首页 > 最新文献

Matter最新文献

英文 中文
Nanopore signatures of major alcoholic beverages
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-17 DOI: 10.1016/j.matt.2024.11.025
Pingping Fan, Kui Li, Tian Li, Panke Zhang, Shuo Huang
Alcoholic beverages, such as wine, beer, and distilled spirits, are widely produced and consumed in different nations. Different types of alcoholic beverages contain different combinations of flavor compounds. However, rapid and simultaneous analysis of a large variety of compounds in alcoholic beverages by a miniatured and portable device remains a challenge. In this paper, a Mycobacterium smegmatis porin A (MspA) nanopore modified with a phenylboronic acid (PBA) adapter is applied for rapid analysis of a variety of alcoholic beverages. By utilizing custom machine learning algorithms, various cis-diols are identified simultaneously in both distilled and fermented alcoholic beverages, generating unique barcodes for each sample type. Nanopore analysis of alcoholic beverages has also never been carried out previously. Rapid grading of wine sweetness and detection of additives, including sucrose and D-tartaric acid, are also demonstrated, showcasing the significance of this technique in the administration of wine production.
葡萄酒、啤酒和蒸馏酒等酒精饮料在不同国家广泛生产和消费。不同类型的酒精饮料含有不同的风味化合物组合。然而,利用微型便携式设备快速、同步地分析酒精饮料中的多种化合物仍是一项挑战。本文应用了经苯硼酸(PBA)适配器修饰的分枝杆菌孔蛋白 A(MspA)纳米孔,用于快速分析各种酒精饮料。利用定制的机器学习算法,可同时识别蒸馏和发酵酒精饮料中的各种顺式二醇,并为每种样品类型生成独特的条形码。此前也从未对酒精饮料进行过纳米孔分析。此外,还演示了葡萄酒甜度的快速分级和添加剂(包括蔗糖和 D-酒石酸)的检测,展示了该技术在葡萄酒生产管理中的重要意义。
{"title":"Nanopore signatures of major alcoholic beverages","authors":"Pingping Fan, Kui Li, Tian Li, Panke Zhang, Shuo Huang","doi":"10.1016/j.matt.2024.11.025","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.025","url":null,"abstract":"Alcoholic beverages, such as wine, beer, and distilled spirits, are widely produced and consumed in different nations. Different types of alcoholic beverages contain different combinations of flavor compounds. However, rapid and simultaneous analysis of a large variety of compounds in alcoholic beverages by a miniatured and portable device remains a challenge. In this paper, a <em>Mycobacterium smegmatis</em> porin A (MspA) nanopore modified with a phenylboronic acid (PBA) adapter is applied for rapid analysis of a variety of alcoholic beverages. By utilizing custom machine learning algorithms, various <em>cis</em>-diols are identified simultaneously in both distilled and fermented alcoholic beverages, generating unique barcodes for each sample type. Nanopore analysis of alcoholic beverages has also never been carried out previously. Rapid grading of wine sweetness and detection of additives, including sucrose and D-tartaric acid, are also demonstrated, showcasing the significance of this technique in the administration of wine production.","PeriodicalId":388,"journal":{"name":"Matter","volume":"24 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
π-d conjugated coordination mediated catalysis for four-electron-transfer fast-charging aqueous zinc-iodine batteries π-d共轭配位介导催化四电子转移快速充电锌碘水电池
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-17 DOI: 10.1016/j.matt.2024.11.026
Deyang Guan, Zhaohui Deng, Wen Luo, Chaojie Cheng, Feiyue Wang, Hongwei Cai, Ruixi Chen, Pei Wang, Mingyu Wu, Chenjing Han, Zhiyuan Liu, Dongliang Ma, Liqiang Mai
π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I2 battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I/I0 two-electron-transfer Zn-I2 battery provides a specific capacity of 226.4 mAh g−1 at 0.4 A g−1 (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g−1. The assembled I/I0/I+ four-electron-transfer Zn-I2 battery provides a specific capacity of up to 337.1 mAh g−1 at 5 A g−1 with outstanding rate performance (155.6 mAh g−1 at 50 A g−1) and cycle performance (12,000 cycles at 10 A g−1). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I2 battery electrode material enabled with the promising four-electron transfer reaction.
我们开发了具有独特堆叠结构的 π-d 共轭配位聚合物 (CCP),用于在水性 Zn-I2 电池中通过化学吸附实现碘的纳米化。这种堆叠结构可使有序的原子阵列上聚集局部电子,从而增强内置电场,优化碘物种演化的环境。组装好的 I-/I0 双电子转移 Zn-I2 电池在 0.4 A g-1 条件下(过电位为 42 mV)比容量为 226.4 mAh g-1,在 10 A g-1 条件下可循环使用 60,000 次。组装好的 I-/I0/I+ 四电子转移 Zn-I2 电池在 5 A g-1 时的比容量高达 337.1 mAh g-1,并具有出色的速率性能(50 A g-1 时 155.6 mAh g-1)和循环性能(10 A g-1 时 12,000 次循环)。本研究采用有针对性的分子设计和系统优化方法,利用前景广阔的四电子转移反应开发出了一种高性能水性 Zn-I2 电池电极材料。
{"title":"π-d conjugated coordination mediated catalysis for four-electron-transfer fast-charging aqueous zinc-iodine batteries","authors":"Deyang Guan, Zhaohui Deng, Wen Luo, Chaojie Cheng, Feiyue Wang, Hongwei Cai, Ruixi Chen, Pei Wang, Mingyu Wu, Chenjing Han, Zhiyuan Liu, Dongliang Ma, Liqiang Mai","doi":"10.1016/j.matt.2024.11.026","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.026","url":null,"abstract":"π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I<sub>2</sub> battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I<sup>−</sup>/I<sup>0</sup> two-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of 226.4 mAh g<sup>−1</sup> at 0.4 A g<sup>−1</sup> (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g<sup>−1</sup>. The assembled I<sup>−</sup>/I<sup>0</sup>/I<sup>+</sup> four-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of up to 337.1 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> with outstanding rate performance (155.6 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup>) and cycle performance (12,000 cycles at 10 A g<sup>−1</sup>). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I<sub>2</sub> battery electrode material enabled with the promising four-electron transfer reaction.","PeriodicalId":388,"journal":{"name":"Matter","volume":"1 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-gradient-induced modulation of photovoltaic efficiency 应变梯度诱导的光伏效率调制
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-17 DOI: 10.1016/j.matt.2024.11.024
Zhiguo Wang, Hongqiang Zhong, Zhiyong Liu, Xiaotian Hu, Longlong Shu, Gustau Catalan
In this paper, we show that strain gradients can greatly affect the total photovoltaic efficiency of perovskite solar cells. By adding the flexophotovoltaic effect on top of the standard photovoltaic effect of semiconductor junctions, the total output of perovskite photovoltaic devices can be either completely suppressed or greatly enhanced, depending on the relative sign of the strain gradient with respect to the semiconductor junction polarity. The results thus indicate that, whether as a threat to efficiency or as a means to enhance it, strain gradients can greatly affect the performance of perovskite solar cells, and flexoelectric engineering is thus an indispensable step in the pursuit of maximal photovoltaic efficiency.
在本文中,我们展示了应变梯度可以极大地影响包晶太阳能电池的总光电效率。通过在半导体结的标准光生伏打效应基础上增加柔性光生伏打效应,根据应变梯度相对于半导体结极性的相对符号,可完全抑制或大大提高透辉石光电设备的总输出。因此,研究结果表明,无论是作为对效率的威胁,还是作为提高效率的手段,应变梯度都会极大地影响包晶体太阳能电池的性能,因此柔电工程是追求最大光伏效率不可或缺的一步。
{"title":"Strain-gradient-induced modulation of photovoltaic efficiency","authors":"Zhiguo Wang, Hongqiang Zhong, Zhiyong Liu, Xiaotian Hu, Longlong Shu, Gustau Catalan","doi":"10.1016/j.matt.2024.11.024","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.024","url":null,"abstract":"In this paper, we show that strain gradients can greatly affect the total photovoltaic efficiency of perovskite solar cells. By adding the flexophotovoltaic effect on top of the standard photovoltaic effect of semiconductor junctions, the total output of perovskite photovoltaic devices can be either completely suppressed or greatly enhanced, depending on the relative sign of the strain gradient with respect to the semiconductor junction polarity. The results thus indicate that, whether as a threat to efficiency or as a means to enhance it, strain gradients can greatly affect the performance of perovskite solar cells, and flexoelectric engineering is thus an indispensable step in the pursuit of maximal photovoltaic efficiency.","PeriodicalId":388,"journal":{"name":"Matter","volume":"39 12 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-band luminescence from a rare earth-based two-dimensional material 基于稀土的二维材料的多波段发光
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-17 DOI: 10.1016/j.matt.2024.11.023
Rahul Rao, Emmanuel Rowe, Ryan Siebenaller, Jonathan T. Goldstein, Adam Alfieri, Bongjun Choi, Ryan Selhorst, Andrea N. Giordano, Jie Jiang, Christopher E. Stevens, Thuc T. Mai, Tyson C. Back, Ruth Pachter, Joshua R. Hendrickson, Deep Jariwala, Michael A. Susner
Photoluminescence (PL) emission in two-dimensional (2D) materials is of great interest for nanophotonics applications. While excitonic emission has been observed in numerous 2D materials, tunable multi-band luminescence is rare. Here, we present single-crystalline AgErP2Se6, a 2D material that exhibits bright, multi-band PL emission from Er3+ ions within the lattice. The emission bands cover a wide range (350–1,550 nm), with ultra-narrow (as low as 0.5 nm at room temperature) emission peaks and room temperature lifetimes up to ∼4 μs. The intensities of the PL emission bands from the single crystals depend strongly on temperature and pressure, enabling sensing over a wide temperature and pressure range. Furthermore, the PL persists in exfoliated flakes down to at least 11 nm thick and demonstrates thickness-dependent Purcell enhancement. This work establishes 2D AgErP2Se6 as a multi-band luminescent emitter and sensor, poised to enable integration into a number of optoelectronic and nanophotonic applications.
二维(2D)材料中的光致发光(PL)发射在纳米光子学应用中具有重大意义。虽然在许多二维材料中都观察到了激子发射,但可调谐的多波段发光却很少见。在这里,我们展示了单晶 AgErP2Se6,这是一种二维材料,它能从晶格内的 Er3+ 离子发出明亮的多波段 PL 发射。这些发射带覆盖的范围很广(350-1,550 nm),具有超窄(室温下低至 0.5 nm)的发射峰,室温寿命可达 4 μs。单晶体的聚光发射带强度与温度和压力密切相关,因此可以在很宽的温度和压力范围内进行传感。此外,PL 在厚度至少为 11 nm 的剥离薄片中持续存在,并表现出厚度依赖性 Purcell 增强。这项研究将二维 AgErP2Se6 确立为一种多波段发光体和传感器,有望集成到许多光电和纳米光子应用中。
{"title":"Multi-band luminescence from a rare earth-based two-dimensional material","authors":"Rahul Rao, Emmanuel Rowe, Ryan Siebenaller, Jonathan T. Goldstein, Adam Alfieri, Bongjun Choi, Ryan Selhorst, Andrea N. Giordano, Jie Jiang, Christopher E. Stevens, Thuc T. Mai, Tyson C. Back, Ruth Pachter, Joshua R. Hendrickson, Deep Jariwala, Michael A. Susner","doi":"10.1016/j.matt.2024.11.023","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.023","url":null,"abstract":"Photoluminescence (PL) emission in two-dimensional (2D) materials is of great interest for nanophotonics applications. While excitonic emission has been observed in numerous 2D materials, tunable multi-band luminescence is rare. Here, we present single-crystalline AgErP<sub>2</sub>Se<sub>6</sub>, a 2D material that exhibits bright, multi-band PL emission from Er<sup>3+</sup> ions within the lattice. The emission bands cover a wide range (350–1,550 nm), with ultra-narrow (as low as 0.5 nm at room temperature) emission peaks and room temperature lifetimes up to ∼4 μs. The intensities of the PL emission bands from the single crystals depend strongly on temperature and pressure, enabling sensing over a wide temperature and pressure range. Furthermore, the PL persists in exfoliated flakes down to at least 11 nm thick and demonstrates thickness-dependent Purcell enhancement. This work establishes 2D AgErP<sub>2</sub>Se<sub>6</sub> as a multi-band luminescent emitter and sensor, poised to enable integration into a number of optoelectronic and nanophotonic applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"61 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic conductor from viscoelastic polymer composite gels for smart soft electronics 用于智能软电子器件的粘弹性聚合物复合凝胶仿生导体
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-16 DOI: 10.1016/j.matt.2024.11.022
The neural system in living organisms has achieved highly optimized features in perception, response, and learning, which are extremely desirable for …
生物体内的神经系统在感知、反应和学习方面实现了高度优化,这对于...
{"title":"Biomimetic conductor from viscoelastic polymer composite gels for smart soft electronics","authors":"","doi":"10.1016/j.matt.2024.11.022","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.022","url":null,"abstract":"The neural system in living organisms has achieved highly optimized features in perception, response, and learning, which are extremely desirable for …","PeriodicalId":388,"journal":{"name":"Matter","volume":"11 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome 原子硫键合碳化钛纳米片用于监测睡眠呼吸暂停综合征的柔性压阻传感器
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-16 DOI: 10.1016/j.matt.2024.11.021
Yan Bai, Longlu Wang, Xiang Zou, Ning Ding, Yuhui Feng, Zhen You, Weiwei Zhao, Weikang Wang, Feifei Lin, Yuzhe Chen, Yijie Zhang, Jianmin Li, Fangyi Guan, Shujuan Liu, Wei Huang, Qiang Zhao
Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti3C2 is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti3C2/Na2S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti3C2 nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S2− ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti3C2 sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.
{"title":"Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome","authors":"Yan Bai, Longlu Wang, Xiang Zou, Ning Ding, Yuhui Feng, Zhen You, Weiwei Zhao, Weikang Wang, Feifei Lin, Yuzhe Chen, Yijie Zhang, Jianmin Li, Fangyi Guan, Shujuan Liu, Wei Huang, Qiang Zhao","doi":"10.1016/j.matt.2024.11.021","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.021","url":null,"abstract":"Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti<sub>3</sub>C<sub>2</sub> is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti<sub>3</sub>C<sub>2</sub>/Na<sub>2</sub>S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti<sub>3</sub>C<sub>2</sub> nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S<sup>2−</sup> ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti<sub>3</sub>C<sub>2</sub> sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.","PeriodicalId":388,"journal":{"name":"Matter","volume":"18 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally responsive dual-compartment microcapsules with full spectrum color-changing performance for anti-counterfeiting applications
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-13 DOI: 10.1016/j.matt.2024.11.019
Micro-nano capsules have garnered significant attention due to their potential applications. However, the capacity to load these capsules with various…
微纳胶囊因其潜在的应用而备受关注。然而,在这些胶囊中装载各种...
{"title":"Environmentally responsive dual-compartment microcapsules with full spectrum color-changing performance for anti-counterfeiting applications","authors":"","doi":"10.1016/j.matt.2024.11.019","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.019","url":null,"abstract":"Micro-nano capsules have garnered significant attention due to their potential applications. However, the capacity to load these capsules with various…","PeriodicalId":388,"journal":{"name":"Matter","volume":"38 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A soft and fatigue-resistant material that mimics heart valves
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-13 DOI: 10.1016/j.matt.2024.11.020
Xi Chen, Fengkai Liu, Qifeng Yu, Meng Yang, Zhigang Suo, Jingda Tang
Bovine pericardium, a tissue commonly used to make artificial heart valves, fulfills two fundamental mechanical requirements: a low modulus to ensure opening and closing in cyclic pulsatile flow and a high fatigue threshold to prevent crack growth. The tissue consists of a soft matrix and crimped fibers. Inspired by this architecture, we develop a composite of a soft polymer matrix and a knitted fabric. When the stretch is small to modest, the knitted fabric is easily stretched, so that the composite is soft. When the stretch is large, the knitted fabric is stiff and strong, so that the composite resists fatigue crack growth. The mechanical behavior of the composite is comparable to that of bovine pericardium. The composite has an exceptionally long fatigue life, enduring 25 million cycles of pulsatile flow, two orders of magnitude longer than the polymer matrix. This soft and fatigue-resistant composite may find broad applications in biomedicine.
牛心包是一种常用于制造人工心脏瓣膜的组织,它满足两个基本的机械要求:低模量以确保在周期性脉动流中打开和关闭;高疲劳阈值以防止裂纹增长。这种组织由软基质和卷曲纤维组成。受这种结构的启发,我们开发了一种软聚合物基体和针织物的复合材料。当拉伸幅度较小或适中时,针织物很容易拉伸,因此复合材料是柔软的。当拉伸幅度较大时,针织物会变得坚硬结实,从而使复合材料能够抵御疲劳裂纹的增长。复合材料的机械性能可与牛心包相媲美。这种复合材料的疲劳寿命特别长,可承受 2,500 万次脉动流动,比聚合物基体的疲劳寿命长两个数量级。这种柔软且抗疲劳的复合材料可能会在生物医学中得到广泛应用。
{"title":"A soft and fatigue-resistant material that mimics heart valves","authors":"Xi Chen, Fengkai Liu, Qifeng Yu, Meng Yang, Zhigang Suo, Jingda Tang","doi":"10.1016/j.matt.2024.11.020","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.020","url":null,"abstract":"Bovine pericardium, a tissue commonly used to make artificial heart valves, fulfills two fundamental mechanical requirements: a low modulus to ensure opening and closing in cyclic pulsatile flow and a high fatigue threshold to prevent crack growth. The tissue consists of a soft matrix and crimped fibers. Inspired by this architecture, we develop a composite of a soft polymer matrix and a knitted fabric. When the stretch is small to modest, the knitted fabric is easily stretched, so that the composite is soft. When the stretch is large, the knitted fabric is stiff and strong, so that the composite resists fatigue crack growth. The mechanical behavior of the composite is comparable to that of bovine pericardium. The composite has an exceptionally long fatigue life, enduring 25 million cycles of pulsatile flow, two orders of magnitude longer than the polymer matrix. This soft and fatigue-resistant composite may find broad applications in biomedicine.","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-09 DOI: 10.1016/j.matt.2024.11.013
Sungho Jeon, Hannah S. Nedzbala, Brittany L. Huffman, Adam J. Pearce, Carrie L. Donley, Xiaofan Jia, Gabriella P. Bein, Jihoon Choi, Nicolas Durand, Hala Atallah, Felix N. Castellano, Jillian L. Dempsey, James M. Mayer, Nilay Hazari, Eric A. Stach
The surface immobilization of molecular catalysts is attractive because it combines the benefits of homogeneous and heterogeneous catalysis. However, determining the surface coverage and distribution of a molecular catalyst on a solid support is often challenging, inhibiting our ability to design improved catalytic systems. Here, we demonstrate that the combination of scanning transmission electron microscopy (STEM) and image analysis of the individual positions of heavy atoms in transition metal complexes via a convolutional neural network (CNN) allows statistically robust determination of the surface coverage and distribution of immobilized molecular catalysts. These observations provide information about how changes in the functionalization conditions, attachment group, and structure of the molecular catalyst affect the surface coverage and distribution, providing insight into the chemical mechanism of surface immobilization. The method could be generally valuable for correlating the surface coverage and distribution to the activity, selectivity, and stability of a catalytic system.
{"title":"Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes","authors":"Sungho Jeon, Hannah S. Nedzbala, Brittany L. Huffman, Adam J. Pearce, Carrie L. Donley, Xiaofan Jia, Gabriella P. Bein, Jihoon Choi, Nicolas Durand, Hala Atallah, Felix N. Castellano, Jillian L. Dempsey, James M. Mayer, Nilay Hazari, Eric A. Stach","doi":"10.1016/j.matt.2024.11.013","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.013","url":null,"abstract":"The surface immobilization of molecular catalysts is attractive because it combines the benefits of homogeneous and heterogeneous catalysis. However, determining the surface coverage and distribution of a molecular catalyst on a solid support is often challenging, inhibiting our ability to design improved catalytic systems. Here, we demonstrate that the combination of scanning transmission electron microscopy (STEM) and image analysis of the individual positions of heavy atoms in transition metal complexes via a convolutional neural network (CNN) allows statistically robust determination of the surface coverage and distribution of immobilized molecular catalysts. These observations provide information about how changes in the functionalization conditions, attachment group, and structure of the molecular catalyst affect the surface coverage and distribution, providing insight into the chemical mechanism of surface immobilization. The method could be generally valuable for correlating the surface coverage and distribution to the activity, selectivity, and stability of a catalytic system.","PeriodicalId":388,"journal":{"name":"Matter","volume":"110 19 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-plane compressive strain stabilized formamidinium-based perovskite
IF 18.9 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-09 DOI: 10.1016/j.matt.2024.11.014
Xuechun Sun, Pengju Shi, Jiahui Shen, Jichuang Shen, Liuwen Tian, Jiazhe Xu, Qingqing Liu, Yuan Tian, Donger Jin, Xiaohe Miao, Jingjing Xue, Rui Wang
Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.
{"title":"In-plane compressive strain stabilized formamidinium-based perovskite","authors":"Xuechun Sun, Pengju Shi, Jiahui Shen, Jichuang Shen, Liuwen Tian, Jiazhe Xu, Qingqing Liu, Yuan Tian, Donger Jin, Xiaohe Miao, Jingjing Xue, Rui Wang","doi":"10.1016/j.matt.2024.11.014","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.014","url":null,"abstract":"Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.","PeriodicalId":388,"journal":{"name":"Matter","volume":"212 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Matter
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1