首页 > 最新文献

Nano Energy最新文献

英文 中文
Halide Perovskite Photovoltaics for In-Sensor Reservoir Computing 用于传感器内储层计算的卤化物过氧化物光伏技术
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.109949
Divyam Sharma, Alka Luqman, S. Ng, Natalia Yantara, Xuechao Xing, Yeow Boon Tay, Arindam Basu, Anupam Chattopadhyay, N. Mathews
{"title":"Halide Perovskite Photovoltaics for In-Sensor Reservoir Computing","authors":"Divyam Sharma, Alka Luqman, S. Ng, Natalia Yantara, Xuechao Xing, Yeow Boon Tay, Arindam Basu, Anupam Chattopadhyay, N. Mathews","doi":"10.1016/j.nanoen.2024.109949","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.109949","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141711190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorine Atoms Incorporation Strengthens the Strong Metal-Support Interaction of PtNi@NFGC for Enhanced Methanol Oxidation Reaction Performance Under Alkaline Media 氟原子的掺入加强了 PtNi@NFGC 的强金属-支撑相互作用,从而提高了其在碱性介质下的甲醇氧化反应性能
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110013
Jiarun Cheng, Chaojie Lyu, Hang Lei, Xueyan Li, Hongyue Zhu, Dan Zhou, Yiming Liu, Wenjie Mai
{"title":"Fluorine Atoms Incorporation Strengthens the Strong Metal-Support Interaction of PtNi@NFGC for Enhanced Methanol Oxidation Reaction Performance Under Alkaline Media","authors":"Jiarun Cheng, Chaojie Lyu, Hang Lei, Xueyan Li, Hongyue Zhu, Dan Zhou, Yiming Liu, Wenjie Mai","doi":"10.1016/j.nanoen.2024.110013","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110013","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical performance of a Triboelectric nanogenerator developed using ionic liquid-processed polyvinylidene fluoride fabricated through an Additive manufacturing technique 利用离子液体加工聚偏氟乙烯,通过增材制造技术开发的三电纳米发电机的电气性能
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110055
A. D. Kumar, N. Arunachalam, R. Jayaganthan
{"title":"Electrical performance of a Triboelectric nanogenerator developed using ionic liquid-processed polyvinylidene fluoride fabricated through an Additive manufacturing technique","authors":"A. D. Kumar, N. Arunachalam, R. Jayaganthan","doi":"10.1016/j.nanoen.2024.110055","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110055","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing magnetically propelled piezoelectric and pyroelectric bifunctional micromotors to boost the photocatalytic H2 production involving biomass reforming 构建磁推进压电和热电双功能微电机,促进生物质重整光催化制取 H2
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110064
Huimin Wei, Ling Zhou, Fan Cao, Yukai Chen, Bolun Li, J. Kou, Chunhua Lu, Zhongzi Xu
{"title":"Constructing magnetically propelled piezoelectric and pyroelectric bifunctional micromotors to boost the photocatalytic H2 production involving biomass reforming","authors":"Huimin Wei, Ling Zhou, Fan Cao, Yukai Chen, Bolun Li, J. Kou, Chunhua Lu, Zhongzi Xu","doi":"10.1016/j.nanoen.2024.110064","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110064","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and Industrial Perspectives on the Development of Sodium Ion Batteries 钠离子电池发展面临的挑战和产业前景
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110052
Xiaosheng Cai, Yingying Yue, Zheng Yi, Junfei Liu, Yangping Sheng, Yuhao Lu
{"title":"Challenges and Industrial Perspectives on the Development of Sodium Ion Batteries","authors":"Xiaosheng Cai, Yingying Yue, Zheng Yi, Junfei Liu, Yangping Sheng, Yuhao Lu","doi":"10.1016/j.nanoen.2024.110052","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110052","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli-Responsive Fiber/Fabric Actuators for Intelligent Soft Robots: from Current Progress to Future Opportunities 用于智能软机器人的刺激响应型纤维/织物致动器:从当前进展到未来机遇
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110050
Maorong Zheng, Mingyuan Liu, Yin Cheng, Wenjing Chen, Liming Wang, Xiaohong Qin
{"title":"Stimuli-Responsive Fiber/Fabric Actuators for Intelligent Soft Robots: from Current Progress to Future Opportunities","authors":"Maorong Zheng, Mingyuan Liu, Yin Cheng, Wenjing Chen, Liming Wang, Xiaohong Qin","doi":"10.1016/j.nanoen.2024.110050","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110050","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141839366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the stabilizing effect of K+ on the sodium manganese hexacyanoferrate for sodium-ion batteries 了解 K+ 对钠离子电池六氰合铁锰酸钠的稳定作用
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110007
Jicheng Jiang, Can Guo, Shamshad Ali, Donghuang Wang, Xin Wang, Chaohui Wei, Jingze Li, Weiwei Xia, Maosen Fu, Wenwu Sun, Naying An, Zhengwei Zhao, Aijun Zhou
{"title":"Understanding the stabilizing effect of K+ on the sodium manganese hexacyanoferrate for sodium-ion batteries","authors":"Jicheng Jiang, Can Guo, Shamshad Ali, Donghuang Wang, Xin Wang, Chaohui Wei, Jingze Li, Weiwei Xia, Maosen Fu, Wenwu Sun, Naying An, Zhengwei Zhao, Aijun Zhou","doi":"10.1016/j.nanoen.2024.110007","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110007","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141692265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thickness-derived optical-electrical management in Sn-based perovskite solar cells 锡基过氧化物太阳能电池的厚度光电管理
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.109952
Xiangrong Cao , Xinyi Zhu , Peizhou Li , Ruoyao Xu , Bo Jiao , Zhaoxin Wu , Hua Dong

Tin-based perovskite solar cells (TPSCs) have attracted great attention due to their promising photovoltaic performance and environmental friendliness. Adequate photon trapping and efficient carrier utilization are known to be the keys to achieving high-performance devices, which are closely related to the thickness of the light-absorbing layer and the quality of film formation, respectively. Due to the ultra-fast crystallization characteristics and low defect formation energy, thick tin-based perovskite films are faced with poor electrical performance due to poor quality. Thin tin-based perovskite films are easy to achieve low defects and high crystallization quality, but insufficient thickness leads to the problem of insufficient light trapping. To address these issues, we have thoroughly investigated the various aspects of the photoelectric conversion process in TPSC devices and, for the first time, explored the behavior of front-end optical field management. It is found that the self-constructed microcavity effect can effectively improve the light trapping efficiency under the premise that a thin light-absorbing layer is used, so that sufficient photon trapping and excellent carrier transport characteristics can be ensured simultaneously to realize a high-performance device. Different from the traditional film formation and defect modulation strategy, the present work provides a feasible idea for the performance enhancement of TPSC devices, and is also of great significance for cost control and environmental protection issues in commercial applications.

锡基过氧化物太阳能电池(TPSC)因其良好的光伏性能和环境友好性而备受关注。众所周知,充分的光子捕获和高效的载流子利用是实现高性能器件的关键,而这分别与光吸收层的厚度和成膜质量密切相关。由于超快的结晶特性和低缺陷形成能量,厚锡基包晶石薄膜会因质量差而面临电气性能不佳的问题。薄锡基包晶石薄膜容易实现低缺陷和高结晶质量,但厚度不够会导致光捕获不足的问题。针对这些问题,我们深入研究了 TPSC 器件光电转换过程的各个方面,并首次探索了前端光场管理的行为。研究发现,在使用薄吸光层的前提下,自建微腔效应能有效提高光捕获效率,从而同时保证足够的光子捕获和优异的载流子传输特性,实现高性能器件。与传统的成膜和缺陷调制策略不同,本研究为 TPSC 器件的性能提升提供了可行的思路,同时对于商业应用中的成本控制和环保问题也具有重要意义。
{"title":"Thickness-derived optical-electrical management in Sn-based perovskite solar cells","authors":"Xiangrong Cao ,&nbsp;Xinyi Zhu ,&nbsp;Peizhou Li ,&nbsp;Ruoyao Xu ,&nbsp;Bo Jiao ,&nbsp;Zhaoxin Wu ,&nbsp;Hua Dong","doi":"10.1016/j.nanoen.2024.109952","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.109952","url":null,"abstract":"<div><p>Tin-based perovskite solar cells (TPSCs) have attracted great attention due to their promising photovoltaic performance and environmental friendliness. Adequate photon trapping and efficient carrier utilization are known to be the keys to achieving high-performance devices, which are closely related to the thickness of the light-absorbing layer and the quality of film formation, respectively. Due to the ultra-fast crystallization characteristics and low defect formation energy, thick tin-based perovskite films are faced with poor electrical performance due to poor quality. Thin tin-based perovskite films are easy to achieve low defects and high crystallization quality, but insufficient thickness leads to the problem of insufficient light trapping. To address these issues, we have thoroughly investigated the various aspects of the photoelectric conversion process in TPSC devices and, for the first time, explored the behavior of front-end optical field management. It is found that the self-constructed microcavity effect can effectively improve the light trapping efficiency under the premise that a thin light-absorbing layer is used, so that sufficient photon trapping and excellent carrier transport characteristics can be ensured simultaneously to realize a high-performance device. Different from the traditional film formation and defect modulation strategy, the present work provides a feasible idea for the performance enhancement of TPSC devices, and is also of great significance for cost control and environmental protection issues in commercial applications.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on electrocatalytic activities, phase stabilities, spectroscopic advancements, and photocorrosion in Ta-N phases 关于 Ta-N 相的电催化活性、相稳定性、光谱学进展和光腐蚀性的综述
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.110046
Raghunath Sharma Mukkavilli, Niraja Moharana, Bhupendra Singh, Thomas Fischer, Florian Vollnhals, Arun Ichangi, K.C. Hari Kumar, Silke Christiansen, Kwang-Ho Kim, Sehun Kwon, Ravi Kumar, Sanjay Mathur
{"title":"A review on electrocatalytic activities, phase stabilities, spectroscopic advancements, and photocorrosion in Ta-N phases","authors":"Raghunath Sharma Mukkavilli, Niraja Moharana, Bhupendra Singh, Thomas Fischer, Florian Vollnhals, Arun Ichangi, K.C. Hari Kumar, Silke Christiansen, Kwang-Ho Kim, Sehun Kwon, Ravi Kumar, Sanjay Mathur","doi":"10.1016/j.nanoen.2024.110046","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.110046","url":null,"abstract":"","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing of porous hollow nanosphere MoS2@NiS/rGO scaffolds empowering long-cycle sodium-ion batteries 多孔空心纳米球 MoS2@NiS/rGO 支架的三维打印技术为长周期钠离子电池赋能
IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-01 DOI: 10.1016/j.nanoen.2024.109953
Tao Han , Zeyu He , Weiqi Kuang , Ji Zhou , Ya-yun Li

Sodium-ion batteries (SIB), as one of the most appealing electrochemical energy storage devices in the field of energy storage, consistently require optimization for both capacity and long-term cycling performance. The amalgamation of diverse material modification techniques with up-and-coming 3D printing technology presents a promising yet relatively underexplored avenue. Herein, we report a composite material, MoS2@NiS/rGO, as the anode material for SIB, achieving high reversible capacity and outstanding long-term cycling performance, surpassing current reported levels. Through carefully designed anode electrode structure and component interface engineering, the material rate capability (with a capacity of 289.5 mAh g−1 at 0.1 A g−1 and 66.8 mAh g−1 at 5 A g−1) and cycling stability (maintaining a capacity of 131.3 mAh g−1 after 800 cycles at 1 A g−1) are significantly enhanced. The reasons for the improvement in electrochemical performance are elucidated through detailed electrochemical analysis. Encouragingly, we showcase the fabrication of a sodium-ion full battery entirely through 3D printing (3DP), achieving an area loading capacity as high as 8.23 mg cm−2 and retaining a capacity of 82.1 mAh g−1 after 240 cycles at 0.1 A g−1. This work underscores the pivotal significance of 3D-printed sodium-ion batteries in advancing the frontier of energy storage technology.

钠离子电池(SIB)是储能领域最具吸引力的电化学储能装置之一,其容量和长期循环性能一直需要优化。将多种材料改性技术与新兴的三维打印技术相结合,是一条前景广阔但尚未充分开发的途径。在此,我们报告了一种复合材料--MoS2@NiS/rGO--作为 SIB 的阳极材料,实现了高可逆容量和出色的长期循环性能,超过了目前报道的水平。通过精心设计的阳极电极结构和组件界面工程,材料的速率能力(0.1 A g-1 时容量为 289.5 mAh g-1,5 A g-1 时容量为 66.8 mAh g-1)和循环稳定性(1 A g-1 时循环 800 次后容量仍保持在 131.3 mAh g-1)显著提高。通过详细的电化学分析,我们阐明了电化学性能提高的原因。令人鼓舞的是,我们展示了完全通过三维打印(3DP)制造的钠离子全电池,实现了高达 8.23 mg cm-2 的面积负载容量,并在 0.1 A g-1 下循环 240 次后保持了 82.1 mAh g-1 的容量。这项工作凸显了三维打印钠离子电池在推动储能技术前沿发展方面的关键意义。
{"title":"3D printing of porous hollow nanosphere MoS2@NiS/rGO scaffolds empowering long-cycle sodium-ion batteries","authors":"Tao Han ,&nbsp;Zeyu He ,&nbsp;Weiqi Kuang ,&nbsp;Ji Zhou ,&nbsp;Ya-yun Li","doi":"10.1016/j.nanoen.2024.109953","DOIUrl":"https://doi.org/10.1016/j.nanoen.2024.109953","url":null,"abstract":"<div><p>Sodium-ion batteries (SIB), as one of the most appealing electrochemical energy storage devices in the field of energy storage, consistently require optimization for both capacity and long-term cycling performance. The amalgamation of diverse material modification techniques with up-and-coming 3D printing technology presents a promising yet relatively underexplored avenue. Herein, we report a composite material, MoS<sub>2</sub>@NiS/rGO, as the anode material for SIB, achieving high reversible capacity and outstanding long-term cycling performance, surpassing current reported levels. Through carefully designed anode electrode structure and component interface engineering, the material rate capability (with a capacity of 289.5 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and 66.8 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>) and cycling stability (maintaining a capacity of 131.3 mAh g<sup>−1</sup> after 800 cycles at 1 A g<sup>−1</sup>) are significantly enhanced. The reasons for the improvement in electrochemical performance are elucidated through detailed electrochemical analysis. Encouragingly, we showcase the fabrication of a sodium-ion full battery entirely through 3D printing (3DP), achieving an area loading capacity as high as 8.23 mg cm<sup>−2</sup> and retaining a capacity of 82.1 mAh g<sup>−1</sup> after 240 cycles at 0.1 A g<sup>−1</sup>. This work underscores the pivotal significance of 3D-printed sodium-ion batteries in advancing the frontier of energy storage technology.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1