Pub Date : 2024-11-21DOI: 10.1016/j.matt.2024.10.019
Mingxing Peng, Qilong Zhao, Anping Chai, Yutian Wang, Min Wang, Xuemin Du
Establishing vascular neural networks is critical for tissue regeneration. However, none of the existing approaches can replicate the physiological processes that varying extracellular cues sequentially play parts in different phases, thus hindering synergistic neurovascular remodeling. Here, we report a ferroelectric living interface for fine-tuned exosome secretion (LIFES) that harnesses unique topographical and electric (piezoelectric and photopyroelectric) signals and sustained generation of bioactive exosomes by rationally constructing a ferroelectric layer and a living cell layer. The LIFES exhibits physiology-mimicking paracrine effects, including sustained (∼192 h), phase-specific exosome secretion with tunable contents (∼8-fold increases) and programmable microRNA (miRNA) cargoes (initially pro-angiogenic and later pro-neurogenic), which overcome the limitations of the existing exosome delivery systems, such as short lifetime (∼24–48 h), difficult-to-preserve bioactivity, and non-changeable cargoes. LIFES allows for enhanced effectiveness in promoting neurovascular remodeling both in vitro and in challenging diabetic wound models, opening new avenues for next-generation intelligent materials and biomedical devices.
{"title":"A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling","authors":"Mingxing Peng, Qilong Zhao, Anping Chai, Yutian Wang, Min Wang, Xuemin Du","doi":"10.1016/j.matt.2024.10.019","DOIUrl":"https://doi.org/10.1016/j.matt.2024.10.019","url":null,"abstract":"Establishing vascular neural networks is critical for tissue regeneration. However, none of the existing approaches can replicate the physiological processes that varying extracellular cues sequentially play parts in different phases, thus hindering synergistic neurovascular remodeling. Here, we report a ferroelectric living interface for fine-tuned exosome secretion (LIFES) that harnesses unique topographical and electric (piezoelectric and photopyroelectric) signals and sustained generation of bioactive exosomes by rationally constructing a ferroelectric layer and a living cell layer. The LIFES exhibits physiology-mimicking paracrine effects, including sustained (∼192 h), phase-specific exosome secretion with tunable contents (∼8-fold increases) and programmable microRNA (miRNA) cargoes (initially pro-angiogenic and later pro-neurogenic), which overcome the limitations of the existing exosome delivery systems, such as short lifetime (∼24–48 h), difficult-to-preserve bioactivity, and non-changeable cargoes. LIFES allows for enhanced effectiveness in promoting neurovascular remodeling both <em>in vitro</em> and in challenging diabetic wound models, opening new avenues for next-generation intelligent materials and biomedical devices.","PeriodicalId":388,"journal":{"name":"Matter","volume":"98 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.matt.2024.10.022
Yuanhao Chen, Cristian Valenzuela, Yuan Liu, Xiao Yang, Yanzhao Yang, Xuan Zhang, Shaoshuai Ma, Ran Bi, Ling Wang, Wei Feng
Skeletal muscles are composed of neuromuscular fiber bundles that combine the sensing capability of muscle spindle fibers with the actuation function of muscle fibers. However, it is difficult to develop artificial soft neuromuscular fiber bundles (NeuroMuscles) with sophisticated sensing-diagnosis-actuation autonomy. Herein, a unique rotational molding strategy is proposed to fabricate core-multishelled fibers with a liquid metal core, liquid crystal elastomer actuation layer, and adhesion sheath. The NeuroMuscles are developed by seamlessly welding multiple fibers through a self-reinforcing interface featuring independent channels for stimulus source and perception signals with built-in adaptive feedback. When integrated with NeuroMuscles, artificial arms and fingers can not only sense their own motion in real time but also detect the object’s surfaces. Importantly, the biomimetic knee-jerk reflex of artificial legs is achieved by establishing adaptive feedback within NeuroMuscles without off-board control systems for signal processing. The NeuroMuscles could function as indispensable components for implantable muscular reinforcements, next-generation soft machines, and beyond.
{"title":"Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback","authors":"Yuanhao Chen, Cristian Valenzuela, Yuan Liu, Xiao Yang, Yanzhao Yang, Xuan Zhang, Shaoshuai Ma, Ran Bi, Ling Wang, Wei Feng","doi":"10.1016/j.matt.2024.10.022","DOIUrl":"https://doi.org/10.1016/j.matt.2024.10.022","url":null,"abstract":"Skeletal muscles are composed of neuromuscular fiber bundles that combine the sensing capability of muscle spindle fibers with the actuation function of muscle fibers. However, it is difficult to develop artificial soft neuromuscular fiber bundles (NeuroMuscles) with sophisticated sensing-diagnosis-actuation autonomy. Herein, a unique rotational molding strategy is proposed to fabricate core-multishelled fibers with a liquid metal core, liquid crystal elastomer actuation layer, and adhesion sheath. The NeuroMuscles are developed by seamlessly welding multiple fibers through a self-reinforcing interface featuring independent channels for stimulus source and perception signals with built-in adaptive feedback. When integrated with NeuroMuscles, artificial arms and fingers can not only sense their own motion in real time but also detect the object’s surfaces. Importantly, the biomimetic knee-jerk reflex of artificial legs is achieved by establishing adaptive feedback within NeuroMuscles without off-board control systems for signal processing. The NeuroMuscles could function as indispensable components for implantable muscular reinforcements, next-generation soft machines, and beyond.","PeriodicalId":388,"journal":{"name":"Matter","volume":"18 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.matt.2024.10.020
Lu Song, Ruiyan Guo, Li Pan, Yishakejiang Saimaiti, Shaopeng Wang, Fan Li, Xiuhai Mao, Fei Wang, Qi Li, Dekai Ye, Sisi Jia, Gang Liu, Min Li, Xiaolei Zuo, Chunhai Fan
Rapid data growth highlights the increasing demand for high-density storage solutions. Multiplexed optical recording based on synthetic inorganic nanoparticles represents the next generation of data storage. However, diverse photophysical properties of nanoparticles reduce their reliability and information density. Here, we present a highly programmable polychromatic DNA tetrahedral framework (PDTF) that enables precise control over their optical performances. By programming the size of PDTFs, we reduce the feature size of the recording medium to 3.4 nm, which was 41-fold smaller than that of commercially available Blu-ray technology. PDTF chains with up to 47 million distinct color codes further enhance optical storage with higher information capacity. Additionally, nanopatterning technology integrates the PDTFs into on-chip architectures, achieving an impressive density of 25.9 Gb/cm2. Finally, the PDTFs demonstrate excellent re-writability and long-term stability (10,826 years at room temperature), exhibiting promising potential in high-density and secure data storage applications.
{"title":"Massively multiplexed optical recording with polychromatic DNA frameworks","authors":"Lu Song, Ruiyan Guo, Li Pan, Yishakejiang Saimaiti, Shaopeng Wang, Fan Li, Xiuhai Mao, Fei Wang, Qi Li, Dekai Ye, Sisi Jia, Gang Liu, Min Li, Xiaolei Zuo, Chunhai Fan","doi":"10.1016/j.matt.2024.10.020","DOIUrl":"https://doi.org/10.1016/j.matt.2024.10.020","url":null,"abstract":"Rapid data growth highlights the increasing demand for high-density storage solutions. Multiplexed optical recording based on synthetic inorganic nanoparticles represents the next generation of data storage. However, diverse photophysical properties of nanoparticles reduce their reliability and information density. Here, we present a highly programmable polychromatic DNA tetrahedral framework (PDTF) that enables precise control over their optical performances. By programming the size of PDTFs, we reduce the feature size of the recording medium to 3.4 nm, which was 41-fold smaller than that of commercially available Blu-ray technology. PDTF chains with up to 47 million distinct color codes further enhance optical storage with higher information capacity. Additionally, nanopatterning technology integrates the PDTFs into on-chip architectures, achieving an impressive density of 25.9 Gb/cm<sup>2</sup>. Finally, the PDTFs demonstrate excellent re-writability and long-term stability (10,826 years at room temperature), exhibiting promising potential in high-density and secure data storage applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.matt.2024.10.016
Xiaoyu Hou, Kaiyue Zhang, Xintao Lai, Liwei Hu, Florian Vogelbacher, Yanlin Song, Lei Jiang, Mingzhu Li
Passive daytime radiative cooling is regarded as a promising technology to achieve all-day subambient cooling without energy consumption and pollution. The installation of monotonous white radiative cooling coating on the facades of buildings poses challenges in terms of aesthetic integration. Fabricating radiative cooling coatings with different colors and high cooling efficiency at a low cost is an optimal solution for their broad adoption and commercialization. Here, inspired by the elytra of the scarab beetle, we design a hierarchically porous nested structured radiative cooling film with high subambient cooling efficiency and flexible color tunability. This film exhibits both high solar reflectance (93.4%) and superior thermal emissivity (92.3%), realizing subambient cooling of ∼10.2°C at night and ∼7.2°C at midday. Its color is brilliant, stable, and flexible. Additionally, this film is self-cleaning and can reduce noise, which suggests possibilities for the development of multifunctional radiative cooling surfaces in building envelopes, automobile coatings, and clothes.
{"title":"Brilliant colorful daytime radiative cooling coating mimicking scarab beetle","authors":"Xiaoyu Hou, Kaiyue Zhang, Xintao Lai, Liwei Hu, Florian Vogelbacher, Yanlin Song, Lei Jiang, Mingzhu Li","doi":"10.1016/j.matt.2024.10.016","DOIUrl":"https://doi.org/10.1016/j.matt.2024.10.016","url":null,"abstract":"Passive daytime radiative cooling is regarded as a promising technology to achieve all-day subambient cooling without energy consumption and pollution. The installation of monotonous white radiative cooling coating on the facades of buildings poses challenges in terms of aesthetic integration. Fabricating radiative cooling coatings with different colors and high cooling efficiency at a low cost is an optimal solution for their broad adoption and commercialization. Here, inspired by the elytra of the scarab beetle, we design a hierarchically porous nested structured radiative cooling film with high subambient cooling efficiency and flexible color tunability. This film exhibits both high solar reflectance (93.4%) and superior thermal emissivity (92.3%), realizing subambient cooling of ∼10.2°C at night and ∼7.2°C at midday. Its color is brilliant, stable, and flexible. Additionally, this film is self-cleaning and can reduce noise, which suggests possibilities for the development of multifunctional radiative cooling surfaces in building envelopes, automobile coatings, and clothes.","PeriodicalId":388,"journal":{"name":"Matter","volume":"46 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.matt.2024.10.024
Yunna Guo, Hantao Cui, Peng Jia, Zhangran Ye, Lei Deng, Hui Li, Baiyu Guo, Xuedong Zhang, Jie Huang, Yong Su, Jianyu Huang, Bin Wen, Yang Lu, Liqiang Zhang
(Matter 7, ◼◼◼–◼◼◼; December 4, 2024)
(事项 7,◼◼◼-◼◼◼;2024 年 12 月 4 日)
{"title":"Nanoscale cold welding of glass","authors":"Yunna Guo, Hantao Cui, Peng Jia, Zhangran Ye, Lei Deng, Hui Li, Baiyu Guo, Xuedong Zhang, Jie Huang, Yong Su, Jianyu Huang, Bin Wen, Yang Lu, Liqiang Zhang","doi":"10.1016/j.matt.2024.10.024","DOIUrl":"https://doi.org/10.1016/j.matt.2024.10.024","url":null,"abstract":"(Matter <em>7</em>, ◼◼◼–◼◼◼; December 4, 2024)","PeriodicalId":388,"journal":{"name":"Matter","volume":"16 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.matt.2024.10.015
Kourosh Darvish, Marta Skreta, Yuchi Zhao, Naruki Yoshikawa, Sagnik Som, Miroslav Bogdanovic, Yang Cao, Han Hao, Haoping Xu, Alán Aspuru-Guzik, Animesh Garg, Florian Shkurti
Chemistry experiments can be resource- and labor-intensive, often requiring manual tasks like polishing electrodes in electrochemistry. Traditional lab automation infrastructure faces challenges adapting to new experiments. To address this, we introduce ORGANA, an assistive robotic system that automates diverse chemistry experiments using decision-making and perception tools. It makes decisions with chemists in the loop to control robots and lab devices. ORGANA interacts with chemists using large language models (LLMs) to derive experiment goals, handle disambiguation, and provide experiment logs. ORGANA plans and executes complex tasks with visual feedback while supporting scheduling and parallel task execution. We demonstrate ORGANA’s capabilities in solubility, pH measurement, recrystallization, and electrochemistry experiments. In electrochemistry, it executes a 19-step plan in parallel to characterize quinone derivatives for flow batteries. Our user study shows ORGANA reduces frustration and physical demand by over 50%, with users saving an average of 80.3% of their time when using it.
{"title":"ORGANA: A robotic assistant for automated chemistry experimentation and characterization","authors":"Kourosh Darvish, Marta Skreta, Yuchi Zhao, Naruki Yoshikawa, Sagnik Som, Miroslav Bogdanovic, Yang Cao, Han Hao, Haoping Xu, Alán Aspuru-Guzik, Animesh Garg, Florian Shkurti","doi":"10.1016/j.matt.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.matt.2024.10.015","url":null,"abstract":"Chemistry experiments can be resource- and labor-intensive, often requiring manual tasks like polishing electrodes in electrochemistry. Traditional lab automation infrastructure faces challenges adapting to new experiments. To address this, we introduce ORGANA, an assistive robotic system that automates diverse chemistry experiments using decision-making and perception tools. It makes decisions with chemists in the loop to control robots and lab devices. ORGANA interacts with chemists using large language models (LLMs) to derive experiment goals, handle disambiguation, and provide experiment logs. ORGANA plans and executes complex tasks with visual feedback while supporting scheduling and parallel task execution. We demonstrate ORGANA’s capabilities in solubility, pH measurement, recrystallization, and electrochemistry experiments. In electrochemistry, it executes a 19-step plan in parallel to characterize quinone derivatives for flow batteries. Our user study shows ORGANA reduces frustration and physical demand by over 50%, with users saving an average of 80.3% of their time when using it.","PeriodicalId":388,"journal":{"name":"Matter","volume":"95 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.matt.2024.08.008
Yaning Ma , Zihan Zhao , Zhiran Zheng , Jiawei Li , Min-Hui Li , Jun Hu
Polymers constructed from natural thioctic acid (TA) provide a solution for the development of sustainable materials. However, their inherent weak networks make them difficult to use in engineering materials featuring high durability and mechanical robustness. In this work, the autocatalytic dual-dynamic covalent adaptable networks (CANs) are devised by curing diglycidyl 4,5-epoxycyclohexane-1,2-dicarboxylate (DGEDC) with TA and bis(p-aminocyclohexyl)methane (PACM). The resulting DGEDC/TA/PACM thermosets exhibit good mechanical and thermal properties (Tg of 145°C, Td5% of 289°C, tensile strength of 70 MPa, Young’s modulus of 2.25 GPa), higher than previous poly(thioctic acid)-based materials. Due to topological network rearrangements induced by the exchange of disulfide bonds and tertiary amine-catalyzed transesterification reactions, they can be easily reshaped and repaired. Furthermore, they can be degraded mildly and upcycled into polyurethane foam by in situ foaming. This strategy of autocatalytic dual-dynamic CANs will inspire the development of practical applications of poly(thioctic acid).
由天然硫辛酸(TA)制成的聚合物为开发可持续材料提供了一种解决方案。然而,其固有的弱网络使其难以用于具有高耐久性和机械坚固性的工程材料。在这项工作中,通过将 4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯(DGEDC)与 TA 和双(对氨基环己基)甲烷(PACM)固化,设计出了自催化双动力共价适应网络(CANs)。由此产生的 DGEDC/TA/PACM 热固性材料具有良好的机械性能和热性能(Tg 为 145°C,Td5% 为 289°C,拉伸强度为 70 兆帕,杨氏模量为 2.25 GPa),高于以前的聚硫辛酸基材料。由于二硫键交换和叔胺催化的酯交换反应引起的拓扑网络重排,它们可以很容易地重塑和修复。此外,它们还能被温和降解,并通过原位发泡被再生为聚氨酯泡沫。这种自催化双动力 CAN 的策略将为聚硫辛酸的实际应用开发带来启发。
{"title":"High-performance poly(thioctic acid)-based thermosets featuring upcycling ability for in situ foaming enabled by dual-dynamic networks","authors":"Yaning Ma , Zihan Zhao , Zhiran Zheng , Jiawei Li , Min-Hui Li , Jun Hu","doi":"10.1016/j.matt.2024.08.008","DOIUrl":"10.1016/j.matt.2024.08.008","url":null,"abstract":"<div><div>Polymers constructed from natural thioctic acid (TA) provide a solution for the development of sustainable materials. However, their inherent weak networks make them difficult to use in engineering materials featuring high durability and mechanical robustness. In this work, the autocatalytic dual-dynamic covalent adaptable networks (CANs) are devised by curing diglycidyl 4,5-epoxycyclohexane-1,2-dicarboxylate (DGEDC) with TA and bis(<em>p</em>-aminocyclohexyl)methane (PACM). The resulting DGEDC/TA/PACM thermosets exhibit good mechanical and thermal properties (<em>T</em><sub><em>g</em></sub> of 145°C, <em>T</em><sub><em>d5%</em></sub> of 289°C, tensile strength of 70 MPa, Young’s modulus of 2.25 GPa), higher than previous poly(thioctic acid)-based materials. Due to topological network rearrangements induced by the exchange of disulfide bonds and tertiary amine-catalyzed transesterification reactions, they can be easily reshaped and repaired. Furthermore, they can be degraded mildly and upcycled into polyurethane foam by <em>in situ</em> foaming. This strategy of autocatalytic dual-dynamic CANs will inspire the development of practical applications of poly(thioctic acid).</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4046-4058"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.matt.2024.08.002
Xun Guo , Hu Hong , Qing Li , Jiaxiong Zhu , Zhuoxi Wu , Yanbo Wang , Shuo Yang , Zhaodong Huang , Yan Huang , Nan Li , Chunyi Zhi
Rechargeable zinc metal batteries (ZMBs) are promising for fabricating low-cost, safe, and high-energy-density storage systems. However, ZMBs typically undergo interfacial side reactions and cathode dissolution during cycling, resulting in the depletion of active materials and performance decay of batteries. Here, we develop a localized high-concentration fluorinated electrolyte featuring a high fluorine/oxygen atomic ratio (388.72%) with beneficial solvation chemistry, fostering the simultaneous formation of a cathode-electrolyte interphase (CEI) enriched with C–F bonds and a ZnF2-dominant solid-electrolyte interphase (SEI). The constructed robust electrode-electrolyte interfaces (EEIs) contribute to dendrite-free zinc deposition and a highly stable cathode, demonstrating soft-packed Zn||Mn-doped V2O5 batteries with an exceptional energy density (91.25 Wh kg−1cathode+anode) and capacity retention (90.5%) over 500 cycles employing a limited zinc supply. The anode-free ZMBs deliver a record power density of 153.9 Wh kg−1cathode+anode with a high capacity retention of 80.2% over 1,500 cycles. This research provides significant insights for interface construction in multivalent ion batteries.
{"title":"Dual robust electrode-electrolyte interfaces enabled by fluorinated electrolyte for high-performance zinc metal batteries","authors":"Xun Guo , Hu Hong , Qing Li , Jiaxiong Zhu , Zhuoxi Wu , Yanbo Wang , Shuo Yang , Zhaodong Huang , Yan Huang , Nan Li , Chunyi Zhi","doi":"10.1016/j.matt.2024.08.002","DOIUrl":"10.1016/j.matt.2024.08.002","url":null,"abstract":"<div><div>Rechargeable zinc metal batteries (ZMBs) are promising for fabricating low-cost, safe, and high-energy-density storage systems. However, ZMBs typically undergo interfacial side reactions and cathode dissolution during cycling, resulting in the depletion of active materials and performance decay of batteries. Here, we develop a localized high-concentration fluorinated electrolyte featuring a high fluorine/oxygen atomic ratio (388.72%) with beneficial solvation chemistry, fostering the simultaneous formation of a cathode-electrolyte interphase (CEI) enriched with C–F bonds and a ZnF<sub>2</sub>-dominant solid-electrolyte interphase (SEI). The constructed robust electrode-electrolyte interfaces (EEIs) contribute to dendrite-free zinc deposition and a highly stable cathode, demonstrating soft-packed Zn||Mn-doped V<sub>2</sub>O<sub>5</sub> batteries with an exceptional energy density (91.25 Wh kg<sup>−1</sup><sub>cathode+anode</sub>) and capacity retention (90.5%) over 500 cycles employing a limited zinc supply. The anode-free ZMBs deliver a record power density of 153.9 Wh kg<sup>−1</sup><sub>cathode+anode</sub> with a high capacity retention of 80.2% over 1,500 cycles. This research provides significant insights for interface construction in multivalent ion batteries.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4014-4030"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.matt.2024.09.009
Yizhe Shao , Chao Dang , Haobo Qi , Ziyang Liu , Haoran Pei , Tongqing Lu , Wei Zhai
Eutectogels, consisting of three-dimensional polymeric networks saturated with deep eutectic solvents (DESs), present a promising option for soft ionic conductors. Instead of modifying polymer chains, we propose a new DES system comprising phytic acid (PA) and choline chloride (ChCl), which enhances dynamic and interactive bonding with polymeric networks to create innovative eutectogels. Here, we develop polyfunctional eutectogels (PETGs) by encapsulating polyvinyl alcohol (PVA) networks with our DES using an evaporation-induced confinement strategy. Experimental validation and numerical calculations demonstrate that PA forms high-density dynamic hydrogen bonds with PVA while shielding hydrogen bonds between PVA chains. This results in a multiple hydrogen-bond-shielded amorphous network (MHSN) with undetectable crystalline regions, thereby promoting ion migration to ensure high conductivity. Moreover, our PETG exhibits rapid self-healing, freeze resistance, self-adhesion, antibacterial properties, and dual sensitivities attributable to the MHSN. We demonstrate the potential of PETGs for applications in motion sensing, machine learning, human-machine interaction, and energy harvesting.
共晶凝胶由饱和深共晶溶剂(DES)的三维聚合物网络组成,是一种前景广阔的软离子导体。我们提出了一种由植酸(PA)和氯化胆碱(ChCl)组成的新型 DES 系统,而不是对聚合物链进行改性,它能增强与聚合物网络的动态互动结合,从而创造出创新的共晶凝胶。在这里,我们采用蒸发诱导限制策略,将聚乙烯醇(PVA)网络与我们的 DES 一起封装,从而开发出多功能共晶凝胶(PETGs)。实验验证和数值计算表明,聚酰胺与 PVA 形成了高密度的动态氢键,同时屏蔽了 PVA 链之间的氢键。这就形成了一个无法检测到结晶区域的多重氢键屏蔽无定形网络(MHSN),从而促进了离子迁移,确保了高导电性。此外,由于 MHSN 的存在,我们的 PETG 还具有快速自愈合、抗冻性、自粘性、抗菌性和双重敏感性。我们展示了 PETG 在运动传感、机器学习、人机交互和能量收集方面的应用潜力。
{"title":"Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics","authors":"Yizhe Shao , Chao Dang , Haobo Qi , Ziyang Liu , Haoran Pei , Tongqing Lu , Wei Zhai","doi":"10.1016/j.matt.2024.09.009","DOIUrl":"10.1016/j.matt.2024.09.009","url":null,"abstract":"<div><div>Eutectogels, consisting of three-dimensional polymeric networks saturated with deep eutectic solvents (DESs), present a promising option for soft ionic conductors. Instead of modifying polymer chains, we propose a new DES system comprising phytic acid (PA) and choline chloride (ChCl), which enhances dynamic and interactive bonding with polymeric networks to create innovative eutectogels. Here, we develop polyfunctional eutectogels (PETGs) by encapsulating polyvinyl alcohol (PVA) networks with our DES using an evaporation-induced confinement strategy. Experimental validation and numerical calculations demonstrate that PA forms high-density dynamic hydrogen bonds with PVA while shielding hydrogen bonds between PVA chains. This results in a multiple hydrogen-bond-shielded amorphous network (MHSN) with undetectable crystalline regions, thereby promoting ion migration to ensure high conductivity. Moreover, our PETG exhibits rapid self-healing, freeze resistance, self-adhesion, antibacterial properties, and dual sensitivities attributable to the MHSN. We demonstrate the potential of PETGs for applications in motion sensing, machine learning, human-machine interaction, and energy harvesting.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4076-4098"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}