首页 > 最新文献

Matter最新文献

英文 中文
24-h-long room temperature phosphorescence in flexible and transparent polymeric materials through charge reservoir strategy 通过电荷储层策略在柔性透明聚合物材料中实现24小时室温磷光
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102374
Jiaju Shi , Yucong Lan , Guodong Liang
This study introduces a strategy to achieve flexible and transparent polymeric materials with hour-long room temperature phosphorescence (HLRTP) property through a facile charge reservoir strategy. Notably, the resulting polymers display a persistent green RTP emission lasting 24 h after photoexcitation, establishing a new benchmark for RTP materials. This RTP duration surpasses by four orders of magnitude that of RTP polymers previously reported. Intriguingly, the HLRTP of these polymer films can be excited by sunlight and persists for 8 h in ambient air. Systematic mechanism investigation demonstrates that the formation of donor/acceptor exciplexes and subsequent radical ions during photoexcitation plays a vital role in achieving HLRTP. Additionally, leveraging its exceptional processability, the flexible polymer material is fabricated into various forms, including one-dimensional fibers, two-dimensional films, and three-dimensional structures, rendering it suitable for diverse applications, including flexible displays and wearable devices.
本研究介绍了一种通过易电荷储层策略实现具有一小时室温磷光(HLRTP)特性的柔性透明聚合物材料的策略。值得注意的是,所得聚合物在光激发后显示出持续24小时的绿色RTP发射,为RTP材料建立了新的基准。这种RTP持续时间超过了先前报道的RTP聚合物的四个数量级。有趣的是,这些聚合物薄膜的HLRTP可以被阳光激发,并在环境空气中持续8小时。系统的机制研究表明,在光激发过程中,供体/受体复合物的形成和随后的自由基离子对实现HLRTP起着至关重要的作用。此外,利用其卓越的可加工性,柔性聚合物材料可制成各种形式,包括一维纤维,二维薄膜和三维结构,使其适用于各种应用,包括柔性显示器和可穿戴设备。
{"title":"24-h-long room temperature phosphorescence in flexible and transparent polymeric materials through charge reservoir strategy","authors":"Jiaju Shi ,&nbsp;Yucong Lan ,&nbsp;Guodong Liang","doi":"10.1016/j.matt.2025.102374","DOIUrl":"10.1016/j.matt.2025.102374","url":null,"abstract":"<div><div>This study introduces a strategy to achieve flexible and transparent polymeric materials with hour-long room temperature phosphorescence (HLRTP) property through a facile charge reservoir strategy. Notably, the resulting polymers display a persistent green RTP emission lasting 24 h after photoexcitation, establishing a new benchmark for RTP materials. This RTP duration surpasses by four orders of magnitude that of RTP polymers previously reported. Intriguingly, the HLRTP of these polymer films can be excited by sunlight and persists for 8 h in ambient air. Systematic mechanism investigation demonstrates that the formation of donor/acceptor exciplexes and subsequent radical ions during photoexcitation plays a vital role in achieving HLRTP. Additionally, leveraging its exceptional processability, the flexible polymer material is fabricated into various forms, including one-dimensional fibers, two-dimensional films, and three-dimensional structures, rendering it suitable for diverse applications, including flexible displays and wearable devices.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102374"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144825118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printable oil-in-liquid metal foam emulsion 可3d打印的液态金属泡沫乳液
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102420
Zefang Li , Leshan Zhao , Christos Kakogiannis , Timothy P. Weihs , Jochen Mueller
Gallium-based low-melting-point liquid metals offer a unique combination of flexibility, conductivity, and thermal transport, making them attractive for soft electronic and thermal systems. However, their extremely low viscosity, high surface tension, and rapid oxidation pose substantial challenges for 3D patterning. While rheological modifications can enable 3D printing, they often compromise conductivity, require complex post-processing, or introduce toxicity. Here, we introduce an oil-in-liquid metal foam emulsion ink that enhances extrudability while largely preserving the intrinsic properties of the base metal. The ink maintains low electrical resistivity (7.25±0.07×107Ω·m at 20°C) and high thermal conductivity (14.86±0.43W/m·K at 20°C) and remains liquid down to 30°C due to supercooling. We demonstrate direct ink writing of complex 3D geometries with resolutions down to 0.5mm and characterize the ink’s thermal and electrical performance. This formulation offers a practical route for processing liquid metals in three dimensions, enabling new opportunities in flexible electronics, thermal interfaces, and soft sensing systems.
镓基低熔点液态金属具有柔韧性、导电性和热输运的独特组合,使其对软电子和热系统具有吸引力。然而,它们极低的粘度,高表面张力和快速氧化对3D图案构成了重大挑战。虽然流变改性可以实现3D打印,但它们通常会影响导电性,需要复杂的后处理,或者引入毒性。在这里,我们介绍了一种油液金属泡沫乳液油墨,它在很大程度上保留了母材的固有特性的同时,提高了可挤压性。该油墨电阻率低(20°20°C时为7.25±0.07×10−7Ω·m7.25±0.07×10−7Ω·m),导热系数高(20°20°C时为14.86±0.43W/m·K14.86±0.43W/m·K),且由于过冷,在−30°−30°C时仍保持液态。我们演示了复杂3D几何图形的直接墨水书写,分辨率低至0.5mm0.5mm,并表征了墨水的热学和电学性能。该配方为三维液态金属加工提供了一条实用的途径,为柔性电子、热界面和软传感系统提供了新的机会。
{"title":"3D-printable oil-in-liquid metal foam emulsion","authors":"Zefang Li ,&nbsp;Leshan Zhao ,&nbsp;Christos Kakogiannis ,&nbsp;Timothy P. Weihs ,&nbsp;Jochen Mueller","doi":"10.1016/j.matt.2025.102420","DOIUrl":"10.1016/j.matt.2025.102420","url":null,"abstract":"<div><div>Gallium-based low-melting-point liquid metals offer a unique combination of flexibility, conductivity, and thermal transport, making them attractive for soft electronic and thermal systems. However, their extremely low viscosity, high surface tension, and rapid oxidation pose substantial challenges for 3D patterning. While rheological modifications can enable 3D printing, they often compromise conductivity, require complex post-processing, or introduce toxicity. Here, we introduce an oil-in-liquid metal foam emulsion ink that enhances extrudability while largely preserving the intrinsic properties of the base metal. The ink maintains low electrical resistivity (<span><math><mrow><mn>7.25</mn><mo>±</mo><mn>0.07</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup><mspace></mspace><mi>Ω</mi><mo>·</mo><mi>m</mi></mrow></math></span> at <span><math><mrow><mn>20</mn><mo>°</mo></mrow></math></span>C) and high thermal conductivity (<span><math><mrow><mn>14.86</mn><mo>±</mo><mn>0.43</mn><mspace></mspace><mi>W</mi><mo>/</mo><mi>m</mi><mo>·</mo><mi>K</mi></mrow></math></span> at <span><math><mrow><mn>20</mn><mo>°</mo></mrow></math></span>C) and remains liquid down to <span><math><mrow><mo>−</mo><mn>30</mn><mo>°</mo></mrow></math></span>C due to supercooling. We demonstrate direct ink writing of complex 3D geometries with resolutions down to <span><math><mrow><mn>0.5</mn><mspace></mspace><mtext>mm</mtext></mrow></math></span> and characterize the ink’s thermal and electrical performance. This formulation offers a practical route for processing liquid metals in three dimensions, enabling new opportunities in flexible electronics, thermal interfaces, and soft sensing systems.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102420"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145059555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart organic cocrystals: Recent advances and perspectives 智能有机共晶:最新进展与展望
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102511
Xinmeng Chen , Jing Li , Siwei Zhang , Lianrui Hu , Yu Wang , Jacky W.Y. Lam , Wenping Hu , Ben Zhong Tang
Smart organic cocrystals, a new class of functional materials that are capable of detecting environmental changes and responding through reversible or observable transformations, have garnered significant interest in the scientific community. However, despite the rapid progress in this field, a comprehensive review that systematically summarizes recent advancements and offers forward-looking insights is still lacking. This review categorizes organic smart cocrystals based on different stimuli sources and highlights representative studies from the past years, covering mechanical force, light, temperature, vapor, acid/base, and humidity stimuli. It focuses on the underlying mechanisms and applications of each stimulus type from the dual perspectives of molecular design strategies and structure-property relationships. Finally, it discusses the challenges, future directions, and prospects of organic stimuli-responsive cocrystals, aiming to facilitate their transition into real-world applications.
智能有机共晶是一类新型功能材料,能够检测环境变化并通过可逆或可观察的转变做出反应,已经引起了科学界的极大兴趣。然而,尽管该领域进展迅速,但仍缺乏系统总结最新进展并提供前瞻性见解的全面审查。本文根据不同的刺激源对有机智能共晶进行了分类,并重点介绍了过去几年的代表性研究,包括机械力、光、温度、蒸汽、酸碱和湿度刺激。从分子设计策略和结构-性质关系的双重角度,重点介绍了每种刺激类型的潜在机制和应用。最后,讨论了有机刺激响应共晶的挑战、未来方向和前景,旨在促进其向现实世界应用的过渡。
{"title":"Smart organic cocrystals: Recent advances and perspectives","authors":"Xinmeng Chen ,&nbsp;Jing Li ,&nbsp;Siwei Zhang ,&nbsp;Lianrui Hu ,&nbsp;Yu Wang ,&nbsp;Jacky W.Y. Lam ,&nbsp;Wenping Hu ,&nbsp;Ben Zhong Tang","doi":"10.1016/j.matt.2025.102511","DOIUrl":"10.1016/j.matt.2025.102511","url":null,"abstract":"<div><div>Smart organic cocrystals, a new class of functional materials that are capable of detecting environmental changes and responding through reversible or observable transformations, have garnered significant interest in the scientific community. However, despite the rapid progress in this field, a comprehensive review that systematically summarizes recent advancements and offers forward-looking insights is still lacking. This review categorizes organic smart cocrystals based on different stimuli sources and highlights representative studies from the past years, covering mechanical force, light, temperature, vapor, acid/base, and humidity stimuli. It focuses on the underlying mechanisms and applications of each stimulus type from the dual perspectives of molecular design strategies and structure-property relationships. Finally, it discusses the challenges, future directions, and prospects of organic stimuli-responsive cocrystals, aiming to facilitate their transition into real-world applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102511"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145659042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy-guided design of thermoelectric properties in multi-component compounds 多组分化合物热电性质的熵导设计
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102410
Cheenepalli Nagarjuna , Peyala Dharmaiah , Babu Madavali , Murali Bissannagari , Saikat Shyamal , Weizong Bao , Soon-Jik Hong , Jinxue Ding , Xufei Fang , Byungmin Ahn , Wenjun Lu , BinBin He
Entropy engineering has emerged as a powerful strategy for overcoming the long-standing trade-offs between electrical and thermal transport in thermoelectric materials. This review critically evaluates how configurational entropy, introduced through multicomponent alloying, governs phase stabilization and transition temperatures, thereby enabling improved thermoelectric performance. We also discuss the entropy-driven core effects and corresponding mechanisms, including electronic band convergence, lattice disorder, and multiscale structural modulation that collectively enhance electronic properties while suppressing lattice thermal conductivity. These mechanisms are examined across a broad range of systems, including chalcogenides half-Heuslers, high-entropy oxides, and metallic materials, with particular emphasis on the structure-property correlations responsible for the observed gains in energy-conversion efficiency. Beyond performance optimization, we assess how entropy engineering improves mechanical robustness and imparts superior thermal and chemical stability, both of which are critical for long-term energy-harvesting applications. Finally, we highlight the opportunities and challenges associated with scalable synthesis and machine-learning-guided discovery of high-entropy TE materials. Collectively, these insights position entropy engineering as a transformative pathway for next-generation thermoelectric technologies.
熵工程已经成为克服热电材料中长期存在的电输运和热输运之间权衡的强大策略。这篇综述批判性地评估了通过多组分合金化引入的构型熵如何控制相稳定和转变温度,从而提高热电性能。我们还讨论了熵驱动的核心效应和相应的机制,包括电子带收敛、晶格无序和多尺度结构调制,它们共同增强了电子性质,同时抑制了晶格导热性。这些机制在广泛的系统中进行了研究,包括硫族化合物半豪斯勒,高熵氧化物和金属材料,特别强调了结构-性能相关性,负责观察到的能量转换效率的提高。除了性能优化,我们还评估了熵工程如何提高机械稳健性,并赋予卓越的热稳定性和化学稳定性,这两者对于长期的能量收集应用都是至关重要的。最后,我们强调了与可扩展合成和机器学习引导的高熵TE材料发现相关的机遇和挑战。总的来说,这些见解将熵工程定位为下一代热电技术的变革途径。
{"title":"Entropy-guided design of thermoelectric properties in multi-component compounds","authors":"Cheenepalli Nagarjuna ,&nbsp;Peyala Dharmaiah ,&nbsp;Babu Madavali ,&nbsp;Murali Bissannagari ,&nbsp;Saikat Shyamal ,&nbsp;Weizong Bao ,&nbsp;Soon-Jik Hong ,&nbsp;Jinxue Ding ,&nbsp;Xufei Fang ,&nbsp;Byungmin Ahn ,&nbsp;Wenjun Lu ,&nbsp;BinBin He","doi":"10.1016/j.matt.2025.102410","DOIUrl":"10.1016/j.matt.2025.102410","url":null,"abstract":"<div><div>Entropy engineering has emerged as a powerful strategy for overcoming the long-standing trade-offs between electrical and thermal transport in thermoelectric materials. This review critically evaluates how configurational entropy, introduced through multicomponent alloying, governs phase stabilization and transition temperatures, thereby enabling improved thermoelectric performance. We also discuss the entropy-driven core effects and corresponding mechanisms, including electronic band convergence, lattice disorder, and multiscale structural modulation that collectively enhance electronic properties while suppressing lattice thermal conductivity. These mechanisms are examined across a broad range of systems, including chalcogenides half-Heuslers, high-entropy oxides, and metallic materials, with particular emphasis on the structure-property correlations responsible for the observed gains in energy-conversion efficiency. Beyond performance optimization, we assess how entropy engineering improves mechanical robustness and imparts superior thermal and chemical stability, both of which are critical for long-term energy-harvesting applications. Finally, we highlight the opportunities and challenges associated with scalable synthesis and machine-learning-guided discovery of high-entropy TE materials. Collectively, these insights position entropy engineering as a transformative pathway for next-generation thermoelectric technologies.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102410"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145659043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous discovery of functional random heteropolymer blends through evolutionary formulation optimization 通过进化配方优化自主发现功能无规杂聚共混物
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102336
Guangqi Wu (吴广启) , Tianyi Jin (金天逸) , Alfredo Alexander-Katz , Connor W. Coley
While developing new polymers typically requires years of investigation, blending existing polymers offers a cost-effective strategy to create new materials. However, developing functional polymer blends is often a slow and challenging process due to their vast design space, the non-additive nature of polymer properties, and limited fundamental understanding to guide the optimization. Here, we report an autonomous platform that addresses these challenges by integrating high-throughput blending, real-time data acquisition, and an evolutionary algorithm for composition optimization. This approach enables rapid exploration of complex combinatorial blending spaces of random heteropolymers (RHPs). With enzyme thermal stability as a model objective, this system discovered RHP blends (RHPBs) that outperform all constituents. Retrospective analysis reveals segment-level interactions correlated with the performance. This work highlights the opportunity for materials discovery within the RHP and RHPB space and the immense potential of leveraging autonomous discovery platforms to accelerate the discovery of blends with emergent properties.
虽然开发新聚合物通常需要多年的研究,但混合现有聚合物提供了一种经济有效的策略来创造新材料。然而,开发功能性聚合物共混物往往是一个缓慢而具有挑战性的过程,因为它们的设计空间很大,聚合物性质的非添加剂性质,以及指导优化的基本理解有限。在这里,我们报告了一个自主平台,通过集成高通量混合,实时数据采集和成分优化的进化算法来解决这些挑战。该方法能够快速探索随机异聚物(RHPs)的复杂组合混合空间。以酶热稳定性为模型目标,该系统发现RHP混合物(rhpb)优于所有成分。回顾性分析揭示了与性能相关的段级交互。这项工作强调了在RHP和RHPB领域中发现材料的机会,以及利用自主发现平台加速发现具有新兴特性的共混物的巨大潜力。
{"title":"Autonomous discovery of functional random heteropolymer blends through evolutionary formulation optimization","authors":"Guangqi Wu (吴广启) ,&nbsp;Tianyi Jin (金天逸) ,&nbsp;Alfredo Alexander-Katz ,&nbsp;Connor W. Coley","doi":"10.1016/j.matt.2025.102336","DOIUrl":"10.1016/j.matt.2025.102336","url":null,"abstract":"<div><div>While developing new polymers typically requires years of investigation, blending existing polymers offers a cost-effective strategy to create new materials. However, developing functional polymer blends is often a slow and challenging process due to their vast design space, the non-additive nature of polymer properties, and limited fundamental understanding to guide the optimization. Here, we report an autonomous platform that addresses these challenges by integrating high-throughput blending, real-time data acquisition, and an evolutionary algorithm for composition optimization. This approach enables rapid exploration of complex combinatorial blending spaces of random heteropolymers (RHPs). With enzyme thermal stability as a model objective, this system discovered RHP blends (RHPBs) that outperform all constituents. Retrospective analysis reveals segment-level interactions correlated with the performance. This work highlights the opportunity for materials discovery within the RHP and RHPB space and the immense potential of leveraging autonomous discovery platforms to accelerate the discovery of blends with emergent properties.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102336"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144715394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
35(+1) challenges in materials science being tackled by PIs under 35(ish) in 2025 到2025年,35岁以下的pi将解决35个(+1)材料科学挑战
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102565
Aisha N. Bismillah , Alessandro Bismuto , Anna Blakney , Sebastien Callens , Céline Calvino , Stefano Crespi , Ricardo Cruz-Acuña , Andrew Daly , Locke Davenport Huyer , Jamie H. Docherty , Liam Donnelly , Joel A. Finbloom , Pratik Gurnani , Robert Hein , Jennifer Johnstone-Hack , Susan E. Leggett , Nadine Leisgang , Jason Y.C. Lim , Kevin Neumann , Liliang Ouyang , Connor Wells
This year, we present 36 emerging researchers from around the world, all roughly under the age of 35 (or thereabouts). This is our fourth year highlighting emerging researchers in this age group, and this year's cohort was formed through an initial set of invitations from the editorial team, followed by contributors each nominating two peers in a guided, self-propagating pyramid process. The resulting group exemplifies the vibrant diversity and innovation shaping today’s materials science landscape.
今年,我们介绍了来自世界各地的36名新兴研究人员,他们的年龄都在35岁以下(或35岁左右)。这是我们第四年重点介绍这个年龄段的新兴研究人员,今年的队列是通过编辑团队最初的一系列邀请形成的,随后每个贡献者提名两名同行,这是一个有指导的、自我传播的金字塔过程。由此产生的团队体现了塑造当今材料科学景观的充满活力的多样性和创新。
{"title":"35(+1) challenges in materials science being tackled by PIs under 35(ish) in 2025","authors":"Aisha N. Bismillah ,&nbsp;Alessandro Bismuto ,&nbsp;Anna Blakney ,&nbsp;Sebastien Callens ,&nbsp;Céline Calvino ,&nbsp;Stefano Crespi ,&nbsp;Ricardo Cruz-Acuña ,&nbsp;Andrew Daly ,&nbsp;Locke Davenport Huyer ,&nbsp;Jamie H. Docherty ,&nbsp;Liam Donnelly ,&nbsp;Joel A. Finbloom ,&nbsp;Pratik Gurnani ,&nbsp;Robert Hein ,&nbsp;Jennifer Johnstone-Hack ,&nbsp;Susan E. Leggett ,&nbsp;Nadine Leisgang ,&nbsp;Jason Y.C. Lim ,&nbsp;Kevin Neumann ,&nbsp;Liliang Ouyang ,&nbsp;Connor Wells","doi":"10.1016/j.matt.2025.102565","DOIUrl":"10.1016/j.matt.2025.102565","url":null,"abstract":"<div><div>This year, we present 36 emerging researchers from around the world, all roughly under the age of 35 (or thereabouts). This is our fourth year highlighting emerging researchers in this age group, and this year's cohort was formed through an initial set of invitations from the editorial team, followed by contributors each nominating two peers in a guided, self-propagating pyramid process. The resulting group exemplifies the vibrant diversity and innovation shaping today’s materials science landscape.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102565"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fiberbots: From concept to reality 纤维机器人:从概念到现实
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102534
Jiafan Chen , Guang-Zhong Yang
Through fusing materials into thin, elongated strands with structured cross-sections, recent advances in multimaterial fibers have enabled myriad applications for simultaneous sensing of many different inputs. Addressing the underlying challenges of preform fabrication, thermal compatibility of dissimilar materials with heterogeneous properties, and functional material deposition enables the creation of flexible embodiments such as smart fabrics or miniaturized devices for in vivo applications. By leveraging micro-nano fabrication techniques, microscale devices can be integrated at the tip of the fiber with photo, thermal, magnetic, electro, pneumatic, or hydraulic actuation, leading to thin, tethered fiberbots for targeted therapy and endoluminal intervention.
通过将材料融合成具有结构横截面的细长股,多材料纤维的最新进展使同时感知许多不同输入的无数应用成为可能。解决预制体制造的潜在挑战,具有异质特性的不同材料的热相容性,以及功能材料沉积,可以创建灵活的实施例,如智能织物或用于体内应用的小型化设备。通过利用微纳米制造技术,微型设备可以集成在光纤的尖端,具有光、热、磁、电、气动或液压驱动,从而产生薄的、系住的纤维机器人,用于靶向治疗和腔内干预。
{"title":"Fiberbots: From concept to reality","authors":"Jiafan Chen ,&nbsp;Guang-Zhong Yang","doi":"10.1016/j.matt.2025.102534","DOIUrl":"10.1016/j.matt.2025.102534","url":null,"abstract":"<div><div>Through fusing materials into thin, elongated strands with structured cross-sections, recent advances in multimaterial fibers have enabled myriad applications for simultaneous sensing of many different inputs. Addressing the underlying challenges of preform fabrication, thermal compatibility of dissimilar materials with heterogeneous properties, and functional material deposition enables the creation of flexible embodiments such as smart fabrics or miniaturized devices for <em>in vivo</em> applications. By leveraging micro-nano fabrication techniques, microscale devices can be integrated at the tip of the fiber with photo, thermal, magnetic, electro, pneumatic, or hydraulic actuation, leading to thin, tethered fiberbots for targeted therapy and endoluminal intervention.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102534"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145658952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable and facile flame-assisted synthesis of electron-rich Pt clusters/Ni(OH)2 electrocatalyst for robust AEM water electrolysis 火焰辅助合成富电子Pt簇/Ni(OH)2电催化剂的稳健性AEM水电解
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102414
Jinze Li , Hao Li , Wenfu Xie , Yining Sun , Jiahao Jin , Qiwei Shi , Mingfei Shao
The complex synthesis and limited durability of cost-efficient heterostructure hydrogen catalysts have hindered the large-scale application of anion-exchange membrane (AEM) water electrolysis. Here, a facile flame-assisted method was developed to synthesize electron-rich Pt clusters supported on Ni(OH)2 (Ni(OH)2@Ptδ-NC) within 1 min, achieving a minimal Pt loading of 0.05 mg cm−2. The synergy between vacancy-rich Ni(OH)2 and electron-rich Pt clusters modulates intermediate adsorption-desorption processes, achieving ultralow overpotential of 9 mV at 10 mA cm−2 and outstanding long-term stability (2,400 h at 200 mA cm−2). Moreover, when employed as the cathode in an AEM electrolyzer, the catalyst achieves 1 A cm−2 at 1.74 V and 5 A cm−2 at 2.23 V. Furthermore, the flame-assisted strategy enables stable synthesis of the catalyst at a scale of 100 cm2. When integrated into an industrial-grade electrolyzer stack, the catalyst maintains a high current of 160 A for 1,000 h, demonstrating enormous potential for future industrial applications.
低成本的异质结构氢催化剂合成复杂,耐用性有限,阻碍了阴离子交换膜(AEM)水电解的大规模应用。在这里,我们开发了一种简单的火焰辅助方法,在1分钟内合成了Ni(OH)2 (Ni(OH)2@Ptδ−-NC)上负载的富电子Pt簇,实现了0.05 mg cm−2的最小Pt负载。富空位的Ni(OH)2和富电子的Pt团簇之间的协同作用调节了中间吸附-解吸过程,实现了10 mA cm - 2下9 mV的超低过电位和出色的长期稳定性(200 mA cm - 2下2400小时)。此外,在AEM电解槽中作为阴极时,催化剂在1.74 V时达到1 A cm−2,在2.23 V时达到5 A cm−2。此外,火焰辅助策略可以在100 cm2的规模下稳定地合成催化剂。当集成到工业级电解槽堆中时,该催化剂可在1,000小时内保持160 a的高电流,显示出未来工业应用的巨大潜力。
{"title":"Scalable and facile flame-assisted synthesis of electron-rich Pt clusters/Ni(OH)2 electrocatalyst for robust AEM water electrolysis","authors":"Jinze Li ,&nbsp;Hao Li ,&nbsp;Wenfu Xie ,&nbsp;Yining Sun ,&nbsp;Jiahao Jin ,&nbsp;Qiwei Shi ,&nbsp;Mingfei Shao","doi":"10.1016/j.matt.2025.102414","DOIUrl":"10.1016/j.matt.2025.102414","url":null,"abstract":"<div><div>The complex synthesis and limited durability of cost-efficient heterostructure hydrogen catalysts have hindered the large-scale application of anion-exchange membrane (AEM) water electrolysis. Here, a facile flame-assisted method was developed to synthesize electron-rich Pt clusters supported on Ni(OH)<sub>2</sub> (Ni(OH)<sub>2</sub>@Pt<sup><em>δ</em>−</sup>-NC) within 1 min, achieving a minimal Pt loading of 0.05 mg cm<sup>−2</sup>. The synergy between vacancy-rich Ni(OH)<sub>2</sub> and electron-rich Pt clusters modulates intermediate adsorption-desorption processes, achieving ultralow overpotential of 9 mV at 10 mA cm<sup>−2</sup> and outstanding long-term stability (2,400 h at 200 mA cm<sup>−2</sup>). Moreover, when employed as the cathode in an AEM electrolyzer, the catalyst achieves 1 A cm<sup>−2</sup> at 1.74 V and 5 A cm<sup>−2</sup> at 2.23 V. Furthermore, the flame-assisted strategy enables stable synthesis of the catalyst at a scale of 100 cm<sup>2</sup>. When integrated into an industrial-grade electrolyzer stack, the catalyst maintains a high current of 160 A for 1,000 h, demonstrating enormous potential for future industrial applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102414"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145043623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solutes don’t crystallize! Insights from phase diagrams demystify the ‘‘magic’’ of crystallization 溶质不会结晶!相图揭示了结晶的“魔力”
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102527
James D. Martin
{"title":"Solutes don’t crystallize! Insights from phase diagrams demystify the ‘‘magic’’ of crystallization","authors":"James D. Martin","doi":"10.1016/j.matt.2025.102527","DOIUrl":"10.1016/j.matt.2025.102527","url":null,"abstract":"","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102527"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145462274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles as dynamic crosslinkers for bioactive injectable hydrogels 细胞外囊泡作为生物活性可注射水凝胶的动态交联剂
IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-03 DOI: 10.1016/j.matt.2025.102340
Artemis Margaronis , Caterina Piunti , Ryan R. Hosn , Sarah Bortel , Satya Nayagam , James S. Wang , Daniella Uvaldo , Kam Leong , Elisa Cimetta , Santiago Correa
Hydrogels are multifunctional biomaterials but are often composed of synthetic building blocks that do not inherently present biological signals to cells. Extracellular vesicles (EVs) offer unique bioactivity, but stably incorporating them into hydrogels remains a challenge. Here, we define the design principles for supramolecular hydrogels crosslinked by EVs. Bovine-derived yogurt EVs are used as a scalable source of bioactive EVs for systematic hydrogel development. Mixing EVs with optimally modified cellulose-based polymers yields injectable hydrogels with tunable mechanical properties. Following optimization with yogurt EVs, this platform’s versatility is demonstrated by formulating hydrogels with artificial microbial and mammalian nanovesicles. In vivo studies show EV hydrogel biocompatibility, intrinsic angiogenic activity, and emergence of an immune niche with broad immune-cell engagement, highlighting their potential in regenerative medicine. These findings establish a framework for designing EV-crosslinked supramolecular hydrogels that integrate the natural bioactivity of EVs with the biomedical potential of injectable hydrogel technology.
水凝胶是一种多功能生物材料,但通常由合成的构建块组成,这些构建块本身不向细胞提供生物信号。细胞外囊泡(ev)具有独特的生物活性,但将其稳定地整合到水凝胶中仍然是一个挑战。在这里,我们定义了电动汽车交联的超分子水凝胶的设计原则。牛源酸奶电动汽车被用作生物活性电动汽车的可扩展来源,用于系统的水凝胶开发。将电动汽车与优化改性的纤维素基聚合物混合,产生具有可调机械性能的可注射水凝胶。在对酸奶电动汽车进行优化后,该平台的多功能性通过与人工微生物和哺乳动物纳米囊泡配制水凝胶得到了证明。体内研究表明,EV水凝胶具有生物相容性、内在的血管生成活性和广泛免疫细胞参与的免疫生态位的出现,突出了它们在再生医学中的潜力。这些发现为设计ev交联超分子水凝胶建立了框架,该超分子水凝胶将ev的天然生物活性与可注射水凝胶技术的生物医学潜力结合起来。
{"title":"Extracellular vesicles as dynamic crosslinkers for bioactive injectable hydrogels","authors":"Artemis Margaronis ,&nbsp;Caterina Piunti ,&nbsp;Ryan R. Hosn ,&nbsp;Sarah Bortel ,&nbsp;Satya Nayagam ,&nbsp;James S. Wang ,&nbsp;Daniella Uvaldo ,&nbsp;Kam Leong ,&nbsp;Elisa Cimetta ,&nbsp;Santiago Correa","doi":"10.1016/j.matt.2025.102340","DOIUrl":"10.1016/j.matt.2025.102340","url":null,"abstract":"<div><div>Hydrogels are multifunctional biomaterials but are often composed of synthetic building blocks that do not inherently present biological signals to cells. Extracellular vesicles (EVs) offer unique bioactivity, but stably incorporating them into hydrogels remains a challenge. Here, we define the design principles for supramolecular hydrogels crosslinked by EVs. Bovine-derived yogurt EVs are used as a scalable source of bioactive EVs for systematic hydrogel development. Mixing EVs with optimally modified cellulose-based polymers yields injectable hydrogels with tunable mechanical properties. Following optimization with yogurt EVs, this platform’s versatility is demonstrated by formulating hydrogels with artificial microbial and mammalian nanovesicles. <em>In vivo</em> studies show EV hydrogel biocompatibility, intrinsic angiogenic activity, and emergence of an immune niche with broad immune-cell engagement, highlighting their potential in regenerative medicine. These findings establish a framework for designing EV-crosslinked supramolecular hydrogels that integrate the natural bioactivity of EVs with the biomedical potential of injectable hydrogel technology.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 12","pages":"Article 102340"},"PeriodicalIF":17.5,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Matter
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1