Pub Date : 2024-10-15DOI: 10.1016/j.pmatsci.2024.101390
Xiongfang Liu , Kaijian Xing , Chi Sin Tang , Shuo Sun , Pan Chen , Dong-Chen Qi , Mark B.H. Breese , Michael S. Fuhrer , Andrew T.S. Wee , Xinmao Yin
The development of advanced electronic devices is contingent upon sustainable material development and pioneering research breakthroughs. Traditional semiconductor-based electronic technology faces constraints in material thickness scaling and energy efficiency. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as promising candidates for next-generation nanoelectronics and optoelectronic applications, boasting high electron mobility, mechanical strength, and a customizable band gap. Despite these merits, the Fermi level pinning effect introduces uncontrollable Schottky barriers at metal–2D-TMD contacts, challenging prediction through the Schottky-Mott rule. These barriers fundamentally lead to elevated contact resistance and limited current-delivery capability, impeding the enhancement of 2D-TMD transistor and integrated circuit properties. In this review, we succinctly outline the Fermi level pinning effect mechanism and peculiar contact resistance behavior at metal/2D-TMD interfaces. Subsequently, highlights on the recent advances in overcoming contact resistance in 2D-TMDs devices, encompassing interface interaction and hybridization, van der Waals (vdW) contacts, prefabricated metal transfer and charge-transfer doping will be addressed. Finally, the discussion extends to challenges and offers insights into future developmental prospects.
{"title":"Contact resistance and interfacial engineering: Advances in high-performance 2D-TMD based devices","authors":"Xiongfang Liu , Kaijian Xing , Chi Sin Tang , Shuo Sun , Pan Chen , Dong-Chen Qi , Mark B.H. Breese , Michael S. Fuhrer , Andrew T.S. Wee , Xinmao Yin","doi":"10.1016/j.pmatsci.2024.101390","DOIUrl":"10.1016/j.pmatsci.2024.101390","url":null,"abstract":"<div><div>The development of advanced electronic devices is contingent upon sustainable material development and pioneering research breakthroughs. Traditional semiconductor-based electronic technology faces constraints in material thickness scaling and energy efficiency. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as promising candidates for next-generation nanoelectronics and optoelectronic applications, boasting high electron mobility, mechanical strength, and a customizable band gap. Despite these merits, the Fermi level pinning effect introduces uncontrollable Schottky barriers at metal–2D-TMD contacts, challenging prediction through the Schottky-Mott rule. These barriers fundamentally lead to elevated contact resistance and limited current-delivery capability, impeding the enhancement of 2D-TMD transistor and integrated circuit properties. In this review, we succinctly outline the Fermi level pinning effect mechanism and peculiar contact resistance behavior at metal/2D-TMD interfaces. Subsequently, highlights on the recent advances in overcoming contact resistance in 2D-TMDs devices, encompassing interface interaction and hybridization, van der Waals (vdW) contacts, prefabricated metal transfer and charge-transfer doping will be addressed. Finally, the discussion extends to challenges and offers insights into future developmental prospects.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101390"},"PeriodicalIF":33.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.pmatsci.2024.101388
Mahendran Samykano
The widespread adoption of lithium-ion (Li-ion) batteries in electric and hybrid vehicles has garnered significant attention due to their high energy density, impressive power-to-mass ratio, and extended lifespan. However, challenges like non-uniform temperature distribution, suboptimal energy storage, and slower release rates have surfaced. The rising incidents of battery explosions underscore the urgent need for a thorough understanding of Li-ion battery technology, particularly in thermal management. This knowledge is vital for maintaining batteries within an optimal temperature range, improving operational efficiency, and ensuring stability and safety. This review section meticulously explores critical aspects of battery thermal management, focusing on the process of heat generation and transfer within the cell and module. It also examines the thermal management challenges through active and passive techniques, emphasizing advancements in heat transfer methodologies. The investigation of integrating nano-enhanced phase change materials (NePCMs) with Li-ion batteries is particularly noteworthy as a promising approach to enhance thermal conductivity and management. The review comprehensively elaborates on the functions, strategies, emerging concerns, integration methodologies, and benefits of NePCMs, thoroughly examining their impact on thermal management. This comprehensive review anticipates advancements in this vital domain, envisioning development trends and prospects associated with the application of NePCMs in battery thermal management.
{"title":"Advancing battery thermal management: Future directions and challenges in nano-enhanced phase change materials-Based systems","authors":"Mahendran Samykano","doi":"10.1016/j.pmatsci.2024.101388","DOIUrl":"10.1016/j.pmatsci.2024.101388","url":null,"abstract":"<div><div>The widespread adoption of lithium-ion (Li-ion) batteries in electric and hybrid vehicles has garnered significant attention due to their high energy density, impressive power-to-mass ratio, and extended lifespan. However, challenges like non-uniform temperature distribution, suboptimal energy storage, and slower release rates have surfaced. The rising incidents of battery explosions underscore the urgent need for a thorough understanding of Li-ion battery technology, particularly in thermal management. This knowledge is vital for maintaining batteries within an optimal temperature range, improving operational efficiency, and ensuring stability and safety. This review section meticulously explores critical aspects of battery thermal management, focusing on the process of heat generation and transfer within the cell and module. It also examines the thermal management challenges through active and passive techniques, emphasizing advancements in heat transfer methodologies. The investigation of integrating nano-enhanced phase change materials (NePCMs) with Li-ion batteries is particularly noteworthy as a promising approach to enhance thermal conductivity and management. The review comprehensively elaborates on the functions, strategies, emerging concerns, integration methodologies, and benefits of NePCMs, thoroughly examining their impact on thermal management. This comprehensive review anticipates advancements in this vital domain, envisioning development trends and prospects associated with the application of NePCMs in battery thermal management.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101388"},"PeriodicalIF":33.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one type of promising electrochemical technologies, high temperature proton exchange membrane fuel cells (HT-PEMFCs) have been widely recognized as the next-generation fuel cell technology for clean energy conversion due to their superiorities of fast electrochemical kinetics, simplified water management, good tolerance to feeding gas contaminants, low emission and high efficiency of energy conversion. However, performance failure during long-term operation still largely hinders their practical application. Accordingly, the explorations of advanced materials and structures, degradation mechanisms and mitigation strategies are attracting intensive attentions for promoting the progress of this technology. In addressing the timely update on the emerging progress regrading long-term durability of HT-PEMFCs, a comprehensive review summarizing the most recent developments of performance failure mechanisms and mitigation strategies for critical components of HT-PEMFCs is presented here. In this paper, the fundamentals involving basic reactions, main components, and development history are first summarized for fundamental understanding; then, the failure analysis and the corresponding mitigation strategies for critical components involving proton exchange membrane, catalytic layer, gas diffusion layer, bipolar plate, and thermal/water management systems are mainly emphasized. Furthermore, the technical challenges are analyzed and the further research directions are also proposed for overcoming the challenges toward practical application of HT-PEMFCs.
{"title":"Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells","authors":"Shufan Wang, Yun Zheng, Chenhui Xv, Haishan Liu, Lingfei Li, Wei Yan, Jiujun Zhang","doi":"10.1016/j.pmatsci.2024.101389","DOIUrl":"10.1016/j.pmatsci.2024.101389","url":null,"abstract":"<div><div>As one type of promising electrochemical technologies, high temperature proton exchange membrane fuel cells (HT-PEMFCs) have been widely recognized as the next-generation fuel cell technology for clean energy conversion due to their superiorities of fast electrochemical kinetics, simplified water management, good tolerance to feeding gas contaminants, low emission and high efficiency of energy conversion. However, performance failure during long-term operation still largely hinders their practical application. Accordingly, the explorations of advanced materials and structures, degradation mechanisms and mitigation strategies are attracting intensive attentions for promoting the progress of this technology. In addressing the timely update on the emerging progress regrading long-term durability of HT-PEMFCs, a comprehensive review summarizing the most recent developments of performance failure mechanisms and mitigation strategies for critical components of HT-PEMFCs is presented here. In this paper, the fundamentals involving basic reactions, main components, and development history are first summarized for fundamental understanding; then, the failure analysis and the corresponding mitigation strategies for critical components involving proton exchange membrane, catalytic layer, gas diffusion layer, bipolar plate, and thermal/water management systems are mainly emphasized. Furthermore, the technical challenges are analyzed and the further research directions are also proposed for overcoming the challenges toward practical application of HT-PEMFCs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101389"},"PeriodicalIF":33.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.pmatsci.2024.101385
Chang Liu , Shun Li , Yunpeng Zheng , Min Xu , Hongyang Su , Xiang Miao , Yiqian Liu , Zhifang Zhou , Junlei Qi , Bingbing Yang , Di Chen , Ce-Wen Nan , Yuan-Hua Lin
The unique structural features of high entropy oxides (HEOs) offer opportunities for flexible and precise structure control, thereby fostering a broad spectrum of structure–property tuning. This review surveys the extensive research carried out on HEOs, from initial exploration to recent advancement, summarizing progress in the refinement of synthesis techniques, elucidation of the high entropy effect, and understanding of atomic structures at multiple scales. Leveraging the impact of high entropy effect on structures, HEOs exhibit a wide range of properties from thermal to electrical, which have potential applications in fields such as thermoelectrics, dielectrics, energy storage, lithium batteries, catalysis, magnetism and supercapacitors. The correlations between structure and property are analyzed, and potential property-property relations are examined. Finally, we underscore the key challenges and unresolved questions that future research needs to address.
{"title":"Advances in high entropy oxides: synthesis, structure, properties and beyond","authors":"Chang Liu , Shun Li , Yunpeng Zheng , Min Xu , Hongyang Su , Xiang Miao , Yiqian Liu , Zhifang Zhou , Junlei Qi , Bingbing Yang , Di Chen , Ce-Wen Nan , Yuan-Hua Lin","doi":"10.1016/j.pmatsci.2024.101385","DOIUrl":"10.1016/j.pmatsci.2024.101385","url":null,"abstract":"<div><div>The unique structural features of high entropy oxides (HEOs) offer opportunities for flexible and precise structure control, thereby fostering a broad spectrum of structure–property tuning. This review surveys the extensive research carried out on HEOs, from initial exploration to recent advancement, summarizing progress in the refinement of synthesis techniques, elucidation of the high entropy effect, and understanding of atomic structures at multiple scales. Leveraging the impact of high entropy effect on structures, HEOs exhibit a wide range of properties from thermal to electrical, which have potential applications in fields such as thermoelectrics, dielectrics, energy storage, lithium batteries, catalysis, magnetism and supercapacitors. The correlations between structure and property are analyzed, and potential property-property relations are examined. Finally, we underscore the key challenges and unresolved questions that future research needs to address.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101385"},"PeriodicalIF":33.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.pmatsci.2024.101387
Anbazhagan Sathiyaseelan , Xin Zhang , Yuting Lu , Nazeer Abdul Azeez , Lina Zhang , Gopal Shankar Krishnakumar , Myeong-Hyeon Wang
Chitosan (CS), a natural cationic biopolymer derived from chitin, has emerged as a promising component for synthesizing biological/bioinspired metal–organic frameworks (BioMOFs). CS’s biodegradability, low toxicity, mucoadhesive properties, and biocompatibility due to its amino and hydroxyl groups make it ideal for developing BioMOFs with applications in biomedicine, catalysis, sensing, food and environmental remediation. CS-based MOFs combine the structural diversity and tunability of MOFs (metal ions and organic linkers) with CS’s inherent advantages, expanding the possibilities for designing functional materials with tailored properties. Incorporating CS into MOF synthesis modulates surface chemistry, pore size, structure, stability, and biocompatibility, making BioMOFs suitable for various biomedical applications (therapeutics, stimuli-responsive drug delivery, antibacterial, anti-inflammatory, wound healing, antidiabetic, and anticancer), food technology (preservation, coating and packaging), and environmental remediation (dye, antibiotic, pesticide removal as sorbents and photocatalysts). This review explores the preparation, properties, and applications of biopolymer CS-based MOFs, which have not been comprehensively summarized in previous reviews. We discuss the potential applications of BioMOFs in biomedicine, environmental remediation, and other fields, highlighting their versatility and potential impact. By comprehensively analyzing recent advancements and challenges in CS-based MOFs, this review aims to provide insights into future directions and opportunities for leveraging CS’s unique properties in MOF design and applications.
{"title":"Exploring the synthesis, properties, and potential of chitosan-functionalized metal-organic frameworks in emerging applications","authors":"Anbazhagan Sathiyaseelan , Xin Zhang , Yuting Lu , Nazeer Abdul Azeez , Lina Zhang , Gopal Shankar Krishnakumar , Myeong-Hyeon Wang","doi":"10.1016/j.pmatsci.2024.101387","DOIUrl":"10.1016/j.pmatsci.2024.101387","url":null,"abstract":"<div><div>Chitosan (CS), a natural cationic biopolymer derived from chitin, has emerged as a promising component for synthesizing biological/bioinspired metal–organic frameworks (BioMOFs). CS’s biodegradability, low toxicity, mucoadhesive properties, and biocompatibility due to its amino and hydroxyl groups make it ideal for developing BioMOFs with applications in biomedicine, catalysis, sensing, food and environmental remediation. CS-based MOFs combine the structural diversity and tunability of MOFs (metal ions and organic linkers) with CS’s inherent advantages, expanding the possibilities for designing functional materials with tailored properties. Incorporating CS into MOF synthesis modulates surface chemistry, pore size, structure, stability, and biocompatibility, making BioMOFs suitable for various biomedical applications (therapeutics, stimuli-responsive drug delivery, antibacterial, anti-inflammatory, wound healing, antidiabetic, and anticancer), food technology (preservation, coating and packaging), and environmental remediation (dye, antibiotic, pesticide removal as sorbents and photocatalysts). This review explores the preparation, properties, and applications of biopolymer CS-based MOFs, which have not been comprehensively summarized in previous reviews. We discuss the potential applications of BioMOFs in biomedicine, environmental remediation, and other fields, highlighting their versatility and potential impact. By comprehensively analyzing recent advancements and challenges in CS-based MOFs, this review aims to provide insights into future directions and opportunities for leveraging CS’s unique properties in MOF design and applications.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101387"},"PeriodicalIF":33.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the evolutionary development of plants, lignin emerged, engaging in a remarkable synergy with polysaccharides. This union enhanced the adaptability of plants to harsh environments through a complementary relationship. Lignin addresses the inherent limitations of polysaccharides, providing hydrophobicity, ultraviolet (UV) resistance, and environmental stability. Building on this natural paradigm, we explore the development of artificial lignin/polysaccharide composites (LPCs), encompassing a range of combinations such as lignin/cellulose, lignin/chitosan, lignin/starch, lignin/alginate, lignin/agarose, and lignin/carrageen composites. This review provides a comprehensive examination of lignin’s origins, understanding, properties, and the advancements and challenges faced by polysaccharides. We detail the fabrication of LPCs from lignin and natural polysaccharides, discussing their construction strategies, properties, and potential applications. Furthermore, we highlight existing challenges and future opportunities for the improved utilization of LPCs. Our aim is to catalyze the effective use of lignin and natural polysaccharides, offering fresh insights for the innovation of next-regeneration LPCs.
{"title":"Lignin/polysaccharide composite: A nature-made match toward multifunctional bio-based materials","authors":"Shixu Yu , Lu Chen , Yimin Xie , Qinghua Feng , Chaoji Chen","doi":"10.1016/j.pmatsci.2024.101383","DOIUrl":"10.1016/j.pmatsci.2024.101383","url":null,"abstract":"<div><div>During the evolutionary development of plants, lignin emerged, engaging in a remarkable synergy with polysaccharides. This union enhanced the adaptability of plants to harsh environments through a complementary relationship. Lignin addresses the inherent limitations of polysaccharides, providing hydrophobicity, ultraviolet (UV) resistance, and environmental stability. Building on this natural paradigm, we explore the development of artificial lignin/polysaccharide composites (LPCs), encompassing a range of combinations such as lignin/cellulose, lignin/chitosan, lignin/starch, lignin/alginate, lignin/agarose, and lignin/carrageen composites. This review provides a comprehensive examination of lignin’s origins, understanding, properties, and the advancements and challenges faced by polysaccharides. We detail the fabrication of LPCs from lignin and natural polysaccharides, discussing their construction strategies, properties, and potential applications. Furthermore, we highlight existing challenges and future opportunities for the improved utilization of LPCs. Our aim is to catalyze the effective use of lignin and natural polysaccharides, offering fresh insights for the innovation of next-regeneration LPCs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101383"},"PeriodicalIF":33.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.pmatsci.2024.101386
Junyan Wu , Lina Zhao , Xu Gao, Yuxin Li
The photocatalytic conversion of carbon dioxide (CO2) into sustainable fuels and chemicals is a promising method to enhance the natural carbon cycle and combat global warming. This approach involves developing efficient, stable, and cost-effective photocatalysts, with two-dimensional (2D) materials like graphitic carbon nitride (g-C3N4) and hydrotalcite standing out owing to their extensive surface areas and superior charge separation and transfer capabilities. The thinness of these materials shortens carrier transport paths, improves CO2 and water adsorption and activation, lowers energy barriers, and selectively enhances specific reactions. However, focusing solely on thickness might oversimplify the issue, as morphology, edge structures, active site exposure, and interfacial effects also play crucial roles in photocatalytic performance. Adjusting electronic structures through nanoscale parameters like thickness is vital, but a comprehensive consideration of these complex interactions is essential. While previous studies have examined the performance and optimization of 2D materials, in-depth analyses of thickness and structure–activity relationships are lacking, which hinders advanced catalyst design. This review discusses the structural characteristics of various 2D nanomaterials, their role in promoting electron-hole pair separation, rapid electron migration, and effective CO2 adsorption, and also evaluates future prospects of these materials in fuel utilizations and the challenges.
{"title":"Multiscale structural regulation of Two-Dimensional materials for photocatalytic reduction of CO2","authors":"Junyan Wu , Lina Zhao , Xu Gao, Yuxin Li","doi":"10.1016/j.pmatsci.2024.101386","DOIUrl":"10.1016/j.pmatsci.2024.101386","url":null,"abstract":"<div><div>The photocatalytic conversion of carbon dioxide (CO<sub>2</sub>) into sustainable fuels and chemicals is a promising method to enhance the natural carbon cycle and combat global warming. This approach involves developing efficient, stable, and cost-effective photocatalysts, with two-dimensional (2D) materials like graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and hydrotalcite standing out owing to their extensive surface areas and superior charge separation and transfer capabilities. The thinness of these materials shortens carrier transport paths, improves CO<sub>2</sub> and water adsorption and activation, lowers energy barriers, and selectively enhances specific reactions. However, focusing solely on thickness might oversimplify the issue, as morphology, edge structures, active site exposure, and interfacial effects also play crucial roles in photocatalytic performance. Adjusting electronic structures through nanoscale parameters like thickness is vital, but a comprehensive consideration of these complex interactions is essential. While previous studies have examined the performance and optimization of 2D materials, in-depth analyses of thickness and structure–activity relationships are lacking, which hinders advanced catalyst design. This review discusses the structural characteristics of various 2D nanomaterials, their role in promoting electron-hole pair separation, rapid electron migration, and effective CO<sub>2</sub> adsorption, and also evaluates future prospects of these materials in fuel utilizations and the challenges.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101386"},"PeriodicalIF":33.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.pmatsci.2024.101381
Junrui Zhang , Mili Liu , Jiacheng Qi , Nuo Lei , Shengrong Guo , Jiangfeng Li , Xuezhang Xiao , Liuzhang Ouyang
Magnesium (Mg)-based materials exhibit higher hydrogen-storage density among solid-state hydrogen-storage materials (HSMs). Highly reliable hydrolysis can be achieved using them for hydrogen production. They can also achieve the integration of hydrogen production and storage via the regeneration. Furthermore, rechargeable magnesium batteries (RMBs), which possess desirable qualities that exhibit immense potential in addressing challenges related to lithium resource scarcity. However, limitations like high desorption temperature, poor cycle life, low hydrolysis rate, and propensity for passivation layer on Mg anodes, hinder their large-scale use as promising energy storage materials (ESMs). Herein, the review offers a comprehensive summary and analysis of the latest research in Mg-based materials for hydrogen storage, production, regeneration and RMBs. We summarize the impact of different methodologies on the thermodynamic and kinetic properties of MgH2. In particular, we thoroughly investigate the commonly used methods for enhancing the hydrolysis efficiency of Mg/MgH2. The currently research status on the regeneration of borohydrides by Mg-based materials is also summarized. In addition, the advantages and disadvantages of utilizing Mg as anode material in RMBs are also evaluated. This review aims to provide a fundamental insight of Mg-based materials and technologies and offer new strategies for promoting the sustainable development of advanced Mg-based materials.
{"title":"Advanced Mg-based materials for energy storage: fundamental, progresses, challenges and perspectives","authors":"Junrui Zhang , Mili Liu , Jiacheng Qi , Nuo Lei , Shengrong Guo , Jiangfeng Li , Xuezhang Xiao , Liuzhang Ouyang","doi":"10.1016/j.pmatsci.2024.101381","DOIUrl":"10.1016/j.pmatsci.2024.101381","url":null,"abstract":"<div><div>Magnesium (Mg)-based materials exhibit higher hydrogen-storage density among solid-state hydrogen-storage materials (HSMs). Highly reliable hydrolysis can be achieved using them for hydrogen production. They can also achieve the integration of hydrogen production and storage via the regeneration. Furthermore, rechargeable magnesium batteries (RMBs), which possess desirable qualities that exhibit immense potential in addressing challenges related to lithium resource scarcity. However, limitations like high desorption temperature, poor cycle life, low hydrolysis rate, and propensity for passivation layer on Mg anodes, hinder their large-scale use as promising energy storage materials (ESMs). Herein, the review offers a comprehensive summary and analysis of the latest research in Mg-based materials for hydrogen storage, production, regeneration and RMBs. We summarize the impact of different methodologies on the thermodynamic and kinetic properties of MgH<sub>2</sub>. In particular, we thoroughly investigate the commonly used methods for enhancing the hydrolysis efficiency of Mg/MgH<sub>2</sub>. The currently research status on the regeneration of borohydrides by Mg-based materials is also summarized. In addition, the advantages and disadvantages of utilizing Mg as anode material in RMBs are also evaluated. This review aims to provide a fundamental insight of Mg-based materials and technologies and offer new strategies for promoting the sustainable development of advanced Mg-based materials.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101381"},"PeriodicalIF":33.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.pmatsci.2024.101384
Alejandro Sosnik, Ivan Zlotver, Harischandra Potthuri
Ultrasound (US) is a technology that utilizes sound waves above 20 kHz and has extensive applications in medical imaging and therapy. Sonodynamic Therapy (SDT) uses low-intensity US to locally activate sono-responsive molecules or nanomaterials (the sonosensitizer), inducing the production of reactive oxygen species (ROS) in the biological microenvironment, and triggering a biological response. As opposed to light, which is used in photodynamic therapy, US exhibits deep tissue penetration and thus, enables the stimulation of sonosensitizers that undergo accumulation in internal tissues and organs, and making of SDT a minimally invasive intervention. The types and the spatiotemporal release of ROS can be tuned by the rational selection of the sonosensitizer and its dose as well as US parameters such as frequency, intensity, and irradiation time and it can be capitalized on to affect different cellular pathways, including triggering cancer cell apoptosis. The most traditional sonosensitizers are organic small molecules such as porphyrin precursors (e.g., 5-aminolevulinic acid) and porphyrins, though they often display chemical instability, sonobleaching and high cell toxicity. In addition, the ability to control their biodistribution and accumulation in the target body site is low. To overcome this, they are often encapsulated within lipidic or polymeric nanoparticles of controlled size and surface properties. However, their sonodynamic efficiency is jeopardized. To overcome these drawbacks, ceramic, metallic and hybrid ceramic/metallic and ceramic/polymeric nano-sonosensitizers with better physicochemical stability, no sonobleaching and tunable nanostructure, size, surface functionality, and energy bandgap are under extensive investigation. Even though ROS are involved in a broad spectrum of cellular processes in health and disease, SDT has been mainly investigated as a local anticancer treatment with more limited off-target systemic side-effects than chemotherapy. In this scenario, while both the sonosensitizer and the US are harmless, their combination leads to cancer cell death. At the same time, SDT shows promise also in treating soft and especially hard tissue infections where antibiotics are less effective due to their limited penetration, reprogramming of macrophages and promoting wound healing, reducing inflammation, and neuronal stimulation. This review initially describes the use of inorganic sonosensitizers in SDT, while emphasizing their fundamental structural features to effectively produce ROS upon therapeutic US activation. Then, their application in the treatment of disease with focus on less investigated fields such as infections and wound and bone healing, inflammation, and neuronal diseases are overviewed.
超声波(US)是一种利用 20 千赫以上声波的技术,在医学成像和治疗方面有着广泛的应用。声动力疗法(SDT)利用低强度超声波局部激活声响应分子或纳米材料(声敏化剂),诱导生物微环境中活性氧(ROS)的产生,引发生物反应。与光动力疗法中使用的光不同,超声波具有深层组织穿透力,因此能刺激声敏化剂在内部组织和器官中积聚,使 SDT 成为一种微创疗法。ROS 的类型和时空释放可通过合理选择声纳敏化剂及其剂量以及频率、强度和照射时间等 US 参数来调节,并可利用其影响不同的细胞通路,包括引发癌细胞凋亡。最传统的声波增敏剂是有机小分子,如卟啉前体(如 5-氨基乙酰丙酸)和卟啉,但它们往往显示出化学不稳定性、可漂白性和高细胞毒性。此外,控制它们在靶体部位的生物分布和积累的能力也很低。为了克服这一问题,通常将它们封装在大小和表面特性可控的脂质或聚合物纳米颗粒中。然而,它们的声动力学效率会受到影响。为了克服这些缺点,目前正在广泛研究具有更好的物理化学稳定性、无声漂白以及可调纳米结构、尺寸、表面功能和能带隙的陶瓷、金属和陶瓷/金属及陶瓷/聚合物混合纳米声敏剂。尽管 ROS 参与了健康和疾病中广泛的细胞过程,但 SDT 主要是作为一种局部抗癌疗法进行研究的,与化疗相比,它的脱靶系统副作用更为有限。在这种情况下,虽然声波增敏剂和 US 都是无害的,但它们的结合会导致癌细胞死亡。与此同时,SDT 在治疗软组织,尤其是硬组织感染方面也大有可为,因为抗生素的渗透力有限,在治疗软组织感染方面效果较差;SDT 还能对巨噬细胞进行重编程,促进伤口愈合、减轻炎症和刺激神经元。本综述首先介绍了无机声敏化剂在 SDT 中的应用,同时强调了它们在治疗性 US 激活时有效产生 ROS 的基本结构特征。然后,概述了它们在疾病治疗中的应用,重点关注研究较少的领域,如感染、伤口和骨愈合、炎症和神经元疾病。
{"title":"Inorganic sonosensitizer nanomaterials for sonodynamic therapy of diseases beyond cancer","authors":"Alejandro Sosnik, Ivan Zlotver, Harischandra Potthuri","doi":"10.1016/j.pmatsci.2024.101384","DOIUrl":"10.1016/j.pmatsci.2024.101384","url":null,"abstract":"<div><div>Ultrasound (US) is a technology that utilizes sound waves above 20 kHz and has extensive applications in medical imaging and therapy. Sonodynamic Therapy (SDT) uses low-intensity US to locally activate sono-responsive molecules or nanomaterials (the sonosensitizer), inducing the production of reactive oxygen species (ROS) in the biological microenvironment, and triggering a biological response. As opposed to light, which is used in photodynamic therapy, US exhibits deep tissue penetration and thus, enables the stimulation of sonosensitizers that undergo accumulation in internal tissues and organs, and making of SDT a minimally invasive intervention. The types and the spatiotemporal release of ROS can be tuned by the rational selection of the sonosensitizer and its dose as well as US parameters such as frequency, intensity, and irradiation time and it can be capitalized on to affect different cellular pathways, including triggering cancer cell apoptosis. The most traditional sonosensitizers are organic small molecules such as porphyrin precursors (e.g., 5-aminolevulinic acid) and porphyrins, though they often display chemical instability, sonobleaching and high cell toxicity. In addition, the ability to control their biodistribution and accumulation in the target body site is low. To overcome this, they are often encapsulated within lipidic or polymeric nanoparticles of controlled size and surface properties. However, their sonodynamic efficiency is jeopardized. To overcome these drawbacks, ceramic, metallic and hybrid ceramic/metallic and ceramic/polymeric nano-sonosensitizers with better physicochemical stability, no sonobleaching and tunable nanostructure, size, surface functionality, and energy bandgap are under extensive investigation. Even though ROS are involved in a broad spectrum of cellular processes in health and disease, SDT has been mainly investigated as a local anticancer treatment with more limited off-target systemic side-effects than chemotherapy. In this scenario, while both the sonosensitizer and the US are harmless, their combination leads to cancer cell death. At the same time, SDT shows promise also in treating soft and especially hard tissue infections where antibiotics are less effective due to their limited penetration, reprogramming of macrophages and promoting wound healing, reducing inflammation, and neuronal stimulation. This review initially describes the use of inorganic sonosensitizers in SDT, while emphasizing their fundamental structural features to effectively produce ROS upon therapeutic US activation. Then, their application in the treatment of disease with focus on less investigated fields such as infections and wound and bone healing, inflammation, and neuronal diseases are overviewed.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101384"},"PeriodicalIF":33.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.pmatsci.2024.101382
Huangxu Li , Xueliang Sun , Haitao Huang
The development of revolutionary rechargeable battery technology is essential for achieving a carbon-neutral society. Despite significant progress in diverse rechargeable batteries over the past decades, electrochemical stability, ionic/electronic conductivity, reaction rates, crystal phase stability, etc. remain major challenges. The concept of high entropy has emerged as a new approach to addressing diverse scientific and engineering challenges of rechargeable batteries by virtue of its unique properties. This review aims to provide a timely and comprehensive understanding of the properties, development, and applications of high entropy materials/strategies in rechargeable batteries. The fundamental concepts of high entropy, including high entropy materials, high entropy doping/substitution, high entropy stabilization, high entropy interlocking, high entropy liquids, etc. are introduced. The state-of-the-art development of high-entropy concepts in rechargeable batteries, including Li/Na/K/Zn-ion batteries, Li-S batteries, Li-O2 and Zn-air batteries, covering anode materials, cathode materials, liquid electrolytes, solid electrolytes, and catalysts are systematically introduced, with an emphasis on the role and principles of high entropy in solving specific scientific/engineering problems. Their unique properties and functions for battery applications are summarized, and challenges and opportunities of high entropy concepts for rechargeable batteries are also proposed to promote the development of this intriguing field.
{"title":"The concept of high entropy for rechargeable batteries","authors":"Huangxu Li , Xueliang Sun , Haitao Huang","doi":"10.1016/j.pmatsci.2024.101382","DOIUrl":"10.1016/j.pmatsci.2024.101382","url":null,"abstract":"<div><div>The development of revolutionary rechargeable battery technology is essential for achieving a carbon-neutral society. Despite significant progress in diverse rechargeable batteries over the past decades, electrochemical stability, ionic/electronic conductivity, reaction rates, crystal phase stability, etc. remain major challenges. The concept of high entropy has emerged as a new approach to addressing diverse scientific and engineering challenges of rechargeable batteries by virtue of its unique properties. This review aims to provide a timely and comprehensive understanding of the properties, development, and applications of high entropy materials/strategies in rechargeable batteries. The fundamental concepts of high entropy, including high entropy materials, high entropy doping/substitution, high entropy stabilization, high entropy interlocking, high entropy liquids, etc. are introduced. The state-of-the-art development of high-entropy concepts in rechargeable batteries, including Li/Na/K/Zn-ion batteries, Li-S batteries, Li-O<sub>2</sub> and Zn-air batteries, covering anode materials, cathode materials, liquid electrolytes, solid electrolytes, and catalysts are systematically introduced, with an emphasis on the role and principles of high entropy in solving specific scientific/engineering problems. Their unique properties and functions for battery applications are summarized, and challenges and opportunities of high entropy concepts for rechargeable batteries are also proposed to promote the development of this intriguing field.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101382"},"PeriodicalIF":33.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}