Contact lens care and early diagnosis of Acanthamoeba keratitis (AK) are very important to prevent progression to blindness due to AK, which develops when Acanthamoeba attaches to contact lens-damaged corneas. Therefore, we propose a novel, non-invasive, immuno-surface-enhanced Raman scattering (SERS) sensing platform for rapid and accurate detection of Acanthamoeba infection in the tears and contact lens solutions of humans. This optic analysis method was based on the proven biological performance of chorismate mutase (CM)-specific monoclonal and polyclonal antibodies on trophozoite and cyst forms of Acanthamoeba castellanii, and its conditioned media. SERS-based, ultra-low concentration detection was achieved by the anisotropic fanblade-shaped core-shell nanoassembly (Ag@AuFNP) embedded with 4-fluorobenzenethiol Raman reporter. The immuno-SERS platform combining Ag@AuFNP and CM-specific antibody complexes was evaluated in vitro and in vivo. The non-invasive SERS-activated biosensing platform indicates strong feasibility for AK detection in human tears and contact lens solutions.
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease primarily driven by inappropriate infiltration and activation of immune cells and pro-inflammatory cytokines. Among them, neutrophils with high plasticity play a pathogenic role in RA by abnormal neutrophil immune activities. As anti-IL-17A therapies failed to achieve long-term ideal therapeutic outcomes in clinical trials, we speculated that the underlying cause may be associated with the abnormal activity of neutrophils that have a direct link to IL-17A. Herein, we created a cationic hydrogel loaded with anti-IL-17A nanobodies (Nbs) capable of synergistically weakening the inflammatory activities of neutrophils and relieving inflammation in RA. Based on the host-guest interaction, the hydrogel was comprised of β-cyclodextrin-modified hyperbranched polylysine (HBPL-CD) and adamantane-modified hyaluronic acid (HA-Ad). The physical properties were adjusted to match the mechanical environment of joints and enable injection. The hydrogel with Nbs could adsorb cell-free DNA (cfDNA) persistently and slowly release anti-IL-17A Nbs, which synergistically alleviated the inflammatory activities of neutrophils via inhibiting the IL-17A stimulated neutrophil extracellular traps (NETs) of neutrophils from RA patients and mice with collagen-induced arthritis (CIA), reducing the level of pro-inflammatory cytokines, and suppressing the inflammatory phenotype of neutrophils in vitro. The ankle injection of the hydrogel with Nbs into a mouse model of CIA could alleviate the RA symptoms in vivo. This novel platform is believed to provide a guideline for treating IL-17A-related diseases by combining Nbs with the immunoregulation of neutrophils.
Although immune checkpoint blockade (ICB) therapy enhances the tumour recognition of cytotoxic T lymphocytes (CTLs), the limited infiltration of CTLs into the centre of solid tumours significantly restricts the effect of ICB therapy. Herein, we showed that increased tumour interstitial fluid pressure (TIFP) is a critical factor in the tumour “marginalization” of CTLs. Additionally, we utilized a spatiotemporally controllable thermoelectric catalytic nanodrug (BF@M) to decompose water from the tumour interstitial fluid into oxygen, effectively reducing the TIFP and leading to enhanced infiltration of CTLs from the periphery to the interior of the solid tumour. The results revealed that BF@M significantly increased the intratumor infiltration of CTLs in three different tumour-bearing mouse models, with a maximum increase of 18.1 times. Overall, this study highlighted the intrinsic relationship between TIFP and CTLs infiltration and the mechanism underlying the effect of the TIFP, successfully addressing the tumour “marginalization” of CTLs to enhance ICB therapy.
The family of nanomagnetic arrays termed artificial spin ice (ASI) possess a vast range of metastable microstates. These states exhibit both exotic fundamental physics and more recently applied functionality, garnering attention as reconfigurable magnonic circuits and neuromorphic computing platforms. However, open questions remain on the role of microstate imperfections or angular disorder – particularly in the GHz response of the system. We report a study on the GHz dynamics of a series of five carefully prepared microstates in the same ASI sample, with both coexistence of vortex and uniformly magnetized macrospins, and disorder in the orientation of the macrospins at different vertices. We observe microstate-specific mode frequency shifting, mode creation and mode crossing. This versatility of characteristic spin-wave (SW) peaks for specific magnetic microstates in ASI enables identification of microstate configurations via SW spectral characterization. The wide reconfigurability of microstate-specific SW dynamics also opens avenues for developing rich magnonic devices operating in the GHz frequency regime and advances the understanding of ASI physics.