Pub Date : 2024-12-17DOI: 10.1016/j.matt.2024.11.025
Pingping Fan, Kui Li, Tian Li, Panke Zhang, Shuo Huang
Alcoholic beverages, such as wine, beer, and distilled spirits, are widely produced and consumed in different nations. Different types of alcoholic beverages contain different combinations of flavor compounds. However, rapid and simultaneous analysis of a large variety of compounds in alcoholic beverages by a miniatured and portable device remains a challenge. In this paper, a Mycobacterium smegmatis porin A (MspA) nanopore modified with a phenylboronic acid (PBA) adapter is applied for rapid analysis of a variety of alcoholic beverages. By utilizing custom machine learning algorithms, various cis-diols are identified simultaneously in both distilled and fermented alcoholic beverages, generating unique barcodes for each sample type. Nanopore analysis of alcoholic beverages has also never been carried out previously. Rapid grading of wine sweetness and detection of additives, including sucrose and D-tartaric acid, are also demonstrated, showcasing the significance of this technique in the administration of wine production.
{"title":"Nanopore signatures of major alcoholic beverages","authors":"Pingping Fan, Kui Li, Tian Li, Panke Zhang, Shuo Huang","doi":"10.1016/j.matt.2024.11.025","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.025","url":null,"abstract":"Alcoholic beverages, such as wine, beer, and distilled spirits, are widely produced and consumed in different nations. Different types of alcoholic beverages contain different combinations of flavor compounds. However, rapid and simultaneous analysis of a large variety of compounds in alcoholic beverages by a miniatured and portable device remains a challenge. In this paper, a <em>Mycobacterium smegmatis</em> porin A (MspA) nanopore modified with a phenylboronic acid (PBA) adapter is applied for rapid analysis of a variety of alcoholic beverages. By utilizing custom machine learning algorithms, various <em>cis</em>-diols are identified simultaneously in both distilled and fermented alcoholic beverages, generating unique barcodes for each sample type. Nanopore analysis of alcoholic beverages has also never been carried out previously. Rapid grading of wine sweetness and detection of additives, including sucrose and D-tartaric acid, are also demonstrated, showcasing the significance of this technique in the administration of wine production.","PeriodicalId":388,"journal":{"name":"Matter","volume":"24 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I2 battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I−/I0 two-electron-transfer Zn-I2 battery provides a specific capacity of 226.4 mAh g−1 at 0.4 A g−1 (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g−1. The assembled I−/I0/I+ four-electron-transfer Zn-I2 battery provides a specific capacity of up to 337.1 mAh g−1 at 5 A g−1 with outstanding rate performance (155.6 mAh g−1 at 50 A g−1) and cycle performance (12,000 cycles at 10 A g−1). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I2 battery electrode material enabled with the promising four-electron transfer reaction.
我们开发了具有独特堆叠结构的 π-d 共轭配位聚合物 (CCP),用于在水性 Zn-I2 电池中通过化学吸附实现碘的纳米化。这种堆叠结构可使有序的原子阵列上聚集局部电子,从而增强内置电场,优化碘物种演化的环境。组装好的 I-/I0 双电子转移 Zn-I2 电池在 0.4 A g-1 条件下(过电位为 42 mV)比容量为 226.4 mAh g-1,在 10 A g-1 条件下可循环使用 60,000 次。组装好的 I-/I0/I+ 四电子转移 Zn-I2 电池在 5 A g-1 时的比容量高达 337.1 mAh g-1,并具有出色的速率性能(50 A g-1 时 155.6 mAh g-1)和循环性能(10 A g-1 时 12,000 次循环)。本研究采用有针对性的分子设计和系统优化方法,利用前景广阔的四电子转移反应开发出了一种高性能水性 Zn-I2 电池电极材料。
{"title":"π-d conjugated coordination mediated catalysis for four-electron-transfer fast-charging aqueous zinc-iodine batteries","authors":"Deyang Guan, Zhaohui Deng, Wen Luo, Chaojie Cheng, Feiyue Wang, Hongwei Cai, Ruixi Chen, Pei Wang, Mingyu Wu, Chenjing Han, Zhiyuan Liu, Dongliang Ma, Liqiang Mai","doi":"10.1016/j.matt.2024.11.026","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.026","url":null,"abstract":"π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I<sub>2</sub> battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I<sup>−</sup>/I<sup>0</sup> two-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of 226.4 mAh g<sup>−1</sup> at 0.4 A g<sup>−1</sup> (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g<sup>−1</sup>. The assembled I<sup>−</sup>/I<sup>0</sup>/I<sup>+</sup> four-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of up to 337.1 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> with outstanding rate performance (155.6 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup>) and cycle performance (12,000 cycles at 10 A g<sup>−1</sup>). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I<sub>2</sub> battery electrode material enabled with the promising four-electron transfer reaction.","PeriodicalId":388,"journal":{"name":"Matter","volume":"1 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we show that strain gradients can greatly affect the total photovoltaic efficiency of perovskite solar cells. By adding the flexophotovoltaic effect on top of the standard photovoltaic effect of semiconductor junctions, the total output of perovskite photovoltaic devices can be either completely suppressed or greatly enhanced, depending on the relative sign of the strain gradient with respect to the semiconductor junction polarity. The results thus indicate that, whether as a threat to efficiency or as a means to enhance it, strain gradients can greatly affect the performance of perovskite solar cells, and flexoelectric engineering is thus an indispensable step in the pursuit of maximal photovoltaic efficiency.
{"title":"Strain-gradient-induced modulation of photovoltaic efficiency","authors":"Zhiguo Wang, Hongqiang Zhong, Zhiyong Liu, Xiaotian Hu, Longlong Shu, Gustau Catalan","doi":"10.1016/j.matt.2024.11.024","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.024","url":null,"abstract":"In this paper, we show that strain gradients can greatly affect the total photovoltaic efficiency of perovskite solar cells. By adding the flexophotovoltaic effect on top of the standard photovoltaic effect of semiconductor junctions, the total output of perovskite photovoltaic devices can be either completely suppressed or greatly enhanced, depending on the relative sign of the strain gradient with respect to the semiconductor junction polarity. The results thus indicate that, whether as a threat to efficiency or as a means to enhance it, strain gradients can greatly affect the performance of perovskite solar cells, and flexoelectric engineering is thus an indispensable step in the pursuit of maximal photovoltaic efficiency.","PeriodicalId":388,"journal":{"name":"Matter","volume":"39 12 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1016/j.matt.2024.11.023
Rahul Rao, Emmanuel Rowe, Ryan Siebenaller, Jonathan T. Goldstein, Adam Alfieri, Bongjun Choi, Ryan Selhorst, Andrea N. Giordano, Jie Jiang, Christopher E. Stevens, Thuc T. Mai, Tyson C. Back, Ruth Pachter, Joshua R. Hendrickson, Deep Jariwala, Michael A. Susner
Photoluminescence (PL) emission in two-dimensional (2D) materials is of great interest for nanophotonics applications. While excitonic emission has been observed in numerous 2D materials, tunable multi-band luminescence is rare. Here, we present single-crystalline AgErP2Se6, a 2D material that exhibits bright, multi-band PL emission from Er3+ ions within the lattice. The emission bands cover a wide range (350–1,550 nm), with ultra-narrow (as low as 0.5 nm at room temperature) emission peaks and room temperature lifetimes up to ∼4 μs. The intensities of the PL emission bands from the single crystals depend strongly on temperature and pressure, enabling sensing over a wide temperature and pressure range. Furthermore, the PL persists in exfoliated flakes down to at least 11 nm thick and demonstrates thickness-dependent Purcell enhancement. This work establishes 2D AgErP2Se6 as a multi-band luminescent emitter and sensor, poised to enable integration into a number of optoelectronic and nanophotonic applications.
{"title":"Multi-band luminescence from a rare earth-based two-dimensional material","authors":"Rahul Rao, Emmanuel Rowe, Ryan Siebenaller, Jonathan T. Goldstein, Adam Alfieri, Bongjun Choi, Ryan Selhorst, Andrea N. Giordano, Jie Jiang, Christopher E. Stevens, Thuc T. Mai, Tyson C. Back, Ruth Pachter, Joshua R. Hendrickson, Deep Jariwala, Michael A. Susner","doi":"10.1016/j.matt.2024.11.023","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.023","url":null,"abstract":"Photoluminescence (PL) emission in two-dimensional (2D) materials is of great interest for nanophotonics applications. While excitonic emission has been observed in numerous 2D materials, tunable multi-band luminescence is rare. Here, we present single-crystalline AgErP<sub>2</sub>Se<sub>6</sub>, a 2D material that exhibits bright, multi-band PL emission from Er<sup>3+</sup> ions within the lattice. The emission bands cover a wide range (350–1,550 nm), with ultra-narrow (as low as 0.5 nm at room temperature) emission peaks and room temperature lifetimes up to ∼4 μs. The intensities of the PL emission bands from the single crystals depend strongly on temperature and pressure, enabling sensing over a wide temperature and pressure range. Furthermore, the PL persists in exfoliated flakes down to at least 11 nm thick and demonstrates thickness-dependent Purcell enhancement. This work establishes 2D AgErP<sub>2</sub>Se<sub>6</sub> as a multi-band luminescent emitter and sensor, poised to enable integration into a number of optoelectronic and nanophotonic applications.","PeriodicalId":388,"journal":{"name":"Matter","volume":"61 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1016/j.matt.2024.11.022
The neural system in living organisms has achieved highly optimized features in perception, response, and learning, which are extremely desirable for …
生物体内的神经系统在感知、反应和学习方面实现了高度优化,这对于...
{"title":"Biomimetic conductor from viscoelastic polymer composite gels for smart soft electronics","authors":"","doi":"10.1016/j.matt.2024.11.022","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.022","url":null,"abstract":"The neural system in living organisms has achieved highly optimized features in perception, response, and learning, which are extremely desirable for …","PeriodicalId":388,"journal":{"name":"Matter","volume":"11 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti3C2 is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti3C2/Na2S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti3C2 nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S2− ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti3C2 sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.
{"title":"Atomic sulfur-bonded titanium carbide nanosheets for flexible piezoresistive sensor in monitoring sleep apnea syndrome","authors":"Yan Bai, Longlu Wang, Xiang Zou, Ning Ding, Yuhui Feng, Zhen You, Weiwei Zhao, Weikang Wang, Feifei Lin, Yuzhe Chen, Yijie Zhang, Jianmin Li, Fangyi Guan, Shujuan Liu, Wei Huang, Qiang Zhao","doi":"10.1016/j.matt.2024.11.021","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.021","url":null,"abstract":"Flexible piezoresistive sensors have attracted great attention for the real-time monitoring of sleep apnea syndrome (SAS) through respiratory airflow. Although two-dimensional ultrathin Ti<sub>3</sub>C<sub>2</sub> is regarded as a promising piezoresistive material, its poor structural compressibility and antioxidation limit its practical applications. Here, an innovative atomic sulfur-bonded strategy is proposed to fabricate large-sized, crumpled, and antioxidative Ti<sub>3</sub>C<sub>2</sub>/Na<sub>2</sub>S (TS) flakes for preparing flexible piezoresistive sensors. The fundamental mechanism is rooted in the synergistic effect of lateral boundary assembly of Ti<sub>3</sub>C<sub>2</sub> nanosheets into large flakes (∼7 μm), lattice distortion to induce crumpled structures, and edge passivation by S<sup>2−</sup> ions to mitigate oxidation (105 days). The crumpled microstructure provides abundant voids for enhanced compressibility and contact site variability, resulting in a 5-fold sensitivity improvement over the Ti<sub>3</sub>C<sub>2</sub> sensor and an ultralow detection limit of 0.2 Pa. We demonstrate the practical application of highly sensitive and stable piezoresistive sensors integrated into a respiratory monitoring system for SAS detection.","PeriodicalId":388,"journal":{"name":"Matter","volume":"18 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1016/j.matt.2024.11.019
Micro-nano capsules have garnered significant attention due to their potential applications. However, the capacity to load these capsules with various…
微纳胶囊因其潜在的应用而备受关注。然而,在这些胶囊中装载各种...
{"title":"Environmentally responsive dual-compartment microcapsules with full spectrum color-changing performance for anti-counterfeiting applications","authors":"","doi":"10.1016/j.matt.2024.11.019","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.019","url":null,"abstract":"Micro-nano capsules have garnered significant attention due to their potential applications. However, the capacity to load these capsules with various…","PeriodicalId":388,"journal":{"name":"Matter","volume":"38 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bovine pericardium, a tissue commonly used to make artificial heart valves, fulfills two fundamental mechanical requirements: a low modulus to ensure opening and closing in cyclic pulsatile flow and a high fatigue threshold to prevent crack growth. The tissue consists of a soft matrix and crimped fibers. Inspired by this architecture, we develop a composite of a soft polymer matrix and a knitted fabric. When the stretch is small to modest, the knitted fabric is easily stretched, so that the composite is soft. When the stretch is large, the knitted fabric is stiff and strong, so that the composite resists fatigue crack growth. The mechanical behavior of the composite is comparable to that of bovine pericardium. The composite has an exceptionally long fatigue life, enduring 25 million cycles of pulsatile flow, two orders of magnitude longer than the polymer matrix. This soft and fatigue-resistant composite may find broad applications in biomedicine.
{"title":"A soft and fatigue-resistant material that mimics heart valves","authors":"Xi Chen, Fengkai Liu, Qifeng Yu, Meng Yang, Zhigang Suo, Jingda Tang","doi":"10.1016/j.matt.2024.11.020","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.020","url":null,"abstract":"Bovine pericardium, a tissue commonly used to make artificial heart valves, fulfills two fundamental mechanical requirements: a low modulus to ensure opening and closing in cyclic pulsatile flow and a high fatigue threshold to prevent crack growth. The tissue consists of a soft matrix and crimped fibers. Inspired by this architecture, we develop a composite of a soft polymer matrix and a knitted fabric. When the stretch is small to modest, the knitted fabric is easily stretched, so that the composite is soft. When the stretch is large, the knitted fabric is stiff and strong, so that the composite resists fatigue crack growth. The mechanical behavior of the composite is comparable to that of bovine pericardium. The composite has an exceptionally long fatigue life, enduring 25 million cycles of pulsatile flow, two orders of magnitude longer than the polymer matrix. This soft and fatigue-resistant composite may find broad applications in biomedicine.","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1016/j.matt.2024.11.013
Sungho Jeon, Hannah S. Nedzbala, Brittany L. Huffman, Adam J. Pearce, Carrie L. Donley, Xiaofan Jia, Gabriella P. Bein, Jihoon Choi, Nicolas Durand, Hala Atallah, Felix N. Castellano, Jillian L. Dempsey, James M. Mayer, Nilay Hazari, Eric A. Stach
The surface immobilization of molecular catalysts is attractive because it combines the benefits of homogeneous and heterogeneous catalysis. However, determining the surface coverage and distribution of a molecular catalyst on a solid support is often challenging, inhibiting our ability to design improved catalytic systems. Here, we demonstrate that the combination of scanning transmission electron microscopy (STEM) and image analysis of the individual positions of heavy atoms in transition metal complexes via a convolutional neural network (CNN) allows statistically robust determination of the surface coverage and distribution of immobilized molecular catalysts. These observations provide information about how changes in the functionalization conditions, attachment group, and structure of the molecular catalyst affect the surface coverage and distribution, providing insight into the chemical mechanism of surface immobilization. The method could be generally valuable for correlating the surface coverage and distribution to the activity, selectivity, and stability of a catalytic system.
{"title":"Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes","authors":"Sungho Jeon, Hannah S. Nedzbala, Brittany L. Huffman, Adam J. Pearce, Carrie L. Donley, Xiaofan Jia, Gabriella P. Bein, Jihoon Choi, Nicolas Durand, Hala Atallah, Felix N. Castellano, Jillian L. Dempsey, James M. Mayer, Nilay Hazari, Eric A. Stach","doi":"10.1016/j.matt.2024.11.013","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.013","url":null,"abstract":"The surface immobilization of molecular catalysts is attractive because it combines the benefits of homogeneous and heterogeneous catalysis. However, determining the surface coverage and distribution of a molecular catalyst on a solid support is often challenging, inhibiting our ability to design improved catalytic systems. Here, we demonstrate that the combination of scanning transmission electron microscopy (STEM) and image analysis of the individual positions of heavy atoms in transition metal complexes via a convolutional neural network (CNN) allows statistically robust determination of the surface coverage and distribution of immobilized molecular catalysts. These observations provide information about how changes in the functionalization conditions, attachment group, and structure of the molecular catalyst affect the surface coverage and distribution, providing insight into the chemical mechanism of surface immobilization. The method could be generally valuable for correlating the surface coverage and distribution to the activity, selectivity, and stability of a catalytic system.","PeriodicalId":388,"journal":{"name":"Matter","volume":"110 19 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.
{"title":"In-plane compressive strain stabilized formamidinium-based perovskite","authors":"Xuechun Sun, Pengju Shi, Jiahui Shen, Jichuang Shen, Liuwen Tian, Jiazhe Xu, Qingqing Liu, Yuan Tian, Donger Jin, Xiaohe Miao, Jingjing Xue, Rui Wang","doi":"10.1016/j.matt.2024.11.014","DOIUrl":"https://doi.org/10.1016/j.matt.2024.11.014","url":null,"abstract":"Compressive strain is often considered as a key factor in stabilizing formamidinium (FA)-based perovskites. However, the compression along which direction stabilizes perovskite remains unclear due to the presence of non-uniform strain within the material. Here, we introduce a metal encapsulation method to apply compressive strain along the in-plane or out-of-plane direction of perovskite film. According to the grazing-incidence wide-angle X-ray scattering (GIWAXS) results, in-plane compression enhances the stability of perovskites, whereas out-of-plane compression has a detrimental effect. Specifically, out-of-plane compression can lead to the formation of an inactive δ-phase, which compromises the stability of the perovskite. Finally, we develop a general process to integrate in-plane compression into perovskite solar cell (PSC) devices, thereby improving their stability. Our study clarifies the mechanism by which compressive strain affects perovskite stability, offering valuable guidance for strain engineering to optimize perovskite performance.","PeriodicalId":388,"journal":{"name":"Matter","volume":"212 1","pages":""},"PeriodicalIF":18.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}