Covarelli Roberto , Cuevas Javier , Denner Ansgar , Dittmaier Stefan , Di Ciaccio Lucia , Duric Senka , E. Jasper Gerard Lauwers , Farrington Sinead , Ferrari Pamela , Ferreira Silva Pedro , Finco Linda , Zeppenfeld Dieter","doi":"10.1016/j.revip.2018.11.001","DOIUrl":"10.1016/j.revip.2018.11.001","url":null,"abstract":"<div><p>This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"3 ","pages":"Pages 44-63"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2018.11.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47917611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-01DOI: 10.1016/j.revip.2018.07.001
Masayuki Hashisaka , Toshimasa Fujisawa
In interacting one-dimensional (1D) systems, the quasi-particle picture in Fermi-liquid theory cannot successfully describe low-energy physics. Instead, electron dynamics in one dimension can be described as collective excitations, i.e., charge- and/or spin-density waves, which are elementary excitations in a Tomonaga-Luttinger (TL) liquid. Integer quantum Hall (QH) edge channels, which are chiral 1D electron states formed along the periphery of integer QH systems, provide a unique opportunity for studying TL-liquid physics. When edge channels lie parallel to each other, inter-channel interactions induce significant TL-liquid behaviors in coupled plasmons. One can prepare an arbitrary number of co- and/or counter-propagating channels of spin-up or -down electrons to form such a multiple edge-channel system. The plasmon dynamics can be experimentally investigated by using various functional devices such as charge injectors, detectors, and spin filters to select spin and bidirectional-momentum degrees of freedom. This article reviews electron dynamics in such QH TL liquids. We first introduce the chiral distributed-element circuit model for describing interactions in single and multiple integer-edge-channel systems. This simple model captures the TL-liquid nature of the 1D plasmon transport. We then review experimental studies on TL-liquid behaviors. These experiments show that plasmon velocity is significantly enhanced by the intra-channel interaction. In addition, they show that co-propagating channels with spin degrees of freedom exhibit TL-liquid behavior known as spin-charge separation, in which spin and charge excitations behave differently. This is demonstrated with a novel time- and spin-resolved charge detection technique. They also reveal that charge fractionalization occurs at the boundaries of counter-propagating channels with bidirectional-momentum degrees of freedom. A charge excitation even as small as an electron charge is fractionalized into smaller charges to form coupled plasmons in the interacting region. These experiments highlight the intriguing quantum many-body nature of QH TL liquids.
{"title":"Tomonaga–Luttinger-liquid nature of edge excitations in integer quantum Hall edge channels","authors":"Masayuki Hashisaka , Toshimasa Fujisawa","doi":"10.1016/j.revip.2018.07.001","DOIUrl":"10.1016/j.revip.2018.07.001","url":null,"abstract":"<div><p>In interacting one-dimensional (1D) systems, the quasi-particle picture in Fermi-liquid theory cannot successfully describe low-energy physics. Instead, electron dynamics in one dimension can be described as collective excitations, i.e., charge- and/or spin-density waves, which are elementary excitations in a Tomonaga-Luttinger (TL) liquid. Integer quantum Hall (QH) edge channels, which are chiral 1D electron states formed along the periphery of integer QH systems, provide a unique opportunity for studying TL-liquid physics. When edge channels lie parallel to each other, inter-channel interactions induce significant TL-liquid behaviors in coupled plasmons. One can prepare an arbitrary number of co- and/or counter-propagating channels of spin-up or -down electrons to form such a multiple edge-channel system. The plasmon dynamics can be experimentally investigated by using various functional devices such as charge injectors, detectors, and spin filters to select spin and bidirectional-momentum degrees of freedom. This article reviews electron dynamics in such QH TL liquids. We first introduce the chiral distributed-element circuit model for describing interactions in single and multiple integer-edge-channel systems. This simple model captures the TL-liquid nature of the 1D plasmon transport. We then review experimental studies on TL-liquid behaviors. These experiments show that plasmon velocity is significantly enhanced by the intra-channel interaction. In addition, they show that co-propagating channels with spin degrees of freedom exhibit TL-liquid behavior known as spin-charge separation, in which spin and charge excitations behave differently. This is demonstrated with a novel time- and spin-resolved charge detection technique. They also reveal that charge fractionalization occurs at the boundaries of counter-propagating channels with bidirectional-momentum degrees of freedom. A charge excitation even as small as an electron charge is fractionalized into smaller charges to form coupled plasmons in the interacting region. These experiments highlight the intriguing quantum many-body nature of QH TL liquids.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"3 ","pages":"Pages 32-43"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2018.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43610602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-01DOI: 10.1016/j.revip.2017.10.001
Harald Haas
In this paper we will first explain what Light-Fidelity (LiFi) is and argue that it is a 5th Generation (5G) technology. Peak transmission speeds of 8 Gbps from a single light source have been demonstrated, and complete cellular networks based on LiFi have been created. We will discuss numerous misconceptions and illustrate the potential impact this technology can have across a number of existing and emerging industries. We also discuss new applications which LiFi can unlock in the future.
{"title":"LiFi is a paradigm-shifting 5G technology","authors":"Harald Haas","doi":"10.1016/j.revip.2017.10.001","DOIUrl":"10.1016/j.revip.2017.10.001","url":null,"abstract":"<div><p>In this paper we will first explain what Light-Fidelity (LiFi) is and argue that it is a 5th Generation (5G) technology. Peak transmission speeds of 8 Gbps from a single light source have been demonstrated, and complete cellular networks based on LiFi have been created. We will discuss numerous misconceptions and illustrate the potential impact this technology can have across a number of existing and emerging industries. We also discuss new applications which LiFi can unlock in the future.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"3 ","pages":"Pages 26-31"},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2017.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48241960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-11-01DOI: 10.1016/j.revip.2017.02.002
Xie Chen
Symmetry fractionalization describes the fascinating phenomena that excitations in a 2D topological system can transform under symmetry in a fractional way. For example in fractional quantum Hall systems, excitations can carry fractional charges while the electrons making up the system have charge one. An important question is to understand what symmetry fractionalization (SF) patterns are possible given different types of topological order and different global symmetries. A lot of progress has been made recently in classifying the SF patterns, providing deep insight into the strongly correlated experimental signatures of systems like spin liquids and topological insulators. We review recent developments on this topic. First, it was shown that the SF patterns need to satisfy some simple consistency conditions. More interestingly, it was realized that some seemingly consistent SF patterns are actually ‘anomalous’, i.e. they cannot be realized in strictly 2D systems. We review various methods that have been developed to detect such anomalies. Applying such an understanding to 2D spin liquid allows one to enumerate all potentially realizable SF patterns and propose numerical and experimental probing methods to distinguish them. On the other hand, the anomalous SF patterns were shown to exist on the surface of 3D systems and reflect the nontrivial order in the 3D bulk. We review examples of this kind where the bulk states are topological insulators, topological superconductors, or have other symmetry protected topological orders.
{"title":"Symmetry fractionalization in two dimensional topological phases","authors":"Xie Chen","doi":"10.1016/j.revip.2017.02.002","DOIUrl":"10.1016/j.revip.2017.02.002","url":null,"abstract":"<div><p>Symmetry fractionalization describes the fascinating phenomena that excitations in a 2D topological system can transform under symmetry in a fractional way. For example in fractional quantum Hall systems, excitations can carry fractional charges while the electrons making up the system have charge one. An important question is to understand what symmetry fractionalization (SF) patterns are possible given different types of topological order and different global symmetries. A lot of progress has been made recently in classifying the SF patterns, providing deep insight into the strongly correlated experimental signatures of systems like spin liquids and topological insulators. We review recent developments on this topic. First, it was shown that the SF patterns need to satisfy some simple consistency conditions. More interestingly, it was realized that some seemingly consistent SF patterns are actually ‘anomalous’, i.e. they cannot be realized in strictly 2D systems. We review various methods that have been developed to detect such anomalies. Applying such an understanding to 2D spin liquid allows one to enumerate all potentially realizable SF patterns and propose numerical and experimental probing methods to distinguish them. On the other hand, the anomalous SF patterns were shown to exist on the surface of 3D systems and reflect the nontrivial order in the 3D bulk. We review examples of this kind where the bulk states are topological insulators, topological superconductors, or have other symmetry protected topological orders.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"2 ","pages":"Pages 3-18"},"PeriodicalIF":0.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2017.02.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90491360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-11-01DOI: 10.1016/j.revip.2017.05.001
Fabio Pietrucci
Computer simulations play an important role in the study of transformation processes of condensed matter, including phase transitions, chemical reactions, and conformational changes of biomolecules. In principle, atomic trajectories, such as those generated using the molecular dynamics approach, contain detailed structural, thermodynamic, and kinetic information about activated processes. In practice, due to free energy barriers, there is often a wide gap between the time scale of the transformation and the time scale accessible with simulations. This review offers a practical guide to the ingenious methods aimed to accelerate the exploration and reconstruction of free energy landscapes of complex systems. The focus is on basic unifying concepts, successful strategies, and pitfalls, illustrated with examples of application to scientific problems from different disciplines. The current challenges in the field consist mainly in the cumbersome identification of optimal reaction coordinates and in the extensive recourse to expert human supervision and fine tuning of the algorithms. The full achievement of wide-spectrum formulations and easy reproducibility of results would constitute the breakthrough necessary to enter the era of routine use of enhanced sampling simulations.
{"title":"Strategies for the exploration of free energy landscapes: Unity in diversity and challenges ahead","authors":"Fabio Pietrucci","doi":"10.1016/j.revip.2017.05.001","DOIUrl":"10.1016/j.revip.2017.05.001","url":null,"abstract":"<div><p>Computer simulations play an important role in the study of transformation processes of condensed matter, including phase transitions, chemical reactions, and conformational changes of biomolecules. In principle, atomic trajectories, such as those generated using the molecular dynamics approach, contain detailed structural, thermodynamic, and kinetic information about activated processes. In practice, due to free energy barriers, there is often a wide gap between the time scale of the transformation and the time scale accessible with simulations. This review offers a practical guide to the ingenious methods aimed to accelerate the exploration and reconstruction of free energy landscapes of complex systems. The focus is on basic unifying concepts, successful strategies, and pitfalls, illustrated with examples of application to scientific problems from different disciplines. The current challenges in the field consist mainly in the cumbersome identification of optimal reaction coordinates and in the extensive recourse to expert human supervision and fine tuning of the algorithms. The full achievement of wide-spectrum formulations and easy reproducibility of results would constitute the breakthrough necessary to enter the era of routine use of enhanced sampling simulations.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"2 ","pages":"Pages 32-45"},"PeriodicalIF":0.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2017.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43628227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-11-01DOI: 10.1016/j.revip.2016.11.003
Alexander S. Solntsev, Andrey A. Sukhorukov
Photon entanglement has a range of applications from secure communication to the tests of quantum mechanics. Utilizing optical nonlinearity for the generation of entangled photons remains the most widely used approach due to its quality and simplicity. The on-chip integration of entangled light sources has enabled the increase of complexity and enhancement of stability compared to bulk optical implementations. Entanglement over different optical paths is uniquely suited for photonic chips, since waveguides are typically optimized for particular wavelength and polarization, making polarization- and frequency-entanglement less practical. In this review we focus on the latest developments in the field of on-chip nonlinear path-entangled photon sources. We provide a review of recent implementations and compare various approaches to tunability, including thermo-optical, electro-optical and all-optical tuning. We also discuss a range of important technical issues, in particular the on-chip separation of the pump and generated entangled photons. Finally, we review different quality control methods, including on-chip quantum tomography and recently discovered classical-quantum analogy that allows to characterize entangled photon sources by performing simple nonlinear measurements in the classical regime.
{"title":"Path-entangled photon sources on nonlinear chips","authors":"Alexander S. Solntsev, Andrey A. Sukhorukov","doi":"10.1016/j.revip.2016.11.003","DOIUrl":"10.1016/j.revip.2016.11.003","url":null,"abstract":"<div><p>Photon entanglement has a range of applications from secure communication to the tests of quantum mechanics. Utilizing optical nonlinearity for the generation of entangled photons remains the most widely used approach due to its quality and simplicity. The on-chip integration of entangled light sources has enabled the increase of complexity and enhancement of stability compared to bulk optical implementations. Entanglement over different optical paths is uniquely suited for photonic chips, since waveguides are typically optimized for particular wavelength and polarization, making polarization- and frequency-entanglement less practical. In this review we focus on the latest developments in the field of on-chip nonlinear path-entangled photon sources. We provide a review of recent implementations and compare various approaches to tunability, including thermo-optical, electro-optical and all-optical tuning. We also discuss a range of important technical issues, in particular the on-chip separation of the pump and generated entangled photons. Finally, we review different quality control methods, including on-chip quantum tomography and recently discovered classical-quantum analogy that allows to characterize entangled photon sources by performing simple nonlinear measurements in the classical regime.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"2 ","pages":"Pages 19-31"},"PeriodicalIF":0.0,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2016.11.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47399790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-15DOI: 10.1016/J.REVIP.2016.06.002
P. Kevrekidis, D. Frantzeskakis
{"title":"DUPLICATE: Solitons in coupled nonlinear Schrödinger models: A survey of recent developments","authors":"P. Kevrekidis, D. Frantzeskakis","doi":"10.1016/J.REVIP.2016.06.002","DOIUrl":"https://doi.org/10.1016/J.REVIP.2016.06.002","url":null,"abstract":"","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/J.REVIP.2016.06.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54995929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-01DOI: 10.1016/j.revip.2016.03.002
Ivan S. Maksymov
Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.
{"title":"Magneto-plasmonic nanoantennas: Basics and applications","authors":"Ivan S. Maksymov","doi":"10.1016/j.revip.2016.03.002","DOIUrl":"10.1016/j.revip.2016.03.002","url":null,"abstract":"<div><p>Plasmonic nanoantennas are a hot and rapidly expanding research field. Here we overview basic operating principles and applications of novel magneto-plasmonic nanoantennas, which are made of ferromagnetic metals and driven not only by light, but also by external magnetic fields. We demonstrate that magneto-plasmonic nanoantennas enhance the magneto-optical effects, which introduces additional degrees of freedom in the control of light at the nano-scale. This property is used in conceptually new devices such as magneto-plasmonic rulers, ultra-sensitive biosensors, one-way subwavelength waveguides and extraordinary optical transmission structures, as well as in novel biomedical imaging modalities. We also point out that in certain cases ‘non-optical’ ferromagnetic nanostructures may operate as magneto-plasmonic nanoantennas. This undesigned extra functionality capitalises on established optical characterisation techniques of magnetic nanomaterials and it may be useful for the integration of nanophotonics and nanomagnetism on a single chip.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"1 ","pages":"Pages 36-51"},"PeriodicalIF":0.0,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2016.03.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54995851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-01DOI: 10.1016/j.revip.2016.03.003
A. Fava
Several “anomalies” have been reported from a variety of experiments studying neutrino oscillations over short baselines (less than 1 km) since 1998. Even though not fully compatible with each other, these results could possibly hint at the existence of at least one additional “sterile” neutrino state beyond the Standard Model picture of Particle Physics.
In recent years significant contributions to the search for sterile neutrinos have led to a narrowing of the region of the parameter space where all experimental results can be accommodated. However, the persistence of unexplained tensions together with the groundbreaking impact of the possible discovery of sterile neutrinos call for a conclusive experiment.
{"title":"Experimental investigation of the thriving mystery of sterile neutrinos","authors":"A. Fava","doi":"10.1016/j.revip.2016.03.003","DOIUrl":"10.1016/j.revip.2016.03.003","url":null,"abstract":"<div><p>Several “anomalies” have been reported from a variety of experiments studying neutrino oscillations over short baselines (less than 1 km) since 1998. Even though not fully compatible with each other, these results could possibly hint at the existence of at least one additional “sterile” neutrino state beyond the Standard Model picture of Particle Physics.</p><p>In recent years significant contributions to the search for sterile neutrinos have led to a narrowing of the region of the parameter space where all experimental results can be accommodated. However, the persistence of unexplained tensions together with the groundbreaking impact of the possible discovery of sterile neutrinos call for a conclusive experiment.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"1 ","pages":"Pages 52-59"},"PeriodicalIF":0.0,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2016.03.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54995869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}