首页 > 最新文献

Matter最新文献

英文 中文
Electrospinning and electrospraying synergism: Twins-tech collaboration across dimensions 电纺丝和电喷雾的协同作用:双胞胎技术的跨领域合作
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.01.009
Yifan Si , Shuo Shi , Jinlian Hu

Electrospinning (E-spinning) and electrospraying (E-spraying) synergism (EES) has unique advantages in terms of controllability and expandability of functional nanomaterials. However, the enormous significance of the cross-scale collaboration of this twins-tech has not aroused widespread recognition and attention in the research community. Here, we first review the development history of E-spinning and E-spraying technologies and clarify how they move from unity to fragmentation. Then, according to the different forms of cooperation, EES is mainly divided into three categories: E-spinning before E-spraying, alternate E-spinning/E-spraying, and simultaneous E-spinning/E-spraying. Next, we summarize the development, application, and challenges of the EES in four different main areas, namely natural environment, energy utilization, human health, and functional membrane regulation. Finally, the challenges, bottlenecks, and development prospects of EES technology in all fields are highlighted, summarized, and discussed from a future perspective.

电纺丝(E-spinning)和电喷雾(E-spraying)协同技术(EES)在功能纳米材料的可控性和可扩展性方面具有独特的优势。然而,这种双子技术的跨尺度协同的巨大意义并未引起研究界的广泛认可和关注。在此,我们首先回顾了电子纺丝和电子喷涂技术的发展历程,阐明了它们是如何从统一走向分裂的。然后,根据合作形式的不同,EES 主要分为三类:先电子纺丝后电子喷涂、电子纺丝/电子喷涂交替进行、电子纺丝/电子喷涂同时进行。接下来,我们总结了 EES 在自然环境、能源利用、人类健康和功能膜调控四个不同主要领域的发展、应用和挑战。最后,从未来的角度强调、总结和讨论了 EES 技术在各个领域所面临的挑战、瓶颈和发展前景。
{"title":"Electrospinning and electrospraying synergism: Twins-tech collaboration across dimensions","authors":"Yifan Si ,&nbsp;Shuo Shi ,&nbsp;Jinlian Hu","doi":"10.1016/j.matt.2024.01.009","DOIUrl":"10.1016/j.matt.2024.01.009","url":null,"abstract":"<div><p>Electrospinning (E-spinning) and electrospraying (E-spraying) synergism (EES) has unique advantages in terms of controllability and expandability of functional nanomaterials. However, the enormous significance of the cross-scale collaboration of this twins-tech has not aroused widespread recognition and attention in the research community. Here, we first review the development history of E-spinning and E-spraying technologies and clarify how they move from unity to fragmentation. Then, according to the different forms of cooperation, EES is mainly divided into three categories: E-spinning before E-spraying, alternate E-spinning/E-spraying, and simultaneous E-spinning/E-spraying. Next, we summarize the development, application, and challenges of the EES in four different main areas, namely natural environment, energy utilization, human health, and functional membrane regulation. Finally, the challenges, bottlenecks, and development prospects of EES technology in all fields are highlighted, summarized, and discussed from a future perspective.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139659738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bichiral molecule induction lightens circularly polarized emissions of perovskite nanocrystals 双手性分子诱导点亮了过氧化物纳米晶体的圆偏振辐射
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.02.005
Hua-Li Liu , Shuang-Quan Zang

Chirality induction in organic-inorganic halide perovskite nanocrystals has attracted substantial attention, yet producing circularly polarized luminescence without high magnetic fields or cryogenic settings remains an exacting task. By incorporating a chiral spacer into the crystal lattice and another chiral ligand on the crystal surface, Liu et al. report a polarization degree of 5.2% in mixed-phase perovskite nanocrystals arising from enhanced asymmetric light absorption and delayed spin-flip of photogenerated charge carriers. This work paves the way toward in situ asymmetric photochemical reactions using chiral perovskite nanoscintillators.

有机-无机卤化物包晶纳米晶体中的手性诱导已经引起了广泛关注,然而在没有高磁场或低温环境下产生圆偏振发光仍然是一项艰巨的任务。通过在晶格中加入手性间隔物,并在晶体表面加入另一种手性配体,Liu 等人报告说,由于光生电荷载流子的不对称光吸收和延迟自旋翻转增强,混合相高闪锌矿纳米晶体的极化度达到了 5.2%。这项工作为利用手性包晶纳米闪烁体进行原位不对称光化学反应铺平了道路。
{"title":"Bichiral molecule induction lightens circularly polarized emissions of perovskite nanocrystals","authors":"Hua-Li Liu ,&nbsp;Shuang-Quan Zang","doi":"10.1016/j.matt.2024.02.005","DOIUrl":"https://doi.org/10.1016/j.matt.2024.02.005","url":null,"abstract":"<div><p>Chirality induction in organic-inorganic halide perovskite nanocrystals has attracted substantial attention, yet producing circularly polarized luminescence without high magnetic fields or cryogenic settings remains an exacting task. By incorporating a chiral spacer into the crystal lattice and another chiral ligand on the crystal surface, Liu et al. report a polarization degree of 5.2% in mixed-phase perovskite nanocrystals arising from enhanced asymmetric light absorption and delayed spin-flip of photogenerated charge carriers. This work paves the way toward <em>in situ</em> asymmetric photochemical reactions using chiral perovskite nanoscintillators.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Tortured Academics Department 折磨人的学术部
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.03.006
Steve Cranford
{"title":"The Tortured Academics Department","authors":"Steve Cranford","doi":"10.1016/j.matt.2024.03.006","DOIUrl":"https://doi.org/10.1016/j.matt.2024.03.006","url":null,"abstract":"","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-molecule pursuit of daylight from multiple excited states emission 单分子追寻多激发态发射的日光
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.02.016
Yi-Hui He , Jian-Xin Tang , Yan-Qing Li

Single-molecule white-light emission (SMWLE) materials possessing multiple excited states offer promising prospects for covering the full spectrum of visible light, making them ideal for mimicking sunlight. Nevertheless, crafting these materials and regulating their intricate energy demands have been significant hurdles, necessitating the creation of inventive molecular designs for their future application in energy, molecular biology, and organic electronics.

拥有多种激发态的单分子白光发射(SMWLE)材料有望覆盖整个可见光光谱,是模拟太阳光的理想材料。然而,制作这些材料以及调节其复杂的能量需求一直是一个重大障碍,因此有必要为其未来在能源、分子生物学和有机电子学领域的应用进行创造性的分子设计。
{"title":"Single-molecule pursuit of daylight from multiple excited states emission","authors":"Yi-Hui He ,&nbsp;Jian-Xin Tang ,&nbsp;Yan-Qing Li","doi":"10.1016/j.matt.2024.02.016","DOIUrl":"https://doi.org/10.1016/j.matt.2024.02.016","url":null,"abstract":"<div><p>Single-molecule white-light emission (SMWLE) materials possessing multiple excited states offer promising prospects for covering the full spectrum of visible light, making them ideal for mimicking sunlight. Nevertheless, crafting these materials and regulating their intricate energy demands have been significant hurdles, necessitating the creation of inventive molecular designs for their future application in energy, molecular biology, and organic electronics.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering covalent organic framework membranes for efficient ionic/molecular separations 设计共价有机框架膜,实现高效离子/分子分离
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.01.028
Yanqiu Zhang , Hao Wang , Wenguang Wang , Zhiwei Zhou , Junhui Huang , Fan Yang , Yongping Bai , Pengzhan Sun , Jun Ma , Lu Elfa Peng , Chuyang Y. Tang , Lu Shao

Covalent organic frameworks (COFs) based on reticular and dynamic covalent chemistry are porous materials with uniform and modifiable pore size, high specific surface area, and structural designability that have attracted widespread burgeoning in membrane separations because of lower mass transport resistance and precision sieving. This critical review focuses on recent advances in COF topology design (two- and three-dimensional COFs) toward membrane building, crucial physicochemical properties of COF-based membranes, synthesis/fabrication methods for COF-based membranes, and state-of-the-art applications of COF-based membranes in sustainable ionic/molecular separations. The perspectives in this fascinating field are discussed in terms of opportunities and challenges for next-generation COF-based membranes for sustainable development.

基于网状共价化学和动态共价化学的共价有机框架(COFs)是一种多孔材料,具有均匀和可调节的孔径、高比表面积以及结构可设计性。这篇重要综述侧重于 COF 拓扑设计(二维和三维 COF)在膜构建方面的最新进展、COF 基膜的关键物理化学特性、COF 基膜的合成/制造方法以及 COF 基膜在可持续离子/分子分离中的最新应用。从下一代 COF 基膜促进可持续发展的机遇和挑战的角度,讨论了这一引人入胜的领域的前景。
{"title":"Engineering covalent organic framework membranes for efficient ionic/molecular separations","authors":"Yanqiu Zhang ,&nbsp;Hao Wang ,&nbsp;Wenguang Wang ,&nbsp;Zhiwei Zhou ,&nbsp;Junhui Huang ,&nbsp;Fan Yang ,&nbsp;Yongping Bai ,&nbsp;Pengzhan Sun ,&nbsp;Jun Ma ,&nbsp;Lu Elfa Peng ,&nbsp;Chuyang Y. Tang ,&nbsp;Lu Shao","doi":"10.1016/j.matt.2024.01.028","DOIUrl":"10.1016/j.matt.2024.01.028","url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) based on reticular and dynamic covalent chemistry are porous materials with uniform and modifiable pore size, high specific surface area, and structural designability that have attracted widespread burgeoning in membrane separations because of lower mass transport resistance and precision sieving. This critical review focuses on recent advances in COF topology design (two- and three-dimensional COFs) toward membrane building, crucial physicochemical properties of COF-based membranes, synthesis/fabrication methods for COF-based membranes, and state-of-the-art applications of COF-based membranes in sustainable ionic/molecular separations. The perspectives in this fascinating field are discussed in terms of opportunities and challenges for next-generation COF-based membranes for sustainable development.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical ionogels with only 2 wt % gelators as efficient quasi-solid-state electrolytes for lithium batteries 仅含 2 wt % 凝胶剂的物理离子凝胶作为锂电池的高效准固态电解质
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.01.021
Xueao Jiang , Zhaoen Liu , Weijian Liu , Da Yu , Jun Zhang , Xiwen Wang , Yan Zhang , Shiguo Zhang

Ionic liquid (IL)-based gel electrolytes (ionogels) show great potential as quasi-solid-state electrolytes (QSSEs) for lithium-ion batteries (LIBs). However, conventional ionogels face challenges involving complex gelation processes, high gelator content (usually greater than 20 wt %), lower conductivity than neat ILs, and low Li+ transference numbers. Here, we create novel lithium salt-containing supramolecular ionogels (SIGs) as efficient QSSEs for LIBs through a simple and environmentally friendly approach. By using a low-molecular-weight gelator, specifically 12-hydroxyoctadecanoic acid, lithium-containing IL electrolytes can be solidified at a gelator concentration of only 2 wt %. The resulting physical ionogels exhibit remarkable characteristics, including high ionic conductivity similar to neat ILs and improved electrochemical stability. In addition, these SIGs demonstrate a distinctive thermally reversible gel-to-sol transition, a quality not attainable in other QSSEs. This feature promotes better electrode/electrolyte contact, enabling excellent battery performance using LiFePO4, LiNi0.8Co0.1Mn0.1O2, and LiCoO2 cathodes, along with Li metal and Li4Ti5O12 anodes.

基于离子液体(IL)的凝胶电解质(离子凝胶)作为锂离子电池(LIB)的准固态电解质(QSSE)显示出巨大的潜力。然而,传统的离子凝胶面临着凝胶化过程复杂、凝胶剂含量高(通常大于 20 wt %)、电导率低于纯 IL 以及锂+转移率低等挑战。在这里,我们通过一种简单、环保的方法创造出了新型含锂盐的超分子离子凝胶(SIGs),作为锂离子电池的高效 QSSE。通过使用低分子量凝胶剂,特别是 12-hydroxyoctadecanoic acid,含锂的 IL 电解质可以在凝胶剂浓度仅为 2 wt % 的情况下固化。由此产生的物理离子凝胶具有显著特点,包括与纯锂离子电解质相似的高离子电导率和更好的电化学稳定性。此外,这些 SIG 还表现出独特的凝胶到溶胶的热可逆转变,这是其他 QSSE 无法达到的。这一特性促进了电极/电解质之间更好的接触,从而使使用 LiFePO4、LiNi0.8Co0.1Mn0.1O2 和 LiCoO2 阴极以及金属锂和 Li4Ti5O12 阳极的电池具有出色的性能。
{"title":"Physical ionogels with only 2 wt % gelators as efficient quasi-solid-state electrolytes for lithium batteries","authors":"Xueao Jiang ,&nbsp;Zhaoen Liu ,&nbsp;Weijian Liu ,&nbsp;Da Yu ,&nbsp;Jun Zhang ,&nbsp;Xiwen Wang ,&nbsp;Yan Zhang ,&nbsp;Shiguo Zhang","doi":"10.1016/j.matt.2024.01.021","DOIUrl":"10.1016/j.matt.2024.01.021","url":null,"abstract":"<div><p>Ionic liquid (IL)-based gel electrolytes (ionogels) show great potential as quasi-solid-state electrolytes (QSSEs) for lithium-ion batteries (LIBs). However, conventional ionogels face challenges involving complex gelation processes, high gelator content (usually greater than 20 wt %), lower conductivity than neat ILs, and low Li<sup>+</sup> transference numbers. Here, we create novel lithium salt-containing supramolecular ionogels (SIGs) as efficient QSSEs for LIBs through a simple and environmentally friendly approach. By using a low-molecular-weight gelator, specifically 12-hydroxyoctadecanoic acid, lithium-containing IL electrolytes can be solidified at a gelator concentration of only 2 wt %. The resulting physical ionogels exhibit remarkable characteristics, including high ionic conductivity similar to neat ILs and improved electrochemical stability. In addition, these SIGs demonstrate a distinctive thermally reversible gel-to-sol transition, a quality not attainable in other QSSEs. This feature promotes better electrode/electrolyte contact, enabling excellent battery performance using LiFePO<sub>4</sub>, LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, and LiCoO<sub>2</sub> cathodes, along with Li metal and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> anodes.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing laser micropropulsion: High performance with MOF-derived carbon-encapsulated-nano-metal composites 推进激光微推进:源自 MOF 的高性能碳包封纳米金属复合材料
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.01.024
Senlin Rao , Wendi Yi , Jun Yuan , Shuai Wang , Haoqing Jiang , Gary J. Cheng

Laser micropropulsion (LMP) is a promising power system for micro-nano satellites. However, current propellants lack enhanced micropropulsion performance and extended service life. To address these challenges, we introduce metal-organic-frameworks (MOFs)-derived Carbon-encapsulated-Nano-Metal Composite (CNMC) through in situ thermal decomposition. CNMC materials combine MOFs' large surface area and porous structure with the benefits of lightweight carbon-based materials. By manipulating the synthesis condition, uniform and highly dense nanoparticles of sizes around 35–121 nm can be achieved. The experimental and numerical studies reveal effective tailoring of LMP performance by adjusting nanoparticle size and metal concentration. Remarkably, CNMC with about 71 nm Cu nanoparticles at 35.3 wt. % exhibits exceptional LMP performance, with 95.02 μN/μg impulse thrust per mass, 42.42% ablated efficiency, and 969.58 s specific impulse. This work provides valuable insights into rational nanoparticle design in carbon-based materials, opening broad applications in LMP technology. Addressing current propellant limitations, this research advances micropropulsion, benefiting future space exploration.

激光微推进(LMP)是微纳卫星的一种前景广阔的动力系统。然而,目前的推进剂缺乏更强的微推进性能和更长的使用寿命。为了应对这些挑战,我们通过原位热分解引入了金属有机框架(MOFs)衍生的碳包封纳米金属复合材料(CNMC)。CNMC 材料将 MOFs 的大表面积和多孔结构与轻质碳基材料的优点结合在一起。通过调节合成条件,可以获得大小约为 35-121 纳米的均匀且高密度的纳米颗粒。实验和数值研究表明,通过调整纳米颗粒尺寸和金属浓度,可以有效地定制 LMP 性能。值得注意的是,在 35.3 重量百分比的 CNMC 中含有约 71 nm 的铜纳米粒子,表现出卓越的 LMP 性能,单位质量脉冲推力为 95.02 μN/μg,烧蚀效率为 42.42%,比脉冲为 969.58 s。这项工作为碳基材料的合理纳米粒子设计提供了宝贵的见解,为 LMP 技术开辟了广阔的应用前景。这项研究解决了当前推进剂的局限性,推动了微推进技术的发展,有利于未来的太空探索。
{"title":"Advancing laser micropropulsion: High performance with MOF-derived carbon-encapsulated-nano-metal composites","authors":"Senlin Rao ,&nbsp;Wendi Yi ,&nbsp;Jun Yuan ,&nbsp;Shuai Wang ,&nbsp;Haoqing Jiang ,&nbsp;Gary J. Cheng","doi":"10.1016/j.matt.2024.01.024","DOIUrl":"10.1016/j.matt.2024.01.024","url":null,"abstract":"<div><p>Laser micropropulsion (LMP) is a promising power system for micro-nano satellites. However, current propellants lack enhanced micropropulsion performance and extended service life. To address these challenges, we introduce metal-organic-frameworks (MOFs)-derived Carbon-encapsulated-Nano-Metal Composite (CNMC) through <em>in situ</em> thermal decomposition. CNMC materials combine MOFs' large surface area and porous structure with the benefits of lightweight carbon-based materials. By manipulating the synthesis condition, uniform and highly dense nanoparticles of sizes around 35–121 nm can be achieved. The experimental and numerical studies reveal effective tailoring of LMP performance by adjusting nanoparticle size and metal concentration. Remarkably, CNMC with about 71 nm Cu nanoparticles at 35.3 wt. % exhibits exceptional LMP performance, with 95.02 μN/μg impulse thrust per mass, 42.42% ablated efficiency, and 969.58 s specific impulse. This work provides valuable insights into rational nanoparticle design in carbon-based materials, opening broad applications in LMP technology. Addressing current propellant limitations, this research advances micropropulsion, benefiting future space exploration.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139885131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent exciton-lattice dynamics in a 2D metal organochalcogenolate semiconductor 二维金属有机钙钛矿半导体中的相干激子-晶格动力学
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.01.033
Eric R. Powers , Watcharaphol Paritmongkol , Dillon C. Yost , Woo Seok Lee , Jeffrey C. Grossman , William A. Tisdale

We reveal coherent exciton-phonon interactions in the two-dimensional (2D) layered hybrid organic-inorganic semiconductor silver phenylselenolate (AgSePh). Using femtosecond resonant impulsive vibrational spectroscopy and non-resonant Raman scattering, we identify multiple hybrid organic-inorganic vibrational modes that strongly couple to the excitonic transitions and characterize their behavior. Calculations by density functional perturbation theory show that these strongly coupled modes exhibit large out-of-plane silver atomic motions and silver-selenium spacing displacements. Moreover, analysis of photoluminescence spectral splitting and temperature-dependent peak shifting/linewidth broadening reveals that light emission in AgSePh is most strongly affected by a compound 100 cm−1 mode involving the wagging motion of phenylselenolate ligands and accompanying metal-chalcogen stretching. Finally, red shifting of vibrational modes with increasing temperature reveals a high degree of anharmonicity arising from non-covalent interactions between phenyl rings. These findings reveal the unique effects of hybrid vibrational modes in organic-inorganic semiconductors and motivate future work aimed at specifically engineering such interactions through chemical and structural modification.

我们揭示了二维(2D)层状有机-无机混合半导体苯硒酸银(AgSePh)中的相干激子-声子相互作用。利用飞秒共振脉冲振动光谱和非共振拉曼散射,我们确定了与激子跃迁强耦合的多种有机-无机混合振动模式,并描述了它们的行为特征。密度泛函扰动理论的计算表明,这些强耦合模式表现出较大的面外银原子运动和银硒间距位移。此外,对光致发光光谱分裂和随温度变化的峰值移动/线宽拓宽的分析表明,AgSePh 中的光发射受复合 100 cm-1 模式的影响最大,该模式涉及苯基硒酸配体的摇摆运动和伴随的金属-钙原伸展。最后,振动模式随温度升高而发生的红色偏移揭示了苯基环之间的非共价相互作用所产生的高度非谐波性。这些发现揭示了有机-无机半导体中混合振动模式的独特效应,并推动了未来旨在通过化学和结构改性对这种相互作用进行专门工程化的工作。
{"title":"Coherent exciton-lattice dynamics in a 2D metal organochalcogenolate semiconductor","authors":"Eric R. Powers ,&nbsp;Watcharaphol Paritmongkol ,&nbsp;Dillon C. Yost ,&nbsp;Woo Seok Lee ,&nbsp;Jeffrey C. Grossman ,&nbsp;William A. Tisdale","doi":"10.1016/j.matt.2024.01.033","DOIUrl":"10.1016/j.matt.2024.01.033","url":null,"abstract":"<div><p>We reveal coherent exciton-phonon interactions in the two-dimensional (2D) layered hybrid organic-inorganic semiconductor silver phenylselenolate (AgSePh). Using femtosecond resonant impulsive vibrational spectroscopy and non-resonant Raman scattering, we identify multiple hybrid organic-inorganic vibrational modes that strongly couple to the excitonic transitions and characterize their behavior. Calculations by density functional perturbation theory show that these strongly coupled modes exhibit large out-of-plane silver atomic motions and silver-selenium spacing displacements. Moreover, analysis of photoluminescence spectral splitting and temperature-dependent peak shifting/linewidth broadening reveals that light emission in AgSePh is most strongly affected by a compound 100 cm<sup>−1</sup> mode involving the wagging motion of phenylselenolate ligands and accompanying metal-chalcogen stretching. Finally, red shifting of vibrational modes with increasing temperature reveals a high degree of anharmonicity arising from non-covalent interactions between phenyl rings. These findings reveal the unique effects of hybrid vibrational modes in organic-inorganic semiconductors and motivate future work aimed at specifically engineering such interactions through chemical and structural modification.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139951020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting nature’s capacity for carbon drawdown: An integrated approach 提高大自然的碳减排能力:综合方法
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.03.003
Wenkai Zhu , Yun Zhang , Tian Li

Carbon cannot be erased; we are simply moving it from one storage pool to another. Biomass serves as a carbon reservoir through which carbon cycles. Over time and at scale, the working forests, the earth’s most powerful climate regulator and home to a mosaic of vigorously growing trees, sequester atmospheric CO2 at impressive rates through their harvesting-regrowing cycle. Biomass-derived products extend carbon storage beyond the forests’ capacity in the forms of thousands of consumer products in daily lives, like our furniture and houses. The more we use and recycle these nature-based, carbon-storing materials, the less dependent we are on carbon-intensive fossil products.

碳是无法消除的,我们只是将碳从一个储存库转移到另一个储存库。生物质是碳循环的碳库。随着时间的推移和规模的扩大,作为地球上最强大的气候调节器和生长旺盛的树木的家园,工作林通过其采伐-生长周期以惊人的速度封存大气中的二氧化碳。生物质衍生产品的碳封存能力超出了森林的能力,它们以日常生活中成千上万种消费品的形式存在,比如我们的家具和房屋。我们越多地使用和循环利用这些基于自然的碳储存材料,就越少依赖碳密集型化石产品。
{"title":"Boosting nature’s capacity for carbon drawdown: An integrated approach","authors":"Wenkai Zhu ,&nbsp;Yun Zhang ,&nbsp;Tian Li","doi":"10.1016/j.matt.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.matt.2024.03.003","url":null,"abstract":"<div><p>Carbon cannot be erased; we are simply moving it from one storage pool to another. Biomass serves as a carbon reservoir through which carbon cycles. Over time and at scale, the working forests, the earth’s most powerful climate regulator and home to a mosaic of vigorously growing trees, sequester atmospheric CO<sub>2</sub> at impressive rates through their harvesting-regrowing cycle. Biomass-derived products extend carbon storage beyond the forests’ capacity in the forms of thousands of consumer products in daily lives, like our furniture and houses. The more we use and recycle these nature-based, carbon-storing materials, the less dependent we are on carbon-intensive fossil products.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice grains integrated with animal cells: A shortcut to a sustainable food system 融入动物细胞的米粒:通往可持续粮食系统的捷径
IF 18.9 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-03 DOI: 10.1016/j.matt.2024.03.007
Sohyeon Park, Milae Lee, Sungwon Jung, Hyun Lee, Bumgyu Choi, Moonhyun Choi, Jeong Min Lee, Ki Hyun Yoo, Dongoh Han, Seung Tae Lee, Won-Gun Koh, Geul Bang, Heeyoun Hwang, Sangmin Lee, Jinkee Hong
{"title":"Rice grains integrated with animal cells: A shortcut to a sustainable food system","authors":"Sohyeon Park,&nbsp;Milae Lee,&nbsp;Sungwon Jung,&nbsp;Hyun Lee,&nbsp;Bumgyu Choi,&nbsp;Moonhyun Choi,&nbsp;Jeong Min Lee,&nbsp;Ki Hyun Yoo,&nbsp;Dongoh Han,&nbsp;Seung Tae Lee,&nbsp;Won-Gun Koh,&nbsp;Geul Bang,&nbsp;Heeyoun Hwang,&nbsp;Sangmin Lee,&nbsp;Jinkee Hong","doi":"10.1016/j.matt.2024.03.007","DOIUrl":"https://doi.org/10.1016/j.matt.2024.03.007","url":null,"abstract":"","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":18.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590238524001140/pdfft?md5=352357fae1cc11e8f4e0cdce9460d5b1&pid=1-s2.0-S2590238524001140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140343750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Matter
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1