Pub Date : 2024-10-30DOI: 10.1016/j.nantod.2024.102532
Yuye Li , Jing Xia , Xuanze Li , Lifeng Tian , Peiyu Qiao , Jianyu Cao , Zhongshi Zhang , Qing Meng , Jiangtao Li , Chang Liu , Xiangmin Meng
The introduction of oxygen vacancies into transition metal oxides can change their phases and electronic structures, subsequently impacting the physical and chemical properties. However, comprehensively understanding the phase transition process at the atomic scale remains challenging. Here, we directly image the atomic structural evolution from anatase TiO2 to cubic TiO under electron beam irradiation via in-situ scanning transmission electron microscope and electron energy loss spectroscopy, with a detailed analysis of the TiO/TiO2 interfacial structure. During this process, electron beam irradiation induces the formation of oxygen vacancies on the TiO2 surface, which drives the migration and rearrangement of Ti atoms. Theoretical and experimental methods are employed to provide insight into possible migration paths. Moreover, the formation of TiO is detected from other directions, but less distinct than that observed on the (010)TiO2 facet. This demonstrates an interesting facet dependence attributed to variations in the formation energies of surface oxygen vacancies. In addition, subsequent irradiation on TiO does not induce new structural change, but only surface roughening. Our findings offer valuable atomic-scale insights to the complex structural evolution as well as a new method to precisely manipulate phases of the transition metal oxides.
在过渡金属氧化物中引入氧空位可改变其相位和电子结构,进而影响其物理和化学特性。然而,在原子尺度上全面了解相变过程仍具有挑战性。在这里,我们通过原位扫描透射电子显微镜和电子能量损失光谱,对电子束辐照下从锐钛矿型二氧化钛到立方氧化钛的原子结构演变过程进行了直接成像,并对二氧化钛/二氧化钛界面结构进行了详细分析。在此过程中,电子束辐照诱导了 TiO2 表面氧空位的形成,从而推动了 Ti 原子的迁移和重排。我们采用理论和实验方法深入研究了可能的迁移路径。此外,还从其他方向检测到氧化钛的形成,但不如在 (010)TiO2 面上观察到的那么明显。这表明了一种有趣的面依赖性,归因于表面氧空位形成能量的变化。此外,对二氧化钛的后续辐照不会引起新的结构变化,而只是表面粗糙化。我们的研究结果为复杂的结构演变提供了宝贵的原子尺度见解,也为精确操纵过渡金属氧化物的相提供了一种新方法。
{"title":"Atomic-scale imaging of structural evolution from anatase TiO2 to cubic TiO under electron beam irradiation","authors":"Yuye Li , Jing Xia , Xuanze Li , Lifeng Tian , Peiyu Qiao , Jianyu Cao , Zhongshi Zhang , Qing Meng , Jiangtao Li , Chang Liu , Xiangmin Meng","doi":"10.1016/j.nantod.2024.102532","DOIUrl":"10.1016/j.nantod.2024.102532","url":null,"abstract":"<div><div>The introduction of oxygen vacancies into transition metal oxides can change their phases and electronic structures, subsequently impacting the physical and chemical properties. However, comprehensively understanding the phase transition process at the atomic scale remains challenging. Here, we directly image the atomic structural evolution from anatase TiO<sub>2</sub> to cubic TiO under electron beam irradiation via in-situ scanning transmission electron microscope and electron energy loss spectroscopy, with a detailed analysis of the TiO/TiO<sub>2</sub> interfacial structure. During this process, electron beam irradiation induces the formation of oxygen vacancies on the TiO<sub>2</sub> surface, which drives the migration and rearrangement of Ti atoms. Theoretical and experimental methods are employed to provide insight into possible migration paths. Moreover, the formation of TiO is detected from other directions, but less distinct than that observed on the (010)<sub>TiO2</sub> facet. This demonstrates an interesting facet dependence attributed to variations in the formation energies of surface oxygen vacancies. In addition, subsequent irradiation on TiO does not induce new structural change, but only surface roughening. Our findings offer valuable atomic-scale insights to the complex structural evolution as well as a new method to precisely manipulate phases of the transition metal oxides.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102532"},"PeriodicalIF":13.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.nantod.2024.102537
Shanshan Liang , Bing Wang , Wei Chen , Tingfeng Zhang , Hao Fang , Minglu Zhang , Si Xu , Zongyi Su , Lingna Zheng , Meng Wang , Xiao He , Weiyue Feng
Heterogeneity of the tumor microenvironment (TME) poses significant obstacles to effective tumor treatment. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and achieve a satisfactory antitumor effect. However, specific activation of pyroptosis in tumors while sparing normal tissue still remains a great challenge. Here, we have developed novel, biocompatible N-heterocyclic carbenes-gold nanoparticles (NHC@AuNPs) as TME-responsive nanoenzyme and potential pyroptosis inducers through an azide-alkyne cycloaddition “click” reaction and direct aurophilic interaction (AuI∙∙∙AuI). The NHC@AuNPs demonstrated tunable multi-responsive abilities within the TME, including superior peroxidase (POD) activity, GSH depletion through on-site cleavage Au-Au bond, inhibition of thioredoxin reductase and enhancement of ROS. This ROS buildup damages mitochondria, further enhancing H2O2 release and amplifying the catalytic cycle of ROS production. NHC ligation also exhibited enhanced fusion of NPs with the lipid bilayer, promoting high intracellular uptake in cancer cells. In vitro and in vivo experiments demonstrated that NHC@AuNPs effectively trigger pyroptosis in tumor cells through the ROS-modulated NLRP3/caspase-1/GSDMD pathway and activate antitumor immunity, such as the increased infiltration of CD4+ and CD8+ T cells, as well as the significant release of proinflammatory cytokines. These findings provide valuable insights for designing pyroptosis-inducer in cancer therapies.
{"title":"Tunable multi-responsive N-heterocyclic carbene-gold nanoenzyme for tumor-specific pyroptosis and immune activation in cancer therapy","authors":"Shanshan Liang , Bing Wang , Wei Chen , Tingfeng Zhang , Hao Fang , Minglu Zhang , Si Xu , Zongyi Su , Lingna Zheng , Meng Wang , Xiao He , Weiyue Feng","doi":"10.1016/j.nantod.2024.102537","DOIUrl":"10.1016/j.nantod.2024.102537","url":null,"abstract":"<div><div>Heterogeneity of the tumor microenvironment (TME) poses significant obstacles to effective tumor treatment. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and achieve a satisfactory antitumor effect. However, specific activation of pyroptosis in tumors while sparing normal tissue still remains a great challenge. Here, we have developed novel, biocompatible N-heterocyclic carbenes-gold nanoparticles (NHC@AuNPs) as TME-responsive nanoenzyme and potential pyroptosis inducers through an azide-alkyne cycloaddition “click” reaction and direct aurophilic interaction (Au<sup>I</sup>∙∙∙Au<sup>I</sup>). The NHC@AuNPs demonstrated tunable multi-responsive abilities within the TME, including superior peroxidase (POD) activity, GSH depletion through on-site cleavage Au-Au bond, inhibition of thioredoxin reductase and enhancement of ROS. This ROS buildup damages mitochondria, further enhancing H<sub>2</sub>O<sub>2</sub> release and amplifying the catalytic cycle of ROS production. NHC ligation also exhibited enhanced fusion of NPs with the lipid bilayer, promoting high intracellular uptake in cancer cells. <em>In vitro</em> and <em>in vivo</em> experiments demonstrated that NHC@AuNPs effectively trigger pyroptosis in tumor cells through the ROS-modulated NLRP3/caspase-1/GSDMD pathway and activate antitumor immunity, such as the increased infiltration of CD4<sup>+</sup> and CD8<sup>+</sup> T cells, as well as the significant release of proinflammatory cytokines. These findings provide valuable insights for designing pyroptosis-inducer in cancer therapies.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102537"},"PeriodicalIF":13.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.nantod.2024.102540
Yatong Zhu , Wen Ai , Mao Ye , Chen Li , Mingrui Zhou , Fuqiang Chu , Guocai Dong , Yilong Zhou , Xiaohui Hu , Tao Xu , Litao Sun
2D in-plane heterostructures can enhance the electronic performance of hybrid systems, allowing for a variety of electronic device applications. However, precisely achieving uniform in-plane heterostructures with seamless interfaces at the same atomic planes remains a challenge. In this work, 2D in-plane heterostructures were successfully fabricated through electron beam irradiation-induced phase transformation in transition metal dichalcogenides (TMDCs). The transformed phases were seamlessly connected to the pristine TMDCs, forming ultraclean and atomically sharp interfaces of heterostructures. The phases were stable and determined to be novel tetragonal-like atomic structures by experimental and theoretical analyses. In situ transmission electron microscopy revealed that the phase transition involved atomic loss, lattice contraction, and then significant structural reconstruction in the pristine TMDCs. These results demonstrate that electron irradiation can efficiently achieve precise manufacturing of 2D in-plane heterostructures, offering new opportunities for the development of high-quality 2D in-plane heterostructures and novel 2D devices with high performance.
{"title":"Deriving 2D in-plane heterostructures in TMDC nanosheets via electron beam irradiation","authors":"Yatong Zhu , Wen Ai , Mao Ye , Chen Li , Mingrui Zhou , Fuqiang Chu , Guocai Dong , Yilong Zhou , Xiaohui Hu , Tao Xu , Litao Sun","doi":"10.1016/j.nantod.2024.102540","DOIUrl":"10.1016/j.nantod.2024.102540","url":null,"abstract":"<div><div>2D in-plane heterostructures can enhance the electronic performance of hybrid systems, allowing for a variety of electronic device applications. However, precisely achieving uniform in-plane heterostructures with seamless interfaces at the same atomic planes remains a challenge. In this work, 2D in-plane heterostructures were successfully fabricated through electron beam irradiation-induced phase transformation in transition metal dichalcogenides (TMDCs). The transformed phases were seamlessly connected to the pristine TMDCs, forming ultraclean and atomically sharp interfaces of heterostructures. The phases were stable and determined to be novel tetragonal-like atomic structures by experimental and theoretical analyses. <em>In situ</em> transmission electron microscopy revealed that the phase transition involved atomic loss, lattice contraction, and then significant structural reconstruction in the pristine TMDCs. These results demonstrate that electron irradiation can efficiently achieve precise manufacturing of 2D in-plane heterostructures, offering new opportunities for the development of high-quality 2D in-plane heterostructures and novel 2D devices with high performance.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102540"},"PeriodicalIF":13.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.nantod.2024.102535
Yongjuan Li , Xinyan Li , Mengzhe Zhang , Xiao Weng , Jinmeng Yi , Yongjian Cao , Ningjing Lei , Zhihai Qin , Xiaoyuan Chen , Weijing Yang
Interferon-gamma (IFN-γ) and iron can induce ferroptosis; however, distinct target sites restrict their synergistic therapeutic efficacy in simple combination therapy. Herein, two nanoplatforms are constructed with the same polymeric skeleton but different payloads to separately target antigen-presenting cells (APCs) and tumor cells for amplified ferroptosis in immunotherapy. Negatively charged 2′,3′-cyclic GMP-AMP is electronically loaded in pH-responsive nanoparticles (PNPs@cGAMP), which activates the stimulator of interferon gene (STING) pathway in APCs, accompanied by an immune response activation cascade with IFN-γ secretion for tumor ferroptosis. Gossypol is conjugated to the polymer chain by forming a pH-sensitive Schiff base that further coordinates with ferric iron (Fe3+) to self-assemble into another size-switchable nanoprodrug (PGNPs@Fe). In the acidic tumor microenvironment, PGNPs@Fe shrinks into Gos@Fe for deeper tumor penetration, which disassembles into Fe3+ and gossypol for lipid peroxide generation, resulting in ferroptosis and immunogenic cell death. Compared to multiple administrations of a single nanoformulation, this ferroptosis-immunotherapy "cycle" exhibits notably improved antitumor activity in subcutaneous xenograft and distal metastatic B16F10 tumor models. The mouse survival rate is significantly prolonged after combination with immune checkpoint blockade. This design emphasizes the spatiotemporal orchestration of payloads and provides novel perspectives on intelligent nanotherapeutics combinations for future clinical applications.
{"title":"Spatiotemporal orchestration of a ferroptosis-immunotherapy “cycle” via a sequential drug delivery system for antitumor immunity","authors":"Yongjuan Li , Xinyan Li , Mengzhe Zhang , Xiao Weng , Jinmeng Yi , Yongjian Cao , Ningjing Lei , Zhihai Qin , Xiaoyuan Chen , Weijing Yang","doi":"10.1016/j.nantod.2024.102535","DOIUrl":"10.1016/j.nantod.2024.102535","url":null,"abstract":"<div><div>Interferon-gamma (IFN-γ) and iron can induce ferroptosis; however, distinct target sites restrict their synergistic therapeutic efficacy in simple combination therapy. Herein, two nanoplatforms are constructed with the same polymeric skeleton but different payloads to separately target antigen-presenting cells (APCs) and tumor cells for amplified ferroptosis in immunotherapy. Negatively charged 2′,3′-cyclic GMP-AMP is electronically loaded in pH-responsive nanoparticles (PNPs@cGAMP), which activates the stimulator of interferon gene (STING) pathway in APCs, accompanied by an immune response activation cascade with IFN-γ secretion for tumor ferroptosis. Gossypol is conjugated to the polymer chain by forming a pH-sensitive Schiff base that further coordinates with ferric iron (Fe<sup>3+</sup>) to self-assemble into another size-switchable nanoprodrug (PGNPs@Fe). In the acidic tumor microenvironment, PGNPs@Fe shrinks into Gos@Fe for deeper tumor penetration, which disassembles into Fe<sup>3+</sup> and gossypol for lipid peroxide generation, resulting in ferroptosis and immunogenic cell death. Compared to multiple administrations of a single nanoformulation, this ferroptosis-immunotherapy \"cycle\" exhibits notably improved antitumor activity in subcutaneous xenograft and distal metastatic B16F10 tumor models. The mouse survival rate is significantly prolonged after combination with immune checkpoint blockade. This design emphasizes the spatiotemporal orchestration of payloads and provides novel perspectives on intelligent nanotherapeutics combinations for future clinical applications.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102535"},"PeriodicalIF":13.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.nantod.2024.102534
Tien Dat Ngo , Je-Jun Lee , Hyung-Seok Bae , Tuyen Huynh , Kwangro Lee , Myeongjin Lee , Yasir Hassan , Ji-In Park , Hee-Suk Chung , Jin-Hong Park , Won Jong Yoo , Min Sup Choi
Memristors with nonstoichiometric tungsten oxide (WOx) as an active layer, derived from the oxidation of atomically thin two-dimensional tungsten diselenide (WSe2), enable the creation of the monolithic layered structure of WOx/WSe2. These devices are promising candidates for emulating various biological synaptic functions in the human brain. In this study, we fabricate monolithic few-layer WOx/WSe2 memristors with precisely controlled WOx thickness by UV-ozone treatment from 1 L to 9 L, depending on chuck temperature. The postsynaptic responses of the topmost single-layer (1 L) oxidized WSe2 and fully (9 L) oxidized WSe2 memristors exhibit sharply contrasting behaviors, which can be applied to mimic the heterosynaptic plasticity in the CA1 region of the hippocampus. Beyond the significance of emulating the biological synaptic characteristics, we explore the feasibility of using each oxidation-layer-controlled memristor as a hardware accelerator. Their performances are assessed through application in a CIFAR-10 pattern recognition task using a convolutional neural network. Pattern recognition rates of 84 % and 71 % are obtained for the 1 L and 9 L WOx-based devices, respectively. We also examine the applicability of a synaptic cell composed of devices with oppositely switched characteristics. Consequently, the synaptic weight—defined as the difference in conductance between two synaptic devices—can be either increased (potentiated) or decreased (depressed) by simultaneously updating both devices with the same voltage signal. This weight update concept achieves a moderate recognition rate of 85.94 % when using an MNIST pattern-based recognition task, simplifying the complex weight-adjustment process.
由原子薄二维二硒化钨(WSe2)氧化而成的非化学计量的氧化钨(WOx)作为活性层的晶闸管,能够形成 WOx/WSe2 的单片分层结构。这些器件有望模拟人脑中的各种生物突触功能。在本研究中,我们通过紫外线-臭氧处理,根据夹头温度的不同,制造出了单片几层 WOx/WSe2 记忆晶闸管,其 WOx 厚度可精确控制在 1 L 到 9 L 之间。最上层单层(1 L)氧化 WSe2 和完全(9 L)氧化 WSe2 记忆晶体的突触后反应表现出截然不同的行为,可用于模拟海马 CA1 区的异突触可塑性。除了模拟生物突触特性的意义之外,我们还探索了将每个氧化层控制的忆阻器用作硬件加速器的可行性。通过使用卷积神经网络在 CIFAR-10 模式识别任务中的应用,对它们的性能进行了评估。基于 1 L 和 9 L WOx 的器件的模式识别率分别为 84% 和 71%。我们还研究了由具有相反开关特性的器件组成的突触单元的适用性。因此,通过同时用相同的电压信号更新两个器件,可以增加(增强)或减少(抑制)突触权重,突触权重定义为两个突触器件之间的电导差。这种权重更新概念简化了复杂的权重调整过程,在使用基于 MNIST 模式的识别任务时,达到了 85.94% 的中等识别率。
{"title":"Opposite synaptic plasticity in oxidation-layer-controlled 2D materials-based memristors for mimicking heterosynaptic plasticity","authors":"Tien Dat Ngo , Je-Jun Lee , Hyung-Seok Bae , Tuyen Huynh , Kwangro Lee , Myeongjin Lee , Yasir Hassan , Ji-In Park , Hee-Suk Chung , Jin-Hong Park , Won Jong Yoo , Min Sup Choi","doi":"10.1016/j.nantod.2024.102534","DOIUrl":"10.1016/j.nantod.2024.102534","url":null,"abstract":"<div><div>Memristors with nonstoichiometric tungsten oxide (WO<sub>x</sub>) as an active layer, derived from the oxidation of atomically thin two-dimensional tungsten diselenide (WSe<sub>2</sub>), enable the creation of the monolithic layered structure of WO<sub>x</sub>/WSe<sub>2</sub>. These devices are promising candidates for emulating various biological synaptic functions in the human brain. In this study, we fabricate monolithic few-layer WO<sub>x</sub>/WSe<sub>2</sub> memristors with precisely controlled WO<sub>x</sub> thickness by UV-ozone treatment from 1 L to 9 L, depending on chuck temperature. The postsynaptic responses of the topmost single-layer (1 L) oxidized WSe<sub>2</sub> and fully (9 L) oxidized WSe<sub>2</sub> memristors exhibit sharply contrasting behaviors, which can be applied to mimic the heterosynaptic plasticity in the CA1 region of the hippocampus. Beyond the significance of emulating the biological synaptic characteristics, we explore the feasibility of using each oxidation-layer-controlled memristor as a hardware accelerator. Their performances are assessed through application in a CIFAR-10 pattern recognition task using a convolutional neural network. Pattern recognition rates of 84 % and 71 % are obtained for the 1 L and 9 L WO<sub>x</sub>-based devices, respectively. We also examine the applicability of a synaptic cell composed of devices with oppositely switched characteristics. Consequently, the synaptic weight—defined as the difference in conductance between two synaptic devices—can be either increased (potentiated) or decreased (depressed) by simultaneously updating both devices with the same voltage signal. This weight update concept achieves a moderate recognition rate of 85.94 % when using an MNIST pattern-based recognition task, simplifying the complex weight-adjustment process.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102534"},"PeriodicalIF":13.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.nantod.2024.102538
Yuan Yu , Menggang Li , Miao Sun , Zhaolin Yang , Yifan Liu , Senwei Hu , Jiazuo Zhou , Yudong Li , Haiyue Yang , Chengyu Wang
The exceptional potential of MXene aerogels for practical applications is impeded by the energy-intensive processing and insufficient mechanical stability. Inspired by natural bones, herein, we report the MXene@regenerated nanocellulose aerogel (MRCA) with strong mechanical performance via dual aerogel fabrication to achieve high-performance energy generation and storage. The MRCA achieves a gravimetric capacitance of 1271.16 F g−1 at 2 mA cm−2, and the energy density of the eco-friendly symmetrical MRCA-based solid-state supercapacitor reaches 0.11 mWh cm−2, positioning it as a top contender among most state-of-the-art MXene-based electrodes. Additionally, the MRCA exhibits a robust specific tensile strength of 68.35 MPa cm3 g−1, resembling bone-like resilience. Therefore, MRCA can swiftly generate an open-circuit voltage of 181.24 V. The instant high voltage of MRCA transforms into diverse signals, driving MRCA-SC to release energy for electric devices in practical scenarios, paving the way for future sustainable power systems.
{"title":"Bone-inspired MXene nano aerogels toward self-electricity generation and capacitive energy storage","authors":"Yuan Yu , Menggang Li , Miao Sun , Zhaolin Yang , Yifan Liu , Senwei Hu , Jiazuo Zhou , Yudong Li , Haiyue Yang , Chengyu Wang","doi":"10.1016/j.nantod.2024.102538","DOIUrl":"10.1016/j.nantod.2024.102538","url":null,"abstract":"<div><div>The exceptional potential of MXene aerogels for practical applications is impeded by the energy-intensive processing and insufficient mechanical stability. Inspired by natural bones, herein, we report the MXene@regenerated nanocellulose aerogel (MRCA) with strong mechanical performance <em>via</em> dual aerogel fabrication to achieve high-performance energy generation and storage. The MRCA achieves a gravimetric capacitance of 1271.16 F g<sup>−1</sup> at 2 mA cm<sup>−2</sup>, and the energy density of the eco-friendly symmetrical MRCA-based solid-state supercapacitor reaches 0.11 mWh cm<sup>−2</sup>, positioning it as a top contender among most state-of-the-art MXene-based electrodes. Additionally, the MRCA exhibits a robust specific tensile strength of 68.35 MPa cm<sup>3</sup> g<sup>−1</sup>, resembling bone-like resilience. Therefore, MRCA can swiftly generate an open-circuit voltage of 181.24 V. The instant high voltage of MRCA transforms into diverse signals, driving MRCA-SC to release energy for electric devices in practical scenarios, paving the way for future sustainable power systems.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102538"},"PeriodicalIF":13.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.nantod.2024.102531
Yang Chen , Jia Huang , Hanchen Zhang , Fuzhen Hu , Zheng Cao , Zhiying Yang , Haiqin Song , Rong Liu
Strategies to induce ferroptosis in tumor cells have been widely adopted for the treatment of cancer. Traditional single-target ferroptosis inducers, however, have shown limited efficacy. Tumor cells often counteract these drugs through mechanisms by high levels of glutathione (GSH) detoxification of lipid peroxidases. To address these challenges, we have developed a GSH-responsive amphiphilic polymer with polymerized platinum(IV) prodrugs (Poly-CisPt (IV)), capable of encapsulating everolimus (a mTORC1 inhibitor) into nanoparticles (NP@Ev). This strategy facilitates the concurrent depletion of GSH and the release of cisplatin and everolimus. On the one hand, the released cisplatin simultaneously induces cell apoptosis and impairs the GPX4 enzyme. On the other hand, everolimus disrupts the mTOR signaling pathway, inhibiting tumor cell proliferation and inducing the production of reactive oxygen species (ROS) and lipid peroxides, which leads to mitochondrial dysfunction and ferroptosis. Our study indicated that NP@Ev effectively induced ferroptosis and significantly inhibited the progression of human cholangiocarcinoma in murine models, with limited toxicity. These findings underscore the potential of NP@Ev as a promising avenue for the clinical multimodal treatment of cholangiocarcinoma.
{"title":"Targeting ferroptosis with polymerized platinum (IV) prodrugs nanoparticles with everolimus for enhancing therapeutic efficacy on cholangiocarcinoma","authors":"Yang Chen , Jia Huang , Hanchen Zhang , Fuzhen Hu , Zheng Cao , Zhiying Yang , Haiqin Song , Rong Liu","doi":"10.1016/j.nantod.2024.102531","DOIUrl":"10.1016/j.nantod.2024.102531","url":null,"abstract":"<div><div>Strategies to induce ferroptosis in tumor cells have been widely adopted for the treatment of cancer. Traditional single-target ferroptosis inducers, however, have shown limited efficacy. Tumor cells often counteract these drugs through mechanisms by high levels of glutathione (GSH) detoxification of lipid peroxidases. To address these challenges, we have developed a GSH-responsive amphiphilic polymer with polymerized platinum(IV) prodrugs (Poly-CisPt (IV)), capable of encapsulating everolimus (a mTORC1 inhibitor) into nanoparticles (NP@Ev). This strategy facilitates the concurrent depletion of GSH and the release of cisplatin and everolimus. On the one hand, the released cisplatin simultaneously induces cell apoptosis and impairs the GPX4 enzyme. On the other hand, everolimus disrupts the mTOR signaling pathway, inhibiting tumor cell proliferation and inducing the production of reactive oxygen species (ROS) and lipid peroxides, which leads to mitochondrial dysfunction and ferroptosis. Our study indicated that NP@Ev effectively induced ferroptosis and significantly inhibited the progression of human cholangiocarcinoma in murine models, with limited toxicity. These findings underscore the potential of NP@Ev as a promising avenue for the clinical multimodal treatment of cholangiocarcinoma.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102531"},"PeriodicalIF":13.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.nantod.2024.102530
Zhanhao Zhou , Hongbing Lan , Hongyuan Tan , Yi Wang , Wei Chen , Samira Batur , Chuansheng Fu , Li Kong , Conglian Yang , Boning Niu , Yuanyuan Guo , Zhiping Zhang , Kai Huang
Atherosclerosis, characterized by the accumulation of inflammatory cells at localised inflammatory sites with a high concentration of reactive oxygen species (ROS), is a leading cause of cardiovascular morbidity and mortality worldwide. There is a paucity of studies that effectively coordinate the targeting of inflammatory microenvironment and the controlled release of biomimetic carriers. Here, in view of the oxidative stress and inflammatory characteristics observed in the plaque microenvironment of atherosclerosis lesions, we propose an anti-inflammatory M2 macrophage membrane-derived nanovesicles co-fused with lipids containing ROS-sensitive thioketal (TK) linker and loaded with rapamycin (Rapa) to form a biomimetic hybrid system (Rapa@TLNVs). Benefiting from the inflammatory tendency of vesicles and ROS response of TK, Rapa@TLNVs can be delivered to plaque lesions and responsively release Rapa to synergistically help suppressing inflammation. Additionally, Rapa@TLNVs can reduce foam cells formation and the proliferation of macrophages. Following the administration of Rapa@TLNVs to ApoE−/− mice, a series of effects have been observed, including reductions in the inflammatory response, lipid deposition and increased plaque stability. Consequently, this work exploits the characteristics of the atherosclerosis plaque microenvironment to provide a promising strategy for combating atherosclerosis. This may further enrich the application experience of biomimetic hybrid nanovesicle platforms in atherosclerosis therapy.
{"title":"ROS-responsive biomimetic nanovesicles to plaque microenvironment in targeted therapy of atherosclerosis","authors":"Zhanhao Zhou , Hongbing Lan , Hongyuan Tan , Yi Wang , Wei Chen , Samira Batur , Chuansheng Fu , Li Kong , Conglian Yang , Boning Niu , Yuanyuan Guo , Zhiping Zhang , Kai Huang","doi":"10.1016/j.nantod.2024.102530","DOIUrl":"10.1016/j.nantod.2024.102530","url":null,"abstract":"<div><div>Atherosclerosis, characterized by the accumulation of inflammatory cells at localised inflammatory sites with a high concentration of reactive oxygen species (ROS), is a leading cause of cardiovascular morbidity and mortality worldwide. There is a paucity of studies that effectively coordinate the targeting of inflammatory microenvironment and the controlled release of biomimetic carriers. Here, in view of the oxidative stress and inflammatory characteristics observed in the plaque microenvironment of atherosclerosis lesions, we propose an anti-inflammatory M2 macrophage membrane-derived nanovesicles co-fused with lipids containing ROS-sensitive thioketal (TK) linker and loaded with rapamycin (Rapa) to form a biomimetic hybrid system (Rapa@TLNVs). Benefiting from the inflammatory tendency of vesicles and ROS response of TK, Rapa@TLNVs can be delivered to plaque lesions and responsively release Rapa to synergistically help suppressing inflammation. Additionally, Rapa@TLNVs can reduce foam cells formation and the proliferation of macrophages. Following the administration of Rapa@TLNVs to ApoE<sup>−/−</sup> mice, a series of effects have been observed, including reductions in the inflammatory response, lipid deposition and increased plaque stability. Consequently, this work exploits the characteristics of the atherosclerosis plaque microenvironment to provide a promising strategy for combating atherosclerosis. This may further enrich the application experience of biomimetic hybrid nanovesicle platforms in atherosclerosis therapy.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102530"},"PeriodicalIF":13.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The poor central nervous system leukemia (CNSL) clinical efficacy of conventional doses of chemotherapy is mainly attributed to the limited permeability of chemotherapy agents caused by the blood-brain barrier (BBB). Effectively enhancing the accumulation of drugs across the BBB in the central nervous system is one of the key challenges in improving patient compliance and clinical efficacy of CNSL. Here, we find that the VP1 protein, the functional module of the John Cunningham (JC) virus, can safely penetrate the BBB through a sialic acid receptor-mediated transcytosis mechanism. Based on this, we develop a JC virus-mimicking nanodrug delivery platform based on VP1 protein-conjugated self-assembled nanoparticles (MFHV), which can active target and cross the BBB via a receptor-mediated transcytosis for safe and effective low-dose chemotherapy against CNSL after systemic administration. The results demonstrate that such a platform can penetrate the BBB through the dual mechanism of clathrin-mediated endocytosis and micropinocytosis pathway. When further synergistic with ferroptosis and histamine metabolism, the long-term survivors of low-dose MTX are significantly enhanced by 83.3 % and 56.7 % in two CNSL mice models. Collectively, this study takes a new perspective on natural living materials and molecule targeting of the BBB to present a promising strategy for low-dose chemotherapy against CNSL with safety and efficacy, which might provide a clinically translatable option for the prevention and treatment of CNSL.
{"title":"Virus-mimicking nanodrug active crossing of the blood-brain barrier via transcytosis against central nervous system leukemia","authors":"Xue Dong , Wei Wu , Cheng-Ling Zhang , Rui-Hao Huang , Qin Wen , Xi Zhang","doi":"10.1016/j.nantod.2024.102536","DOIUrl":"10.1016/j.nantod.2024.102536","url":null,"abstract":"<div><div>The poor central nervous system leukemia (CNSL) clinical efficacy of conventional doses of chemotherapy is mainly attributed to the limited permeability of chemotherapy agents caused by the blood-brain barrier (BBB). Effectively enhancing the accumulation of drugs across the BBB in the central nervous system is one of the key challenges in improving patient compliance and clinical efficacy of CNSL. Here, we find that the VP1 protein, the functional module of the John Cunningham (JC) virus, can safely penetrate the BBB through a sialic acid receptor-mediated transcytosis mechanism. Based on this, we develop a JC virus-mimicking nanodrug delivery platform based on VP1 protein-conjugated self-assembled nanoparticles (MFHV), which can active target and cross the BBB <em>via</em> a receptor-mediated transcytosis for safe and effective low-dose chemotherapy against CNSL after systemic administration. The results demonstrate that such a platform can penetrate the BBB through the dual mechanism of clathrin-mediated endocytosis and micropinocytosis pathway. When further synergistic with ferroptosis and histamine metabolism, the long-term survivors of low-dose MTX are significantly enhanced by 83.3 % and 56.7 % in two CNSL mice models. Collectively, this study takes a new perspective on natural living materials and molecule targeting of the BBB to present a promising strategy for low-dose chemotherapy against CNSL with safety and efficacy, which might provide a clinically translatable option for the prevention and treatment of CNSL.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102536"},"PeriodicalIF":13.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.nantod.2024.102528
Yifan Yin , Zifan Pei , Chengyu Hu , Yixuan Sun , Qinyuan Jia , Hongfei Yao , Yuheng Zhu , Zonghao Duan , Feng Yu , Dejun Liu , Yongwei Sun , Nan Jiang , Fei Gong , Nailin Yang , Liang Cheng , Wei Liu
Pancreatic cancer is a highly malignant tumor that poses significant threats to public health, and glycolysis plays a crucial role in its energy metabolism. Here, glycolysis was confirmed to be directly associated with poor prognosis through the use of clinical samples from 130 patients with pancreatic ductal adenocarcinoma (PDAC), and the effectiveness of zinc ions (Zn2+) in inhibiting glycolysis-related genes was further validated. Therefore, polyvinyl pyrrolidone (PVP)-modified zinc sulfide nanomedicines (ZnS-PVP) were developed for dual energy suppression by targeting glycolysis and mitochondrial respiration in pancreatic cancer. On the one hand, the released Zn2+ efficiently inhibited glycolysis in pancreatic cancer cells through the PI3K-Akt-mTOR-HIF-1α signaling axis. On the other hand, acid-responsive release of hydrogen sulfide (H2S) gas damaged mitochondria and further reduced energy compensation by inhibiting oxidative phosphorylation. This two-pronged energy deprivation nano-strategy effectively eliminated pancreatic cancer cells and was proven to overcome chemotherapeutic resistance. Moreover, ZnS-PVP administration combined with immune checkpoint blockade (ICB) therapy significantly suppressed tumor progression in mouse orthotopic pancreatic tumor models, as also demonstrated in a pancreatic cancer patient-derived xenograft (PDX) model. Our work highlights the positive role of bioactive metal ions in targeting tumor energy metabolism and the great potential of nano-strategy for energy deprivation in the treatment of pancreatic cancer.
{"title":"A potent nano-strategy for dual energy deprivation to inhibit pancreatic cancer progression","authors":"Yifan Yin , Zifan Pei , Chengyu Hu , Yixuan Sun , Qinyuan Jia , Hongfei Yao , Yuheng Zhu , Zonghao Duan , Feng Yu , Dejun Liu , Yongwei Sun , Nan Jiang , Fei Gong , Nailin Yang , Liang Cheng , Wei Liu","doi":"10.1016/j.nantod.2024.102528","DOIUrl":"10.1016/j.nantod.2024.102528","url":null,"abstract":"<div><div>Pancreatic cancer is a highly malignant tumor that poses significant threats to public health, and glycolysis plays a crucial role in its energy metabolism. Here, glycolysis was confirmed to be directly associated with poor prognosis through the use of clinical samples from 130 patients with pancreatic ductal adenocarcinoma (PDAC), and the effectiveness of zinc ions (Zn<sup>2+</sup>) in inhibiting glycolysis-related genes was further validated. Therefore, polyvinyl pyrrolidone (PVP)-modified zinc sulfide nanomedicines (ZnS-PVP) were developed for dual energy suppression by targeting glycolysis and mitochondrial respiration in pancreatic cancer. On the one hand, the released Zn<sup>2+</sup> efficiently inhibited glycolysis in pancreatic cancer cells through the PI3K-Akt-mTOR-HIF-1α signaling axis. On the other hand, acid-responsive release of hydrogen sulfide (H<sub>2</sub>S) gas damaged mitochondria and further reduced energy compensation by inhibiting oxidative phosphorylation. This two-pronged energy deprivation nano-strategy effectively eliminated pancreatic cancer cells and was proven to overcome chemotherapeutic resistance. Moreover, ZnS-PVP administration combined with immune checkpoint blockade (ICB) therapy significantly suppressed tumor progression in mouse orthotopic pancreatic tumor models, as also demonstrated in a pancreatic cancer patient-derived xenograft (PDX) model. Our work highlights the positive role of bioactive metal ions in targeting tumor energy metabolism and the great potential of nano-strategy for energy deprivation in the treatment of pancreatic cancer.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102528"},"PeriodicalIF":13.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}