首页 > 最新文献

Progress in Materials Science最新文献

英文 中文
Corrigendum to “Advances in crystallization regulation and defect suppression strategies for all-inorganic CsPbX3 perovskite solar cells” [Prog. Mater. Sci. 141 (2024) 101223] 全无机 CsPbX3 包光体太阳能电池结晶调节和缺陷抑制策略的进展"[材料科学进展 141 (2024) 101223] 更正
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-15 DOI: 10.1016/j.pmatsci.2024.101296
Jin Huang , Hao Wang , Chunliang Jia , Yizhe Tang , Husheng Yang , Chunyang Chen , Kaiyuan Gou , Yufan Zhou , Dan Zhang , Shengzhong Liu
{"title":"Corrigendum to “Advances in crystallization regulation and defect suppression strategies for all-inorganic CsPbX3 perovskite solar cells” [Prog. Mater. Sci. 141 (2024) 101223]","authors":"Jin Huang , Hao Wang , Chunliang Jia , Yizhe Tang , Husheng Yang , Chunyang Chen , Kaiyuan Gou , Yufan Zhou , Dan Zhang , Shengzhong Liu","doi":"10.1016/j.pmatsci.2024.101296","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101296","url":null,"abstract":"","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000653/pdfft?md5=90b87811dd79b1258f2bd50a74fe94f3&pid=1-s2.0-S0079642524000653-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid metal extreme materials 液态金属极端材料
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-14 DOI: 10.1016/j.pmatsci.2024.101298
Xuyang Sun , Xuelin Wang , Jing Liu

The continuous advancement of materials and technologies has significantly propelled the progress of human civilization. However, the more humans achieved, the more bottlenecks we encounter which span from space exploration, cutting edge advanced cooling to the clinical therapy of a single malignant tumor. The revolution to break through such barriers lies in the identification of extreme materials that can easily tackle the existing challenges and fundamentally extend the technological boundary, thus potentially leading to the creation of entirely new devices and systems. The emergence of room-temperature liquid metals (LMs) with their unique characteristics and diverse unconventional capabilities distinguished from traditionally developed electrical, soft, and fluidic materials, is anticipated to revolutionize a broad range of interdisciplinary fields. This review is dedicated to extracting the extreme features of LMs and systematizing their distinct applied scenarios from pervasive electronic fabrication to thermal management, and healthcare systems until human-like transformable robotics. The prospects and challenges of LM extreme materials are outlined. It is expected that further investigations on the clarified scientific and technological categories lying behind will contribute well to the next generation human civilization in the coming time.

材料和技术的不断进步极大地推动了人类文明的进步。然而,人类取得的成就越大,遇到的瓶颈也就越多,大到太空探索、尖端的先进冷却技术,小到一个恶性肿瘤的临床治疗。突破这些障碍的革命在于找到能够轻松应对现有挑战并从根本上扩展技术边界的极端材料,从而有可能创造出全新的设备和系统。室温液态金属(LMs)具有不同于传统电气、软性和流体材料的独特特性和多种非常规功能,预计它的出现将给广泛的跨学科领域带来革命性的变化。本综述致力于提取液态金属的极端特性,并将其独特的应用场景系统化,从无处不在的电子制造到热管理,从医疗保健系统到类人可变形机器人。概述了 LM 极端材料的前景和挑战。我们期待,对其背后所蕴含的明确科学和技术范畴的进一步研究,将在未来为下一代人类文明做出卓越贡献。
{"title":"Liquid metal extreme materials","authors":"Xuyang Sun ,&nbsp;Xuelin Wang ,&nbsp;Jing Liu","doi":"10.1016/j.pmatsci.2024.101298","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101298","url":null,"abstract":"<div><p>The continuous advancement of materials and technologies has significantly propelled the progress of human civilization. However, the more humans achieved, the more bottlenecks we encounter which span from space exploration, cutting edge advanced cooling to the clinical therapy of a single malignant tumor. The revolution to break through such barriers lies in the identification of extreme materials that can easily tackle the existing challenges and fundamentally extend the technological boundary, thus potentially leading to the creation of entirely new devices and systems. The emergence of room-temperature liquid metals (LMs) with their unique characteristics and diverse unconventional capabilities distinguished from traditionally developed electrical, soft, and fluidic materials, is anticipated to revolutionize a broad range of interdisciplinary fields. This review is dedicated to extracting the extreme features of LMs and systematizing their distinct applied scenarios from pervasive electronic fabrication to thermal management, and healthcare systems until human-like transformable robotics. The prospects and challenges of LM extreme materials are outlined. It is expected that further investigations on the clarified scientific and technological categories lying behind will contribute well to the next generation human civilization in the coming time.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review 通过金属硅合金化调整高熵合金的强化机制,实现优异的强度-电导率协同作用:综述
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-06 DOI: 10.1016/j.pmatsci.2024.101295
Mohammad Javad Sohrabi , Alireza Kalhor , Hamed Mirzadeh , Kinga Rodak , Hyoung Seop Kim

Metalloids and transition/refractory elements typically differ significantly in the electronic structure and atomic size, allowing for stronger solid-solution hardening in high-entropy alloys (HEAs) as well as improved work-hardening capability, which leads to exceptional strength-ductility balance. In this regard, Si addition has opened up a new pathway for developing novel and high-performance Cantor-based, lightweight, and refractory HEAs, which has recently attracted considerable attention from the materials science community. Accordingly, the present review paper summarizes the recent progress in tailoring the mechanical properties and strengthening mechanisms of Si-added HEAs. After reviewing the general strengthening mechanisms of HEAs, the impact of Si addition is critically discussed, especially its effects on the (I) solid-solution hardening by local lattice distortion and chemical short-range order (SRO) hardening, (II) second-phase strengthening by promoting the formation of disordered solid-solution phases, silicides, σ-phase, and other intermetallics, (III) structural refinement and facilitating the development of heterostructures, and (IV) work-hardening behavior by altering the dislocation arrangements, boosting the twinning-induced plasticity (TWIP) effect as well as HCP and BCC transformation-induced plasticity (TRIP) effect by reduced and variable stacking fault energy (SFE). Finally, the research gaps and future prospects are introduced, including metastability engineering, superplasticity, application of severe plastic deformation (SPD) techniques for grain refinement, and additive manufacturing.

金属元素和过渡/难熔元素通常在电子结构和原子尺寸上存在显著差异,这使得高熵合金(HEAs)具有更强的固溶硬化能力和更好的加工硬化能力,从而实现优异的强度-电导率平衡。在这方面,添加硅为开发新型、高性能、轻质和难熔的康托尔基高熵合金开辟了一条新途径,最近引起了材料科学界的广泛关注。因此,本综述论文总结了在定制加硅 HEA 的机械性能和强化机制方面的最新进展。在回顾了 HEAs 的一般强化机理之后,本文对添加 Si 的影响进行了深入探讨,尤其是其对以下方面的影响:(I)通过局部晶格畸变和化学短程有序硬化(SRO)实现固溶硬化;(II)通过促进无序固溶相、硅化物、σ相和其他金属间化合物的形成实现第二相强化;(III)通过促进无序固溶相、硅化物、σ相和其他金属间化合物的形成实现第二相强化;(IV)通过促进无序固溶相、硅化物、σ相和其他金属间化合物的形成实现第二相强化、(IV) 通过改变位错排列,提高孪晶诱导塑性(TWIP)效应以及 HCP 和 BCC 转变诱导塑性(TRIP)效应,降低和改变堆叠断层能(SFE),实现加工硬化行为。最后,介绍了研究空白和未来展望,包括陨变工程、超塑性、应用剧烈塑性变形 (SPD) 技术细化晶粒和增材制造。
{"title":"Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review","authors":"Mohammad Javad Sohrabi ,&nbsp;Alireza Kalhor ,&nbsp;Hamed Mirzadeh ,&nbsp;Kinga Rodak ,&nbsp;Hyoung Seop Kim","doi":"10.1016/j.pmatsci.2024.101295","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101295","url":null,"abstract":"<div><p>Metalloids and transition/refractory elements typically differ significantly in the electronic structure and atomic size, allowing for stronger solid-solution hardening in high-entropy alloys (HEAs) as well as improved work-hardening capability, which leads to exceptional strength-ductility balance. In this regard, Si addition has opened up a new pathway for developing novel and high-performance Cantor-based, lightweight, and refractory HEAs, which has recently attracted considerable attention from the materials science community. Accordingly, the present review paper summarizes the recent progress in tailoring the mechanical properties and strengthening mechanisms of Si-added HEAs. After reviewing the general strengthening mechanisms of HEAs, the impact of Si addition is critically discussed, especially its effects on the (I) solid-solution hardening by local lattice distortion and chemical short-range order (SRO) hardening, (II) second-phase strengthening by promoting the formation of disordered solid-solution phases, silicides, σ-phase, and other intermetallics, (III) structural refinement and facilitating the development of heterostructures, and (IV) work-hardening behavior by altering the dislocation arrangements, boosting the twinning-induced plasticity (TWIP) effect as well as HCP and BCC transformation-induced plasticity (TRIP) effect by reduced and variable stacking fault energy (SFE). Finally, the research gaps and future prospects are introduced, including metastability engineering, superplasticity, application of severe plastic deformation (SPD) techniques for grain refinement, and additive manufacturing.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in nanomaterial-based synergistic photothermal-enhanced chemodynamic therapy in combating bacterial infections 基于纳米材料的协同光热增强化学动力疗法在抗击细菌感染方面的进展
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-06 DOI: 10.1016/j.pmatsci.2024.101292
Panchanathan Manivasagan , Thavasyappan Thambi , Ara Joe , Hyo-Won Han , Sun-Hwa Seo , Yeong Jun Jeon , João Conde , Eue-Soon Jang

The prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a serious threat to clinical treatment and global human health, and has become one of the most important challenges in clinical therapy. Hence, there is an urgent need to develop safe, effective, and new antibacterial strategies based on multifunctional nanomaterials for the accurate detection and treatment of MDR bacterial infections. Chemodynamic therapy (CDT) is an emerging antibacterial therapeutic strategy that uses Fenton/Fenton-like metal-based nanocatalysts to convert hydrogen peroxide (H2O2) into hydroxyl radicals (OH) to destroy MDR bacterial infections. Despite the enormous potential of CDT, a single CDT has limitations such as low catalytic efficacy and insufficient production of H2O2. In this regard, CDT can be combined with other antibacterial strategies, such as photothermal therapy (PTT), in which CDT efficacy can be effectively enhanced by the PTT heating effect. Thus, the rational combination of PTT and CDT into one nanoplatform has been demonstrated as a highly efficient antibacterial strategy for achieving a better therapeutic effect. This review summarizes and discusses the latest advances in photothermal-enhanced CDT (PT/CDT) based on multifunctional nanomaterials for bacterial infection theranostics as well as the advantages, challenges, and future research directions for clinical applications, which will inspire the development of new PT/CDT based on metal-based photothermal nanocatalysts for future bacterial infection theranostics.

耐多药(MDR)细菌感染的流行已成为临床治疗和全球人类健康的严重威胁,并已成为临床治疗中最重要的挑战之一。因此,迫切需要开发基于多功能纳米材料的安全、有效的新型抗菌策略,以准确检测和治疗 MDR 细菌感染。化学动力疗法(CDT)是一种新兴的抗菌治疗策略,它利用芬顿/类芬顿金属基纳米催化剂将过氧化氢(H2O2)转化为羟自由基(OH),从而消灭 MDR 细菌感染。尽管 CDT 潜力巨大,但单一的 CDT 也有局限性,如催化效力低和 H2O2 生成不足。因此,CDT 可与光热疗法(PTT)等其他抗菌策略相结合,通过 PTT 的加热效应有效增强 CDT 的功效。因此,将 PTT 和 CDT 合理地结合到一个纳米平台中已被证明是一种高效的抗菌策略,可达到更好的治疗效果。本综述总结并讨论了基于多功能纳米材料的光热增强 CDT(PT/CDT)在细菌感染治疗学方面的最新进展,以及在临床应用方面的优势、挑战和未来研究方向,这将对未来基于金属基光热纳米催化剂的新型 PT/CDT 在细菌感染治疗学方面的发展有所启发。
{"title":"Progress in nanomaterial-based synergistic photothermal-enhanced chemodynamic therapy in combating bacterial infections","authors":"Panchanathan Manivasagan ,&nbsp;Thavasyappan Thambi ,&nbsp;Ara Joe ,&nbsp;Hyo-Won Han ,&nbsp;Sun-Hwa Seo ,&nbsp;Yeong Jun Jeon ,&nbsp;João Conde ,&nbsp;Eue-Soon Jang","doi":"10.1016/j.pmatsci.2024.101292","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101292","url":null,"abstract":"<div><p>The prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a serious threat to clinical treatment and global human health, and has become one of the most important challenges in clinical therapy. Hence, there is an urgent need to develop safe, effective, and new antibacterial strategies based on multifunctional nanomaterials for the accurate detection and treatment of MDR bacterial infections. Chemodynamic therapy (CDT) is an emerging antibacterial therapeutic strategy that uses Fenton/Fenton-like metal-based nanocatalysts to convert hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) into hydroxyl radicals (OH) to destroy MDR bacterial infections. Despite the enormous potential of CDT, a single CDT has limitations such as low catalytic efficacy and insufficient production of H<sub>2</sub>O<sub>2</sub>. In this regard, CDT can be combined with other antibacterial strategies, such as photothermal therapy (PTT), in which CDT efficacy can be effectively enhanced by the PTT heating effect. Thus, the rational combination of PTT and CDT into one nanoplatform has been demonstrated as a highly efficient antibacterial strategy for achieving a better therapeutic effect. This review summarizes and discusses the latest advances in photothermal-enhanced CDT (PT/CDT) based on multifunctional nanomaterials for bacterial infection theranostics as well as the advantages, challenges, and future research directions for clinical applications, which will inspire the development of new PT/CDT based on metal-based photothermal nanocatalysts for future bacterial infection theranostics.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000616/pdfft?md5=c152c720410eeab5ea99bed809ec98c9&pid=1-s2.0-S0079642524000616-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects 仿生纳米纤维如何推动皮肤伤口管理领域的发展:最新技术与未来展望
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-05 DOI: 10.1016/j.pmatsci.2024.101293
Niloofar Eslahi , Foad Soleimani , Roya Lotfi , Fatemeh Mohandes , Abdolreza Simchi , Mehdi Razavi

Skin acts as a protective barrier for the underlying organs against external events such as irradiation of ultraviolet rays, incursion of harmful pathogens, and water evaporation. As the skin is constantly liable to damage, the wound-healing process is vital to the survival of all organisms. Materials design and development for enhanced wound healing and skin tissue regeneration have been found highly valuable in recent years. A wide range of materials and structures, including dressings and tissue-engineered substitutes composed of synthetic and/or natural biopolymers and their composites have been developed and examined. Although some have clinically been proven and are available in the market, mimicking the architecture of native extracellular matrix is still an open challenge with fundamental limitations in reproducing skin appendages, sufficient vascularization, adherence to the wound bed, and scarless wound management. Biomimetic nanofibers with tunable morphological, biological, and physicochemical features are promising candidates to overcome these drawbacks. Combined with advanced biomanufacturing and cell culturing techniques, enabling the incorporation of growth factors and stem cells within morphologically-controlled nanostructures, the fibrous structures allow the regeneration of functional skin. This paper overviews the advances in state-of-the-art strategies for designing biomimetic nanofibrous materials with a high potential for wound healing and skin regeneration. An emphasis is given to multifunctional nanocomposites with mechanobiological properties matching those of natural skin. Opportunities, challenges, and commercial status of these materials for skin repair are outlined, and their future perspective is demonstrated. The advances in smart wound management are also discussed, particularly by highlighting the potential of stimuli-responsive materials and integrated sensors in the progress of next-generation dressings for simultaneous monitoring and on-demand treatment of wounds.

皮肤是底层器官的保护屏障,可抵御紫外线照射、有害病原体侵入和水分蒸发等外部事件。由于皮肤经常受到损伤,伤口愈合过程对所有生物的生存都至关重要。近年来,用于促进伤口愈合和皮肤组织再生的材料设计和开发已被发现具有很高的价值。已经开发和研究了多种材料和结构,包括由合成和/或天然生物聚合物及其复合材料组成的敷料和组织工程代用品。虽然其中一些已通过临床验证并在市场上销售,但模仿原生细胞外基质的结构仍是一项公开挑战,在再现皮肤附属物、充分血管化、粘附伤口床和无疤痕伤口管理等方面存在根本性限制。具有可调形态、生物和物理化学特征的仿生纳米纤维有望克服这些缺点。结合先进的生物制造和细胞培养技术,在形态可控的纳米结构中加入生长因子和干细胞,这种纤维结构可实现功能性皮肤的再生。本文概述了设计生物仿生纳米纤维材料的最新战略进展,这些材料在伤口愈合和皮肤再生方面潜力巨大。重点是具有与天然皮肤相匹配的机械生物学特性的多功能纳米复合材料。概述了这些材料用于皮肤修复的机遇、挑战和商业现状,并展示了它们的未来前景。此外,还讨论了智能伤口管理方面的进展,特别强调了刺激响应材料和集成传感器在下一代敷料进展中的潜力,以实现对伤口的同步监测和按需治疗。
{"title":"How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects","authors":"Niloofar Eslahi ,&nbsp;Foad Soleimani ,&nbsp;Roya Lotfi ,&nbsp;Fatemeh Mohandes ,&nbsp;Abdolreza Simchi ,&nbsp;Mehdi Razavi","doi":"10.1016/j.pmatsci.2024.101293","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101293","url":null,"abstract":"<div><p>Skin acts as a protective barrier for the underlying organs against external events such as irradiation of ultraviolet rays, incursion of harmful pathogens, and water evaporation. As the skin is constantly liable to damage, the wound-healing process is vital to the survival of all organisms. Materials design and development for enhanced wound healing and skin tissue regeneration have been found highly valuable in recent years. A wide range of materials and structures, including dressings and tissue-engineered substitutes composed of synthetic and/or natural biopolymers and their composites have been developed and examined. Although some have clinically been proven and are available in the market, mimicking the architecture of native extracellular matrix is still an open challenge with fundamental limitations in reproducing skin appendages, sufficient vascularization, adherence to the wound bed, and scarless wound management. Biomimetic nanofibers with tunable morphological, biological, and physicochemical features are promising candidates to overcome these drawbacks. Combined with advanced biomanufacturing and cell culturing techniques, enabling the incorporation of growth factors and stem cells within morphologically-controlled nanostructures, the fibrous structures allow the regeneration of functional skin. This paper overviews the advances in state-of-the-art strategies for designing biomimetic nanofibrous materials with a high potential for wound healing and skin regeneration. An emphasis is given to multifunctional nanocomposites with mechanobiological properties matching those of natural skin. Opportunities, challenges, and commercial status of these materials for skin repair are outlined, and their future perspective is demonstrated. The advances in smart wound management are also discussed, particularly by highlighting the potential of stimuli-responsive materials and integrated sensors in the progress of next-generation dressings for simultaneous monitoring and on-demand treatment of wounds.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140555586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the potential Ru-based catalysts for commercial-scale polymer electrolyte membrane water electrolysis: A systematic review 探索用于商业规模聚合物电解质膜电解水的潜在 Ru 基催化剂:系统综述
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-05 DOI: 10.1016/j.pmatsci.2024.101294
Shaoxiong Li , Sheng Zhao , Feng Hu , Linlin Li , Jianwei Ren , Lifang Jiao , Seeram Ramakrishna , Shengjie Peng

Proton-conducting polymer electrolyte membrane water electrolysis (PEMWE) is a vital clean hydrogen generation technology that can ease the energy crisis resulting from global warming and dependence on fossil fuels. However, the long-term catalytic activity and stability of the extensively studied benchmark RuO2 catalysts in an acidic environment is insufficient for large-scale renewable energy conversion devices. Thus, significant recent efforts have focused on identifying and exploring acid-stable Ru-based electrocatalysts with low overpotential and high stability for the oxygen evolution reaction (OER). This review offers a comprehensive analysis of recent advances in Ru-based acidic OER catalysts, starting with a detailed understanding of design principles for Ru-based catalysts, encompassing the reaction mechanisms, degradation mechanism, and activity-stability relationships. Subsequently, advanced Ru-based catalysts regulating strategy are into four categories, within each category, a critical assessment of catalyst design and synthesis, electrocatalytic performance, along with typical examples and existing challenges. Representative examples in practical PEMWE are also provided to illustrate these advancements. Finally, the challenges and prospects for future studies on the development of Ru-based acidic OER catalysts towards the ultimate application of PEMWE are also examined.

质子传导聚合物电解质膜电解水(PEMWE)是一种重要的清洁制氢技术,可以缓解全球变暖和对化石燃料依赖所导致的能源危机。然而,已被广泛研究的基准 RuO2 催化剂在酸性环境中的长期催化活性和稳定性不足以用于大规模可再生能源转换装置。因此,近期的重要工作集中在识别和探索具有低过电位和高稳定性的酸性稳定 Ru 基电催化剂,用于氧进化反应(OER)。本综述全面分析了 Ru 基酸性 OER 催化剂的最新进展,首先详细介绍了 Ru 基催化剂的设计原则,包括反应机理、降解机理和活性-稳定性关系。随后,将先进的 Ru 基催化剂调节策略分为四类,在每一类中,对催化剂的设计和合成、电催化性能以及典型实例和现有挑战进行了严格评估。此外,还提供了具有代表性的 PEMWE 实际案例,以说明这些进展。最后,还探讨了为实现 PEMWE 的最终应用而开发 Ru 基酸性 OER 催化剂所面临的挑战和未来研究的前景。
{"title":"Exploring the potential Ru-based catalysts for commercial-scale polymer electrolyte membrane water electrolysis: A systematic review","authors":"Shaoxiong Li ,&nbsp;Sheng Zhao ,&nbsp;Feng Hu ,&nbsp;Linlin Li ,&nbsp;Jianwei Ren ,&nbsp;Lifang Jiao ,&nbsp;Seeram Ramakrishna ,&nbsp;Shengjie Peng","doi":"10.1016/j.pmatsci.2024.101294","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101294","url":null,"abstract":"<div><p>Proton-conducting polymer electrolyte membrane water electrolysis (PEMWE) is a vital clean hydrogen generation technology that can ease the energy crisis resulting from global warming and dependence on fossil fuels. However, the long-term catalytic activity and stability of the extensively studied benchmark RuO<sub>2</sub> catalysts in an acidic environment is insufficient for large-scale renewable energy conversion devices. Thus, significant recent efforts have focused on identifying and exploring acid-stable Ru-based electrocatalysts with low overpotential and high stability for the oxygen evolution reaction (OER). This review offers a comprehensive analysis of recent advances in Ru-based acidic OER catalysts, starting with a detailed understanding of design principles for Ru-based catalysts, encompassing the reaction mechanisms, degradation mechanism, and activity-stability relationships. Subsequently, advanced Ru-based catalysts regulating strategy are into four categories, within each category, a critical assessment of catalyst design and synthesis, electrocatalytic performance, along with typical examples and existing challenges. Representative examples in practical PEMWE are also provided to illustrate these advancements. Finally, the challenges and prospects for future studies on the development of Ru-based acidic OER catalysts towards the ultimate application of PEMWE are also examined.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological optics, photonics and bioinspired radiative cooling 生物光学、光子学和生物启发辐射冷却
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-04-04 DOI: 10.1016/j.pmatsci.2024.101291
Zhen Yan, Huatian Zhai, Desong Fan, Qiang Li

Radiative cooling with eco-friendly and zero-energy advantages is considered one of the most viable solutions to address the conflict between traditional energy-intensive cooling systems and global decarbonization. Despite significant advances, the development of radiative cooling still faces many challenges, such as fine-engineering of materials and structures to enhance solar reflection and mid-infrared emission, solar absorption caused by coloring for colorful radiative cooling, and spectral modulation for environmental-adaptative dynamic radiative cooling. Over millions of years of natural selection, utilizing a limited set of biomaterial palettes, optimized strategies, and micro-nano structural design, natural organisms have demonstrated fine control over light-matter interactions at different wavelength scales. Including broadband reflection of the sunlight to prevent solar heating, narrowband reflection of visible light to display brilliant colors, strong emission of mid-infrared wave to complete its cooling, and environmental-adaptative spectral modulation to achieve camouflage or thermal regulation. These biological structures and strategies provide extremely valuable inspiration for the development of advanced radiative cooling techniques. In this review, we systematically summarized the research progress of bioinspired radiative cooling technologies. Emphatically introducing the mechanism of key biological structures to achieve several optical functions, and discussing the various bioinspired radiative coolers and their application potential in different fields. Finally, we present the remaining challenges and outlook on the possible research directions in the future. It is hoped that this review will contribute to further research on bioinspired radiative cooling technology and make exciting progress.

具有生态友好和零能耗优势的辐射冷却被认为是解决传统高能耗冷却系统与全球去碳化之间矛盾的最可行方案之一。尽管取得了重大进展,但辐射冷却的发展仍面临许多挑战,例如,如何精细设计材料和结构以增强太阳反射和中红外发射,如何利用色彩吸收太阳光以实现多彩辐射冷却,以及如何利用光谱调制实现适应环境的动态辐射冷却。经过数百万年的自然选择,利用一套有限的生物材料调色板、优化策略和微纳结构设计,自然生物已经展示了对不同波长尺度的光-物质相互作用的精细控制。包括宽带反射太阳光以防止日光加热,窄带反射可见光以显示绚丽的色彩,强发射中红外波以完成冷却,以及适应环境的光谱调制以实现伪装或热调节。这些生物结构和策略为开发先进的辐射冷却技术提供了极其宝贵的灵感。在这篇综述中,我们系统地总结了生物启发辐射冷却技术的研究进展。重点介绍了关键生物结构实现多种光学功能的机理,讨论了各种生物启发辐射冷却器及其在不同领域的应用潜力。最后,我们提出了尚存的挑战,并展望了未来可能的研究方向。希望这篇综述能为进一步研究生物启发辐射冷却技术做出贡献,并取得令人振奋的进展。
{"title":"Biological optics, photonics and bioinspired radiative cooling","authors":"Zhen Yan,&nbsp;Huatian Zhai,&nbsp;Desong Fan,&nbsp;Qiang Li","doi":"10.1016/j.pmatsci.2024.101291","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101291","url":null,"abstract":"<div><p>Radiative cooling with eco-friendly and zero-energy advantages is considered one of the most viable solutions to address the conflict between traditional energy-intensive cooling systems and global decarbonization. Despite significant advances, the development of radiative cooling still faces many challenges, such as fine-engineering of materials and structures to enhance solar reflection and mid-infrared emission, solar absorption caused by coloring for colorful radiative cooling, and spectral modulation for environmental-adaptative dynamic radiative cooling. Over millions of years of natural selection, utilizing a limited set of biomaterial palettes, optimized strategies, and micro-nano structural design, natural organisms have demonstrated fine control over light-matter interactions at different wavelength scales. Including broadband reflection of the sunlight to prevent solar heating, narrowband reflection of visible light to display brilliant colors, strong emission of mid-infrared wave to complete its cooling, and environmental-adaptative spectral modulation to achieve camouflage or thermal regulation. These biological structures and strategies provide extremely valuable inspiration for the development of advanced radiative cooling techniques. In this review, we systematically summarized the research progress of bioinspired radiative cooling technologies. Emphatically introducing the mechanism of key biological structures to achieve several optical functions, and discussing the various bioinspired radiative coolers and their application potential in different fields. Finally, we present the remaining challenges and outlook on the possible research directions in the future. It is hoped that this review will contribute to further research on bioinspired radiative cooling technology and make exciting progress.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect sensitivity and fatigue design: Deterministic and probabilistic aspects in additively manufactured metallic materials 缺陷敏感性和疲劳设计:AM 金属材料中的确定性和概率问题
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-03-31 DOI: 10.1016/j.pmatsci.2024.101290
Xiaopeng Niu , Chao He , Shun-Peng Zhu , Pietro Foti , Filippo Berto , Lanyi Wang , Ding Liao , Qingyuan Wang

Fatigue performance in both traditional and additively manufactured materials is severely affected by the presence of defects, which deserve special attention to ensure the in-service reliability and the structural integrity of complex engineering components. The traditional empirical or semi-probabilistic approaches, provided in standards and codes, only account for defects statistically; such design methodologies cannot fully exploit the material mechanical properties. Design strategies aim to explicitly account for defects features constitute a promising solution to achieve both required safety performance and material mechanical property exploitation. With the development of non-destructive techniques, such design methodologies have become applicable. However, there is still a tardiness in adopting new design strategies especially when it comes to industrial applications, e.g. emerging additive manufacturing (AM). In this review, a systematic overview is provided on the recent developments regarding fatigue behavior and failure mechanisms affected by defects, together with the methodologies for defects features characterization and probabilistic assessment. Moreover, the defects criticality and design approaches of AM parts are introduced and compared with traditional counterparts. Finally, the status of AM standardization is presented.

传统材料和快速成型材料的疲劳性能都会受到缺陷的严重影响,为了确保复杂工程部件的使用可靠性和结构完整性,这些缺陷值得特别关注。标准和规范中提供的传统经验或半概率方法只能从统计学角度考虑缺陷,这种设计方法无法充分利用材料的机械性能。旨在明确考虑缺陷特征的设计策略是一种很有前途的解决方案,既能达到所需的安全性能,又能充分利用材料的机械特性。随着非破坏性技术的发展,这种设计方法已开始适用。然而,在采用新设计策略方面,尤其是在工业应用(如新兴的增材制造 (AM))方面,仍然存在滞后现象。在这篇综述中,系统地概述了受缺陷影响的疲劳行为和失效机制的最新发展,以及缺陷特征描述和概率评估的方法。此外,还介绍了 AM 零件的缺陷临界性和设计方法,并将其与传统零件进行了比较。最后,介绍了 AM 标准化的现状。
{"title":"Defect sensitivity and fatigue design: Deterministic and probabilistic aspects in additively manufactured metallic materials","authors":"Xiaopeng Niu ,&nbsp;Chao He ,&nbsp;Shun-Peng Zhu ,&nbsp;Pietro Foti ,&nbsp;Filippo Berto ,&nbsp;Lanyi Wang ,&nbsp;Ding Liao ,&nbsp;Qingyuan Wang","doi":"10.1016/j.pmatsci.2024.101290","DOIUrl":"10.1016/j.pmatsci.2024.101290","url":null,"abstract":"<div><p>Fatigue performance in both traditional and additively manufactured materials is severely affected by the presence of defects, which deserve special attention to ensure the in-service reliability and the structural integrity of complex engineering components. The traditional empirical or semi-probabilistic approaches, provided in standards and codes, only account for defects statistically; such design methodologies cannot fully exploit the material mechanical properties. Design strategies aim to explicitly account for defects features constitute a promising solution to achieve both required safety performance and material mechanical property exploitation. With the development of non-destructive techniques, such design methodologies have become applicable. However, there is still a tardiness in adopting new design strategies especially when it comes to industrial applications, e.g. emerging additive manufacturing (AM). In this review, a systematic overview is provided on the recent developments regarding fatigue behavior and failure mechanisms affected by defects, together with the methodologies for defects features characterization and probabilistic assessment. Moreover, the defects criticality and design approaches of AM parts are introduced and compared with traditional counterparts. Finally, the status of AM standardization is presented.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140398504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored carbon materials (TCM) for enhancing photocatalytic degradation of polyaromatic hydrocarbons 用于增强多芳烃光催化降解的定制碳材料 (TCM)
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-03-28 DOI: 10.1016/j.pmatsci.2024.101289
Avtar Singh , Jaspreet Dhau , Rajeev Kumar , Rahul Badru , Paramjit Singh , Yogendra Kumar Mishra , Ajeet Kaushik

This comprehensive review explores the potential of tailored carbon materials (TCM) for efficient photocatalytic degradation of polyaromatic hydrocarbons (PAHs), which are persistent and toxic organic pollutants posing significant environmental challenges. The unique structure and properties of TCM including graphene and carbon nanotubes to activated carbon and carbon dots, have projected them as next-generation technological materials for innovation. A careful and critical discussion of state-of-the-art research sheds light on their effectiveness in catalyzing the breakdown of PAHs, which projects TCM suitable for managing other environmental pollutants-of-concerns like polyfluoroalkyl substances (PFAS), volatile organic compounds (VOCs), pharmaceuticals, micro/nano-plastics, textile waste, industrial effluents, etc. Beyond this viewpoint, this article expands the scope of TCM for 1) biomedical and healthcare, 2) energy storage and conversion, and 3) advanced electronics. The challenges, opportunities, and future perspectives related to the role of TCM for environmental applications, inspiring further research, and innovation in photo-induced degradation techniques are also carefully discussed in this article. This focused article serves as a valuable resource for researchers and industrialists interested in harnessing the capabilities of carbon-based materials for efficient and sustainable photocatalytic degradation of PAHs and other environmental pollutants. It addresses the pressing need for effective environmental remediation and pollution control strategies.

多芳烃是一种持久性有毒有机污染物,给环境带来了巨大挑战。本综述探讨了定制碳材料(TCM)在高效光催化降解多芳烃方面的潜力。包括石墨烯、碳纳米管、活性炭和碳点在内的定制碳具有独特的结构和性能,因此被视为下一代创新技术材料。通过对最新研究的仔细和批判性讨论,我们了解到中药在催化多环芳烃分解方面的有效性,从而使中药适用于治理其他令人担忧的环境污染物,如多氟烷基物质(PFAS)、挥发性有机化合物(VOC)、药品、微/纳米塑料、纺织废料、工业废水等。除此以外,本文还扩展了中药在以下领域的应用:1)生物医学和医疗保健;2)能源储存和转换;3)先进电子学。本文还仔细讨论了与中药在环境应用中的作用有关的挑战、机遇和未来前景,激发了进一步的研究,以及光诱导降解技术的创新。这篇重点突出的文章为有志于利用碳基材料高效、可持续地光催化降解多环芳烃和其他环境污染物的研究人员和工业家提供了宝贵的资源。它满足了对有效的环境修复和污染控制策略的迫切需求。
{"title":"Tailored carbon materials (TCM) for enhancing photocatalytic degradation of polyaromatic hydrocarbons","authors":"Avtar Singh ,&nbsp;Jaspreet Dhau ,&nbsp;Rajeev Kumar ,&nbsp;Rahul Badru ,&nbsp;Paramjit Singh ,&nbsp;Yogendra Kumar Mishra ,&nbsp;Ajeet Kaushik","doi":"10.1016/j.pmatsci.2024.101289","DOIUrl":"10.1016/j.pmatsci.2024.101289","url":null,"abstract":"<div><p>This comprehensive review explores the potential of tailored carbon materials (TCM) for efficient photocatalytic degradation of polyaromatic hydrocarbons (PAHs), which are persistent and toxic organic pollutants posing significant environmental challenges. The unique structure and properties of TCM including graphene and carbon nanotubes to activated carbon and carbon dots, have projected them as next-generation technological materials for innovation. A careful and critical discussion of state-of-the-art research sheds light on their effectiveness in catalyzing the breakdown of PAHs, which projects TCM suitable for managing other environmental pollutants-of-concerns like polyfluoroalkyl substances (PFAS), volatile organic compounds (VOCs), pharmaceuticals, micro/nano-plastics, textile waste, industrial effluents, etc. Beyond this viewpoint, this article expands the scope of TCM for 1) biomedical and healthcare, 2) energy storage and conversion, and 3) advanced electronics. The challenges, opportunities, and future perspectives related to the role of TCM for environmental applications, inspiring further research, and innovation in photo-induced degradation techniques are also carefully discussed in this article. This focused article serves as a valuable resource for researchers and industrialists interested in harnessing the capabilities of carbon-based materials for efficient and sustainable photocatalytic degradation of PAHs and other environmental pollutants. It addresses the pressing need for effective environmental remediation and pollution control strategies.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000586/pdfft?md5=39bd5a0230ccfc8478fcd79e67ace1b5&pid=1-s2.0-S0079642524000586-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140400671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretchable conductive fibers: Design, properties and applications 可拉伸导电纤维:设计、特性和应用
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-03-21 DOI: 10.1016/j.pmatsci.2024.101288
Xiaoke Song , Jiujiang Ji , Ningjing Zhou , Mengjia Chen , Ruixiang Qu , Hengyi Li , Li'ang Zhang , Siyuan Ma , Zhijun Ma , Yen Wei

Stretchable conductive fibers (SCFs) are emerging materials that combine the advantages of both fibers and stretchable electronics, with broad applications in various electronic devices. Owing to their excellent stretchability, compliance, conductivity, and integratability, SCFs have drawn considerable attention from both academia and industry. Despite the emerging research enthusiasm in this field, the intrinsic correlation between the design and application of SCFs has not been explicitly stated, which severely hinders their further development. In this review, we establish an internal connection between the design and application for the first time by elaborately analyzing the key properties of the SCFs, aiming to provide comprehensive guidance for the application-oriented design. First, the design of structures, conductive materials, and preparation methods, which determine the mechanical and electrical properties of the SCFs, is summarized in detail. Then, the key properties of SCFs as well as their relationship with design and applications are analyzed. Next, several representative applications of SCFs that possess high dependency on the key properties are described. Finally, a brief discussion is presented on the current challenges and the vision for future development directions of SCFs. We believe this review will broadly benefit scientists, engineers, and postgraduates in the areas of functional fibrous materials research.

可拉伸导电纤维(SCFs)是一种新兴材料,它结合了纤维和可拉伸电子器件的优点,在各种电子器件中有着广泛的应用。由于具有出色的可拉伸性、顺应性、导电性和集成性,SCF 引起了学术界和工业界的广泛关注。尽管这一领域的研究热情不断高涨,但 SCFs 的设计与应用之间的内在联系尚未得到明确阐述,这严重阻碍了 SCFs 的进一步发展。在这篇综述中,我们通过详细分析 SCF 的关键特性,首次建立了设计与应用之间的内在联系,旨在为面向应用的设计提供全面指导。首先,详细总结了决定 SCFs 机械和电气性能的结构设计、导电材料和制备方法。然后,分析了 SCF 的关键特性及其与设计和应用的关系。接着,介绍了 SCF 的几种代表性应用,这些应用对关键特性具有很高的依赖性。最后,简要讨论了 SCF 目前面临的挑战和未来的发展方向。我们相信,这篇综述将广泛惠及功能纤维材料研究领域的科学家、工程师和研究生。
{"title":"Stretchable conductive fibers: Design, properties and applications","authors":"Xiaoke Song ,&nbsp;Jiujiang Ji ,&nbsp;Ningjing Zhou ,&nbsp;Mengjia Chen ,&nbsp;Ruixiang Qu ,&nbsp;Hengyi Li ,&nbsp;Li'ang Zhang ,&nbsp;Siyuan Ma ,&nbsp;Zhijun Ma ,&nbsp;Yen Wei","doi":"10.1016/j.pmatsci.2024.101288","DOIUrl":"10.1016/j.pmatsci.2024.101288","url":null,"abstract":"<div><p>Stretchable conductive fibers (SCFs) are emerging materials that combine the advantages of both fibers and stretchable electronics, with broad applications in various electronic devices. Owing to their excellent stretchability, compliance, conductivity, and integratability, SCFs have drawn considerable attention from both academia and industry. Despite the emerging research enthusiasm in this field, the intrinsic correlation between the design and application of SCFs has not been explicitly stated, which severely hinders their further development. In this review, we establish an internal connection between the design and application for the first time by elaborately analyzing the key properties of the SCFs, aiming to provide comprehensive guidance for the application-oriented design. First, the design of structures, conductive materials, and preparation methods, which determine the mechanical and electrical properties of the SCFs, is summarized in detail. Then, the key properties of SCFs as well as their relationship with design and applications are analyzed. Next, several representative applications of SCFs that possess high dependency on the key properties are described. Finally, a brief discussion is presented on the current challenges and the vision for future development directions of SCFs. We believe this review will broadly benefit scientists, engineers, and postgraduates in the areas of functional fibrous materials research.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140282209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1