Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.06.012
Noncovalent organic frameworks (NCOFs) are porous materials constructed by diverse intermolecular interactions. It is challenging to obtain polymorphic NCOFs with adjustable pores and high-performance polarized luminescence. Here, two polymorphic organometallic NCOFs, 1-α and 1-β, are presented from an iridium complex 1 based on the intralayer F···H hydrogen bonding and interlayer cation-anion electrostatic interactions. These metalloligand-anion frameworks display linearly polarized blue phosphorescence with a polarization degree of up to 0.91 and optical waveguide properties. The 1-α microcrystals doped with a ruthenium acceptor manifest a reversible response to Et2O vapor, showing modulated energy transfer and polarized luminescence. The 1-α and 1-β microcrystals are transformed into another polymorphic 1-γ crystal by incorporating chiral (R/S)-carvone guests, affording tunable circularly polarized luminescence with a dissymmetry factor of around 0.1. This work provides a unique concept to obtain polymorphic NCOFs, demonstrating prominent potential in multifunctional optical and chiroptical applications.
{"title":"Metalloligand-anion frameworks: Tunable polarized luminescence and crystal-to-crystal transformation","authors":"","doi":"10.1016/j.matt.2024.06.012","DOIUrl":"10.1016/j.matt.2024.06.012","url":null,"abstract":"<div><div><span><span>Noncovalent organic frameworks (NCOFs) are porous materials constructed by diverse intermolecular interactions. It is challenging to obtain polymorphic NCOFs with adjustable pores and high-performance </span>polarized luminescence<span>. Here, two polymorphic organometallic NCOFs, </span></span><strong>1</strong>-<em>α</em> and <strong>1</strong>-<em>β</em><span>, are presented from an iridium complex </span><strong>1</strong><span><span> based on the intralayer F···H hydrogen bonding and interlayer cation-anion </span>electrostatic interactions<span>. These metalloligand-anion frameworks display linearly polarized blue phosphorescence with a polarization degree of up to 0.91 and optical waveguide properties. The </span></span><strong>1</strong>-<em>α</em><span> microcrystals<span> doped with a ruthenium acceptor manifest a reversible response to Et</span></span><sub>2</sub>O vapor, showing modulated energy transfer and polarized luminescence. The <strong>1</strong>-<em>α</em> and <strong>1</strong>-<em>β</em><span> microcrystals are transformed into another polymorphic </span><strong>1</strong>-<em>γ</em> crystal by incorporating chiral (<em>R</em>/<em>S</em><span>)-carvone guests, affording tunable circularly polarized luminescence with a dissymmetry factor of around 0.1. This work provides a unique concept to obtain polymorphic NCOFs, demonstrating prominent potential in multifunctional optical and chiroptical applications.</span></div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3537-3553"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.06.023
Supreeth Nagendran , Amoghavarsha Mahadevegowda , Sundeep Vema , Mohsen Danaie , Weixin Song , Bo Wen , Caterina Ducati , Clare P. Grey
Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO5.5 and β-Nb2WO8, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb3WO10.5 with a structure closely related to β-Nb2WO8 was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb2O5 and Nb3WO10.5, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO3 within the NbWO5.5 lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.
{"title":"Cation ordering in low-temperature niobium-rich NbWO bronzes: New anodes for high-rate Li-ion batteries","authors":"Supreeth Nagendran , Amoghavarsha Mahadevegowda , Sundeep Vema , Mohsen Danaie , Weixin Song , Bo Wen , Caterina Ducati , Clare P. Grey","doi":"10.1016/j.matt.2024.06.023","DOIUrl":"10.1016/j.matt.2024.06.023","url":null,"abstract":"<div><div>Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO<sub>5.5</sub> and β-Nb<sub>2</sub>WO<sub>8</sub>, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb<sub>3</sub>WO<sub>10.5</sub> with a structure closely related to β-Nb<sub>2</sub>WO<sub>8</sub> was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb<sub>2</sub>O<sub>5</sub> and Nb<sub>3</sub>WO<sub>10.5</sub>, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO<sub>3</sub> within the NbWO<sub>5.5</sub> lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3567-3586"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.06.027
Lanting Qian , Baltej Singh , Zhuo Yu , Ning Chen , Graham King , Zachary Arthur , Linda F. Nazar
Here, we demonstrate that quasi-crystalline lithium metal fluoride materials prepared by mechanochemical synthesis exhibit up to 300-fold higher ionic conductivity than their crystalline counterparts, with Li2TiF6 being the example in point. By probing the “amorphous” and crystalline forms of these materials at different length scales, we show that the introduction of structural disorder at short to long length scales is crucial for facilitating Li+ transport. Moreover, we show that the addition of LiF creates an interaction with Li2TiF6 at the local level that readily disrupts the long-range order. The ionic conductivity of the composite material reaches a benchmark value of 2.5 × 10−3 mS cm−1, the highest of fluoride materials reported in the literature and on par with LiPON and LiNbO3. This work delivers insights into structure-conductivity relationships contrasting crystalline and amorphous materials and shows strategies to unlock ion conduction.
{"title":"Unlocking lithium ion conduction in lithium metal fluorides","authors":"Lanting Qian , Baltej Singh , Zhuo Yu , Ning Chen , Graham King , Zachary Arthur , Linda F. Nazar","doi":"10.1016/j.matt.2024.06.027","DOIUrl":"10.1016/j.matt.2024.06.027","url":null,"abstract":"<div><div>Here, we demonstrate that quasi-crystalline lithium metal fluoride materials prepared by mechanochemical synthesis exhibit up to 300-fold higher ionic conductivity than their crystalline counterparts, with Li<sub>2</sub>TiF<sub>6</sub> being the example in point. By probing the “amorphous” and crystalline forms of these materials at different length scales, we show that the introduction of structural disorder at short to long length scales is crucial for facilitating Li<sup>+</sup> transport. Moreover, we show that the addition of LiF creates an interaction with Li<sub>2</sub>TiF<sub>6</sub> at the local level that readily disrupts the long-range order. The ionic conductivity of the composite material reaches a benchmark value of 2.5 × 10<sup>−3</sup> mS cm<sup>−1</sup>, the highest of fluoride materials reported in the literature and on par with LiPON and LiNbO<sub>3</sub>. This work delivers insights into structure-conductivity relationships contrasting crystalline and amorphous materials and shows strategies to unlock ion conduction.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3587-3607"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.08.024
Meng Xiao , Zhou Li
As soft, self-powered, and biocompatible ionic current generators, piezoionic hydrogels are suitable candidates for implantable neuromodulation applications. In a recent issue of Device, Dai et al.1 describe an artificial nerve that combines sensing and synaptic functions for neuromodulation. The success of piezoionic artificial nerves can inspire next-generation neuromorphic devices with sensing, storage, and computing properties.
{"title":"Piezoionic artificial nerves for tactile sensing and neuromodulation","authors":"Meng Xiao , Zhou Li","doi":"10.1016/j.matt.2024.08.024","DOIUrl":"10.1016/j.matt.2024.08.024","url":null,"abstract":"<div><div>As soft, self-powered, and biocompatible ionic current generators, piezoionic hydrogels are suitable candidates for implantable neuromodulation applications. In a recent issue of <em>Device</em>, Dai et al.<span><span><sup>1</sup></span></span> describe an artificial nerve that combines sensing and synaptic functions for neuromodulation. The success of piezoionic artificial nerves can inspire next-generation neuromorphic devices with sensing, storage, and computing properties.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3245-3247"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.07.006
Jie Luo , Risa Qiao , Baofu Ding
Two-dimensional (2D) materials, recognized for their atomic-level thickness, high specific surface area, and robust chemical adaptability, significantly reduce ion transport resistance and improve sieving selectivity in membrane separation. This review focuses on recent advancements in 2D material membranes for ion-selective separation, delving into the fundamental properties of 2D materials for membrane fabrication, their synthesis and preparation methods, their classification based on electrical properties, and strategies to enhance ion selectivity and ion permeability. It also explores applications at the forefront of desalination, osmotic energy conversion, and acid recovery. Furthermore, this review discusses developmental challenges and future research directions related to vertical 2D nanochannels, anion-exchange membranes, large-scale preparation, structure stability, 2D material assembly, and mass transfer mechanisms.
{"title":"Enhancement of ion selectivity and permeability in two-dimensional material membranes","authors":"Jie Luo , Risa Qiao , Baofu Ding","doi":"10.1016/j.matt.2024.07.006","DOIUrl":"10.1016/j.matt.2024.07.006","url":null,"abstract":"<div><div>Two-dimensional (2D) materials, recognized for their atomic-level thickness, high specific surface area, and robust chemical adaptability, significantly reduce ion transport resistance and improve sieving selectivity in membrane separation. This review focuses on recent advancements in 2D material membranes for ion-selective separation, delving into the fundamental properties of 2D materials for membrane fabrication, their synthesis and preparation methods, their classification based on electrical properties, and strategies to enhance ion selectivity and ion permeability. It also explores applications at the forefront of desalination, osmotic energy conversion, and acid recovery. Furthermore, this review discusses developmental challenges and future research directions related to vertical 2D nanochannels, anion-exchange membranes, large-scale preparation, structure stability, 2D material assembly, and mass transfer mechanisms.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3351-3389"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.08.013
Tongjie Zhang , Shichen Yu , Yuean Wu , Mohamed A. Ibrahim , Adam D. Walter , Gregory R. Schwenk , Yong-Jie Hu , Michel W. Barsoum , Christopher Y. Li
Recently, a solution-based method was developed to synthesize sub-nm thin one-dimensional (1D) lepidocrocite (1DL) titanium-oxide-based nanofilaments as a colloidal suspension. When converted into the solid state, these 1DL nanofilaments self-assemble into 2D layered structures. Herein, we show how a polymer—branched polyethyleneimine (bPEI)—can be used to wrap individual 1DL surfaces and arrest this 1D-to-2D structural transition. X-ray diffraction (XRD) confirmed that the polymer molecules coated onto individual 1DL surfaces. More interestingly, the bPEI-coated 1DLs form a columnar hexagonal liquid crystalline structure in the solid state, and the inter-1DL distances can be readily tuned from 1.66 to 3.00 nm by controlling the polymer-to-1DL volume ratio. Combining the XRD results and density functional theory (DFT) calculations, we conclude that the 1D nanofilaments, on average, are comprised of 2 × 2 edge-shared TiO6 octahedra roughly 0.6 nm in diameter. The tunable liquid crystalline phase could open new opportunities to realize 1DL in multiple applications.
{"title":"Tuning the 1D-to-2D transition in lepidocrocite titanate nanofilaments via polymer wrapping","authors":"Tongjie Zhang , Shichen Yu , Yuean Wu , Mohamed A. Ibrahim , Adam D. Walter , Gregory R. Schwenk , Yong-Jie Hu , Michel W. Barsoum , Christopher Y. Li","doi":"10.1016/j.matt.2024.08.013","DOIUrl":"10.1016/j.matt.2024.08.013","url":null,"abstract":"<div><div>Recently, a solution-based method was developed to synthesize sub-nm thin one-dimensional (1D) lepidocrocite (1DL) titanium-oxide-based nanofilaments as a colloidal suspension. When converted into the solid state, these 1DL nanofilaments self-assemble into 2D layered structures. Herein, we show how a polymer—branched polyethyleneimine (bPEI)—can be used to wrap individual 1DL surfaces and arrest this 1D-to-2D structural transition. X-ray diffraction (XRD) confirmed that the polymer molecules coated onto individual 1DL surfaces. More interestingly, the bPEI-coated 1DLs form a columnar hexagonal liquid crystalline structure in the solid state, and the inter-1DL distances can be readily tuned from 1.66 to 3.00 nm by controlling the polymer-to-1DL volume ratio. Combining the XRD results and density functional theory (DFT) calculations, we conclude that the 1D nanofilaments, on average, are comprised of 2 × 2 edge-shared TiO<sub>6</sub> octahedra roughly 0.6 nm in diameter. The tunable liquid crystalline phase could open new opportunities to realize 1DL in multiple applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3422-3432"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.08.003
Changmin Shi , Brian W. Sheldon , Meijie Chen
Developing passive water collection strategies offers us an opportunity to address global water scarcity and energy shortages. In a recent issue of Nature Water, Zou et al. introduced a novel solar-driven hygroscopic gel to efficiently recycle water for irrigation from plant transpiration and soil evaporation, offering a promising energy-saving solution for agricultural water management.
{"title":"Unveiling passive design to enable synergistic water harvesting and irrigation","authors":"Changmin Shi , Brian W. Sheldon , Meijie Chen","doi":"10.1016/j.matt.2024.08.003","DOIUrl":"10.1016/j.matt.2024.08.003","url":null,"abstract":"<div><div>Developing passive water collection strategies offers us an opportunity to address global water scarcity and energy shortages. In a recent issue of <em>Nature Water</em>, Zou et al. introduced a novel solar-driven hygroscopic gel to efficiently recycle water for irrigation from plant transpiration and soil evaporation, offering a promising energy-saving solution for agricultural water management.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3247-3250"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.06.045
Zengnan Wu , Yajing Zheng , Ling Lin , Yongning Lin , Tianze Xie , Wenjun Liao , Shiyu Chen , Yingrui Zhang , Jin-Ming Lin
Compartmentalized hydrogel microparticles are promising for applications in chemical, biological, and biomedical fields, owing to their customizability. However, simultaneous tailoring of the functionalities in both internal and surface compartments remains challenging. Here, an open aerosol microfluidic (OAMF) approach is reported to fabricate compartmentalized hydrogel particles, achieving orthogonal (independent and non-interfering) control over both internal and surface functionalization. The OAMF method utilizes microfluidic networks for shaping internal compartment layouts and employs reactive aerosols for precise surface engineering. As a proof of concept, particles featuring intricate internal and surface designs were created. In addition, the broad material versatility of particle customization is demonstrated by different hydrogels. Finally, potential applications of particles were explored as novel cell carriers. As exemplars, patterned cell cultures can be established both on the surface and inside of the particles. The proposed approach enables flexible design of engineered particles, advancing tissue engineering, drug screening, and cell therapeutic applications.
{"title":"Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles","authors":"Zengnan Wu , Yajing Zheng , Ling Lin , Yongning Lin , Tianze Xie , Wenjun Liao , Shiyu Chen , Yingrui Zhang , Jin-Ming Lin","doi":"10.1016/j.matt.2024.06.045","DOIUrl":"10.1016/j.matt.2024.06.045","url":null,"abstract":"<div><div>Compartmentalized hydrogel microparticles are promising for applications in chemical, biological, and biomedical fields, owing to their customizability. However, simultaneous tailoring of the functionalities in both internal and surface compartments remains challenging. Here, an open aerosol microfluidic (OAMF) approach is reported to fabricate compartmentalized hydrogel particles, achieving orthogonal (independent and non-interfering) control over both internal and surface functionalization. The OAMF method utilizes microfluidic networks for shaping internal compartment layouts and employs reactive aerosols for precise surface engineering. As a proof of concept, particles featuring intricate internal and surface designs were created. In addition, the broad material versatility of particle customization is demonstrated by different hydrogels. Finally, potential applications of particles were explored as novel cell carriers. As exemplars, patterned cell cultures can be established both on the surface and inside of the particles. The proposed approach enables flexible design of engineered particles, advancing tissue engineering, drug screening, and cell therapeutic applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3645-3657"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.06.035
Shu Zhang , Aocheng Chen , Yi An , Quan Li
Arene-perfluoroarene interaction is a unique form of π-π interaction that has gained attention in recent years. This review begins by introducing the properties of arene-perfluoroarene interaction to highlight its significant difference from arene-arene interaction. Through employing density functional theory (DFT) calculations, we elucidate the binding affinities of diverse arene-perfluoroarene interaction pairs. Moreover, manifold self-assembly constructions arise from the varying binding affinities of arene-perfluoroarene interaction in solid and solution phases. The impact of arene-perfluoroarene interaction in materials science is significant, with numerous examples covering various popular categories of materials, such as graphenes, perovskites, and hydrogels, as well as functions, such as organic luminescent materials, solar cells, and biological engineering materials. This review is expected to offer guidance on the application of arene-perfluoroarene interaction in materials science, providing an alternative tool for current challenges in the field.
{"title":"Arene-perfluoroarene interaction: Properties, constructions, and applications in materials science","authors":"Shu Zhang , Aocheng Chen , Yi An , Quan Li","doi":"10.1016/j.matt.2024.06.035","DOIUrl":"10.1016/j.matt.2024.06.035","url":null,"abstract":"<div><div>Arene-perfluoroarene interaction is a unique form of π-π interaction that has gained attention in recent years. This review begins by introducing the properties of arene-perfluoroarene interaction to highlight its significant difference from arene-arene interaction. Through employing density functional theory (DFT) calculations, we elucidate the binding affinities of diverse arene-perfluoroarene interaction pairs. Moreover, manifold self-assembly constructions arise from the varying binding affinities of arene-perfluoroarene interaction in solid and solution phases. The impact of arene-perfluoroarene interaction in materials science is significant, with numerous examples covering various popular categories of materials, such as graphenes, perovskites, and hydrogels, as well as functions, such as organic luminescent materials, solar cells, and biological engineering materials. This review is expected to offer guidance on the application of arene-perfluoroarene interaction in materials science, providing an alternative tool for current challenges in the field.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3317-3350"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.matt.2024.08.018
Changyong Cai , Zhijian Tan , Shengyi Dong
Fabricating materials from natural resources is related to green, low-carbon, and sustainable development. Recently in Cell Rep. Phys. Sci., a bioinspired strategy is used to construct a reusable adhesive from the soy protein. This study represents a successful attempt to introduce sustainability into artificial materials.
{"title":"Reusable soy protein derivative as sustainable adhesive","authors":"Changyong Cai , Zhijian Tan , Shengyi Dong","doi":"10.1016/j.matt.2024.08.018","DOIUrl":"10.1016/j.matt.2024.08.018","url":null,"abstract":"<div><div>Fabricating materials from natural resources is related to green, low-carbon, and sustainable development. Recently in <em>Cell Rep. Phys. Sci.</em>, a bioinspired strategy is used to construct a reusable adhesive from the soy protein. This study represents a successful attempt to introduce sustainability into artificial materials.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3243-3244"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}