Veterinary use of radiation in the diagnosis, management, and treatment of disease has expanded and diversified, as have the corresponding radiological protection concerns. Radiological exposure of personnel involved in veterinary procedures and, where applicable, members of the public providing assistance (e.g. owners or handlers) has always been included within the system of radiological protection. Veterinary practice is now addressed explicitly as the modern complexities associated with this practice warrant dedicated consideration, and there is a need to clarify and strengthen the application of radiological protection principles in this area. The Commission recommends that the system of radiological protection should be applied in veterinary practice principally for the protection of humans, but with explicit attention to the protection of exposed animals. Additionally, consideration should be given to the risk of potential contamination of the environment associated with applications of nuclear medicine in veterinary practice. This publication focuses primarily on justification and optimisation in veterinary practice, and sets the scene for more detailed guidance to follow in future Recommendations. It is intended for a wide-ranging audience, including radiological protection professionals, veterinary staff, students, education and training providers, and members of the public, as an introduction to radiological protection in veterinary practice.© 2022 ICRP. Published by SAGE.
Radiation detriment is a concept developed by the International Commission on Radiological Protection to quantify the burden of stochastic effects from low-dose and/or low-dose-rate exposures to the human population. It is determined from the lifetime risks of cancer for a set of organs and tissues and the risk of heritable effects, taking into account the severity of the consequences. This publication provides a historical review of detriment calculation methodology since ICRP Publication 26, with details of the procedure developed in ICRP Publication 103, which clarifies data sources, risk models, computational methods, and rationale for the choice of parameter values. A selected sensitivity analysis was conducted to identify the parameters and calculation conditions that can be major sources of variation and uncertainty in the calculation of radiation detriment. It has demonstrated that sex, age at exposure, dose and dose-rate effectiveness factor, dose assumption in the calculation of lifetime risk, and lethality fraction have a substantial impact on radiation detriment values. Although the current scheme of radiation detriment calculation is well established, it needs to evolve to better reflect changes in population health statistics and progress in scientific understanding of radiation health effects. In this regard, some key parameters require updating, such as the reference population data and cancer severity. There is also room for improvement in cancer risk models based on the accumulation of recent epidemiological findings. Finally, the importance of improving the comprehensibility of the detriment concept and the transparency of its calculation process is emphasised.© 2022 ICRP. Published by SAGE.
Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aβ), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aβ levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aβ. Consistent with Aβ increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aβ levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.
Since the accident at Fukushima Daiichi nuclear power plant, there has been a focus on the impact of low-dose radiation exposure due to nuclear disasters and radiology on human bodies. In order to study very low levels of impact on the human body from low-dose radiation exposure, a system with high detection sensitivity is needed. Until now, the most well-established biological radiation effect detection system in the field of emergency radiation medicine has been chromosomal analysis. However, chromosomal analysis requires advanced skills, and it is necessary to perform chromosomal analysis of a large number of cells in order to detect slight effects on the human body due to low-dose radiation exposure. Therefore, in order to study the effects of low-dose radiation exposure on the human body, it is necessary to develop high-throughput chromosome analysis technology. We have established the PNA-FISH method, which is a fluorescence in-situ hybridisation method using a PNA probe, as a high-throughput chromosome analysis technique. Using this method, the detection of dicentrics and ring chromosomes has become very efficient. Using this technology, chromosomal analysis was performed on peripheral blood before and after computed tomography (CT) examination of patients at Hiroshima University Hospital, and it was possible to detect chromosomal abnormalities due to low-dose radiation exposure in the CT examination. Furthermore, it was shown that there may be individual differences in the increase in chromosomal abnormalities due to low-dose radiation exposure, suggesting the need to build a next-generation medical radiation exposure management system based on individual differences in radiation sensitivity. If techniques such as chromosomal analysis, which have been used for biological dose evaluation in emergency radiation medicine, can be used for general radiology, such as radiodiagnosis and treatment, that will be a contribution to radiology from an unprecedented angle. This article will discuss the clinical application of new biological dose evaluation methods that have been developed in the field of emergency radiation medicine.