首页 > 最新文献

Progress in Polymer Science最新文献

英文 中文
Sustainability of self-healing polymers: A holistic perspective towards circularity in polymer networks 自愈聚合物的可持续性:从整体角度看聚合物网络的循环性
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-03-26 DOI: 10.1016/j.progpolymsci.2024.101816
Kenneth Cerdan , Marlies Thys , Aleix Costa Cornellà , Fatma Demir , Sophie Norvez , Richard Vendamme , Niko Van den Brande , Peter Van Puyvelde , Joost Brancart

Permanent polymer networks present an important sustainability challenge. Irreversible covalent crosslinks impart these materials excellent mechanical properties, thermal and chemical resistance, yet also render them difficult to repair and to recycle. Self-healing mechanisms can extend the lifetime of thermosets and elastomers, improving their durability and making their lifecycle more sustainable. In addition to the lifetime extension, this paper reviews the sustainability of self-healing polymers from a holistic point of view. The entire lifecycle of self-healing polymers is critically assessed with reference to the green chemistry principles and sustainable development. The relation between the self-healing chemistries and the sustainability aspects of each of the phases of the lifecycle are discussed, starting from the feedstocks, monomer functionalisation and polymer synthesis, to processing and manufacturing as well as end-of-life considerations, i.e. recycling or (bio)degradation. The review provides a toolbox for the development of more sustainable thermosets, elastomers and their composites. It is of utmost importance to consider the entire lifecycle of self-healing materials, derived products and – by extension – any material or product. The self-healing ability and often related recyclability should primarily reduce the amount of new materials that are necessary to fulfill societal needs, by extending the lifetime of products and maximizing reprocessing into new products. Increasing healing efficiency and the number of healing cycles improves the overall environmental impact relative to the extended service lifetime. Renewable resources derived from biomass, recycling processes or waste streams should be the first choice to create new self-healing polymers. Finally, biodegradability can be considered as a complementary end-of-life scenario upon accidental loss of self-healing polymer to the environment, provided that the biodegradation does not start under the prospected use conditions of the self-healing polymers and products, but can be postponed until contact with stimuli present in the environment.

永久性聚合物网络对可持续发展提出了重大挑战。不可逆共价交联赋予了这些材料优异的机械性能、耐热性和耐化学性,但也使其难以修复和回收。自修复机制可延长热固性材料和弹性体的使用寿命,提高其耐用性,使其生命周期更具可持续性。除了延长使用寿命外,本文还从整体角度探讨了自修复聚合物的可持续性。参考绿色化学原则和可持续发展,对自愈合聚合物的整个生命周期进行了严格评估。从原料、单体官能化和聚合物合成开始,到加工和制造以及生命周期末期的考虑因素,即回收或(生物)降解,讨论了自愈合化学与生命周期各阶段可持续性方面的关系。本综述为开发更具可持续性的热固性塑料、弹性体及其复合材料提供了一个工具箱。最重要的是要考虑自愈合材料、衍生产品以及任何材料或产品的整个生命周期。自愈合能力和通常相关的可回收性应主要通过延长产品寿命和最大限度地再加工成新产品来减少满足社会需求所需的新材料数量。相对于延长的使用寿命,提高愈合效率和愈合循环次数可改善对环境的整体影响。从生物质、回收工艺或废物流中提取的可再生资源应成为制造新型自愈合聚合物的首选。最后,可生物降解性可被视为自愈合聚合物意外流失到环境中后的一种补充性报废方案,前提是生物降解不会在自愈合聚合物和产品的预期使用条件下开始,而是可以推迟到与环境中存在的刺激物接触之后。
{"title":"Sustainability of self-healing polymers: A holistic perspective towards circularity in polymer networks","authors":"Kenneth Cerdan ,&nbsp;Marlies Thys ,&nbsp;Aleix Costa Cornellà ,&nbsp;Fatma Demir ,&nbsp;Sophie Norvez ,&nbsp;Richard Vendamme ,&nbsp;Niko Van den Brande ,&nbsp;Peter Van Puyvelde ,&nbsp;Joost Brancart","doi":"10.1016/j.progpolymsci.2024.101816","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2024.101816","url":null,"abstract":"<div><p>Permanent polymer networks present an important sustainability challenge. Irreversible covalent crosslinks impart these materials excellent mechanical properties, thermal and chemical resistance, yet also render them difficult to repair and to recycle. Self-healing mechanisms can extend the lifetime of thermosets and elastomers, improving their durability and making their lifecycle more sustainable. In addition to the lifetime extension, this paper reviews the sustainability of self-healing polymers from a holistic point of view. The entire lifecycle of self-healing polymers is critically assessed with reference to the green chemistry principles and sustainable development. The relation between the self-healing chemistries and the sustainability aspects of each of the phases of the lifecycle are discussed, starting from the feedstocks, monomer functionalisation and polymer synthesis, to processing and manufacturing as well as end-of-life considerations, <em>i.e.</em> recycling or (bio)degradation. The review provides a toolbox for the development of more sustainable thermosets, elastomers and their composites. It is of utmost importance to consider the entire lifecycle of self-healing materials, derived products and – by extension – any material or product. The self-healing ability and often related recyclability should primarily reduce the amount of new materials that are necessary to fulfill societal needs, by extending the lifetime of products and maximizing reprocessing into new products. Increasing healing efficiency and the number of healing cycles improves the overall environmental impact relative to the extended service lifetime. Renewable resources derived from biomass, recycling processes or waste streams should be the first choice to create new self-healing polymers. Finally, biodegradability can be considered as a complementary end-of-life scenario upon accidental loss of self-healing polymer to the environment, provided that the biodegradation does not start under the prospected use conditions of the self-healing polymers and products, but can be postponed until contact with stimuli present in the environment.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"152 ","pages":"Article 101816"},"PeriodicalIF":27.1,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000339/pdfft?md5=12e01ae1603b967556f936ccb6dc9ec8&pid=1-s2.0-S0079670024000339-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in indacenodithiophene and indacenodithienothiophene-based donor-acceptor conjugated polymers: From design to device performance in organic electronics 基于茚并二噻吩和茚并二噻吩的供体-受体共轭聚合物的最新发展:从设计到有机电子器件性能
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-02-23 DOI: 10.1016/j.progpolymsci.2024.101804
Wissem Khelifi, Christine K. Luscombe

Polymeric semiconductors based on donor-acceptor (D-A) conjugated polymers have emerged as a promising class of materials for various applications due to their excellent solution processability, low cost, and intrinsic flexibility. The use of the indacenodithiophene (IDT) unit as a building block has received significant attention due to its unique pentacyclic ring structure and exceptional photophysical and electronic properties. This review focuses on the latest progress in the field of IDT-based polymers. We discuss the versatility of IDT as a structural molecular engineering tool, along with the use of various electron-deficient acceptors as comonomers and modifications to the IDT structure unit. These advancements have led to improved device performance, particularly in organic electronics applications such as photodetectors, solar cells, field-effect transistors, and thermoelectric devices. In summary, this review serves as a valuable reference for researchers who are interested in creating high-performance polymeric semiconductors using the IDT building block for a range of optoelectronic devices.

基于供体-受体(D-A)共轭聚合物的聚合物半导体因其出色的溶液加工性、低成本和内在灵活性,已成为一类很有前途的材料,可用于多种应用领域。由于茚并二噻吩(IDT)单元具有独特的五环结构和优异的光物理和电子特性,因此将其用作构筑基块受到了广泛关注。本综述重点介绍基于 IDT 的聚合物领域的最新进展。我们讨论了 IDT 作为结构分子工程工具的多功能性,以及各种缺电子受体作为共聚物的使用和 IDT 结构单元的修改。这些进步提高了设备性能,尤其是在光电探测器、太阳能电池、场效应晶体管和热电设备等有机电子应用领域。总之,这篇综述对于有志于利用 IDT 结构单元为一系列光电器件制造高性能聚合物半导体的研究人员来说,具有重要的参考价值。
{"title":"Recent developments in indacenodithiophene and indacenodithienothiophene-based donor-acceptor conjugated polymers: From design to device performance in organic electronics","authors":"Wissem Khelifi,&nbsp;Christine K. Luscombe","doi":"10.1016/j.progpolymsci.2024.101804","DOIUrl":"10.1016/j.progpolymsci.2024.101804","url":null,"abstract":"<div><p>Polymeric semiconductors based on donor-acceptor (D-A) conjugated polymers have emerged as a promising class of materials for various applications due to their excellent solution processability, low cost, and intrinsic flexibility. The use of the indacenodithiophene (IDT) unit as a building block has received significant attention due to its unique pentacyclic ring structure and exceptional photophysical and electronic properties. This review focuses on the latest progress in the field of IDT-based polymers. We discuss the versatility of IDT as a structural molecular engineering tool, along with the use of various electron-deficient acceptors as comonomers and modifications to the IDT structure unit. These advancements have led to improved device performance, particularly in organic electronics applications such as photodetectors, solar cells, field-effect transistors, and thermoelectric devices. In summary, this review serves as a valuable reference for researchers who are interested in creating high-performance polymeric semiconductors using the IDT building block for a range of optoelectronic devices.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"151 ","pages":"Article 101804"},"PeriodicalIF":27.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000212/pdfft?md5=076ed1946fdd1b155301e4543590baca&pid=1-s2.0-S0079670024000212-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable polyurethanes: toward new cutting-edge opportunities 可持续聚氨酯:走向新的尖端机遇
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-02-22 DOI: 10.1016/j.progpolymsci.2024.101805
Aliénor Delavarde , Gaelle Savin , Paul Derkenne , Marine Boursier , Roberto Morales-Cerrada , Benjamin Nottelet , Julien Pinaud , Sylvain Caillol

Polyurethanes (PU) are ranked amongst the 6th most manufactured worldwide polymers and are widely used in a variety of applications due to the diversity of properties they offer. Nevertheless, PUs are raising questions around environmental, legislative, health, and recycling concerns. In this context, due to the high isocyanate toxicity, blocked isocyanates, waterborne PU systems, and non-isocyanate polyurethane (NIPU) were introduced to prevent isocyanate handling risks. Moreover, sustainable feedstocks stood out to synthetize greener PU. In particular, bio-based polyfunctional short alcohol and isocyanate compounds have emerged to design fully bio-based PU materials with targeted chemical and mechanical properties. Finally, the large amounts of PU that have been placed on the market are now leading to environmental issues regarding its accumulation in the environment. Several methods have thus been recently developed to facilitate their end-of-life management and recyclability.

This review provides a complete overview on the most recent advances on PUs synthesis with focus on the replacement of toxic isocyanates and petroleum-based resources, the use of greener processes, and their recycling methods. After a quick summary on PUs history and worldwide situation, different bio-based alcohols and isocyanates introduced on academic and industrial sides, and the corresponding PU are outlined. Furthermore, different synthesis pathways to produce NIPUs are discussed. Finally, the enzymatic and chemical recycling of PUs are outlined.

聚氨酯(PU)是世界上产量排名第六的聚合物,因其具有多种特性而被广泛应用于各种领域。然而,聚氨酯也引发了环境、立法、健康和回收等方面的问题。在这种情况下,由于异氰酸酯的毒性较高,人们开始采用异氰酸酯封端、水性聚氨酯系统和非异氰酸酯聚氨酯(NIPU)来防止异氰酸酯处理风险。此外,可持续原料在合成更环保的聚氨酯中脱颖而出。特别是生物基多官能团短醇和异氰酸酯化合物的出现,可设计出具有特定化学和机械性能的全生物基聚氨酯材料。最后,市场上大量使用的聚氨酯目前正在引发有关其在环境中累积的环境问题。本综述全面概述了聚氨酯合成的最新进展,重点关注有毒异氰酸酯和石油资源的替代、更环保工艺的使用及其回收方法。在简要总结了 PUs 的历史和全球情况后,概述了学术界和工业界引入的不同生物基醇和异氰酸酯,以及相应的 PU。此外,还讨论了生产 NIPU 的不同合成途径。最后,概述了 PU 的酶法和化学回收。
{"title":"Sustainable polyurethanes: toward new cutting-edge opportunities","authors":"Aliénor Delavarde ,&nbsp;Gaelle Savin ,&nbsp;Paul Derkenne ,&nbsp;Marine Boursier ,&nbsp;Roberto Morales-Cerrada ,&nbsp;Benjamin Nottelet ,&nbsp;Julien Pinaud ,&nbsp;Sylvain Caillol","doi":"10.1016/j.progpolymsci.2024.101805","DOIUrl":"10.1016/j.progpolymsci.2024.101805","url":null,"abstract":"<div><p>Polyurethanes (PU) are ranked amongst the 6<sup>th</sup> most manufactured worldwide polymers and are widely used in a variety of applications due to the diversity of properties they offer. Nevertheless, PUs are raising questions around environmental, legislative, health, and recycling concerns. In this context, due to the high isocyanate toxicity, blocked isocyanates, waterborne PU systems, and non-isocyanate polyurethane (NIPU) were introduced to prevent isocyanate handling risks. Moreover, sustainable feedstocks stood out to synthetize greener PU. In particular, bio-based polyfunctional short alcohol and isocyanate compounds have emerged to design fully bio-based PU materials with targeted chemical and mechanical properties. Finally, the large amounts of PU that have been placed on the market are now leading to environmental issues regarding its accumulation in the environment. Several methods have thus been recently developed to facilitate their end-of-life management and recyclability.</p><p>This review provides a complete overview on the most recent advances on PUs synthesis with focus on the replacement of toxic isocyanates and petroleum-based resources, the use of greener processes, and their recycling methods. After a quick summary on PUs history and worldwide situation, different bio-based alcohols and isocyanates introduced on academic and industrial sides, and the corresponding PU are outlined. Furthermore, different synthesis pathways to produce NIPUs are discussed. Finally, the enzymatic and chemical recycling of PUs are outlined.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"151 ","pages":"Article 101805"},"PeriodicalIF":27.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000224/pdfft?md5=9811ca39bbf90c57c1e7427b45cd25d4&pid=1-s2.0-S0079670024000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139937508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural engineering of polyurethanes for biomedical applications 用于生物医学应用的聚氨酯结构工程学
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-02-13 DOI: 10.1016/j.progpolymsci.2024.101803
Haoran Wang, Tong Li, Jia Li, Ruohong Zhao, Ao Ding, Fu-Jian Xu

Polyurethane, a synthetic polymer distinguished by its urethane (carbamate, -NHCOO-) and/or urea (-NHCONH-) linkages, has been applied in various industries since its discovery in 1937 by Bayer and colleagues. The successful in vivo use of segmented multiblock thermoplastic polyurethane in 1967 marked the beginning of its development for biomedical applications. Over the past few decades, research on polyurethane biomaterials has evolved from focusing on biostable to biodegradable forms, exploring multifunctionality and application in areas like functional medical devices, tissue engineering scaffolds, drug delivery systems, etc.

This review aims to summarize the recent advancements in engineering polyurethane structures for biomedical applications, presenting the main methods utilized in their preparation, biological functions, and their main biomedical applications. In addition, we proposed four general strategies for engineering polyurethane structures in the biomedical field, offering a structured methodology for researchers and engineers engaged in polyurethane biomaterials work. Concluding the review, we spotlight future development directions, emphasizing multifunctional programmable polyurethane, peptide-mimicking polyurethane, and poly (hydroxyl urethane).

聚氨酯是一种合成聚合物,以其氨基甲酸酯(-NHCOO-)和/或尿素(-NHCONH-)连接而闻名,自 1937 年由拜尔公司及其同事发现以来,已被广泛应用于各行各业。1967 年,分段式多嵌段热塑性聚氨酯在体内的成功应用标志着其生物医学应用开发的开端。在过去的几十年中,聚氨酯生物材料的研究已从生物稳定型发展到生物可降解型,并在功能性医疗器械、组织工程支架、药物输送系统等领域探索其多功能性和应用。本综述旨在总结生物医学应用聚氨酯结构工程方面的最新进展,介绍其主要制备方法、生物功能及其主要生物医学应用。此外,我们还提出了生物医学领域聚氨酯结构工程的四种一般策略,为从事聚氨酯生物材料工作的研究人员和工程师提供了结构化方法。在综述的最后,我们强调了多功能可编程聚氨酯、肽模拟聚氨酯和聚(羟基聚氨酯)的未来发展方向。
{"title":"Structural engineering of polyurethanes for biomedical applications","authors":"Haoran Wang,&nbsp;Tong Li,&nbsp;Jia Li,&nbsp;Ruohong Zhao,&nbsp;Ao Ding,&nbsp;Fu-Jian Xu","doi":"10.1016/j.progpolymsci.2024.101803","DOIUrl":"10.1016/j.progpolymsci.2024.101803","url":null,"abstract":"<div><p>Polyurethane, a synthetic polymer distinguished by its urethane (carbamate, -NHCOO-) and/or urea (-NHCONH-) linkages, has been applied in various industries since its discovery in 1937 by Bayer and colleagues. The successful <em>in vivo</em> use of segmented multiblock thermoplastic polyurethane in 1967 marked the beginning of its development for biomedical applications. Over the past few decades, research on polyurethane biomaterials has evolved from focusing on biostable to biodegradable forms, exploring multifunctionality and application in areas like functional medical devices, tissue engineering scaffolds, drug delivery systems, etc.</p><p>This review aims to summarize the recent advancements in engineering polyurethane structures for biomedical applications, presenting the main methods utilized in their preparation, biological functions, and their main biomedical applications. In addition, we proposed four general strategies for engineering polyurethane structures in the biomedical field, offering a structured methodology for researchers and engineers engaged in polyurethane biomaterials work. Concluding the review, we spotlight future development directions, emphasizing multifunctional programmable polyurethane, peptide-mimicking polyurethane, and poly (hydroxyl urethane).</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"151 ","pages":"Article 101803"},"PeriodicalIF":27.1,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139875942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral macromolecules and supramolecular assemblies: Synthesis, properties and applications 手性大分子和超分子组装体:合成、性质和应用
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-02-08 DOI: 10.1016/j.progpolymsci.2024.101800
Mingyue Zhang , Minju Kim , Woosung Choi , Jinyoung Choi , Dong Ha Kim , Yijiang Liu , Zhiqun Lin

Chirality, an inherent characteristic observed throughout nature, plays a pivotal role across a wide range of scales, from subatomic to galactic, and holds significance in myriad scientific fields, including chemistry, biology, and nanotechnology. Since the discovery of molecular chirality in 1848, there have been monumental advances, especially in the realm of chiral macromolecules and chiral supramolecular assemblies. This progress, primarily propelled by innovations in polymer science and supramolecular chemistry, has opened up numerous applications, spanning enantioselective sensing, catalysis, optics, and biomedicine. Both chiral macromolecules, synthesized either from chiral or achiral components, and chiral supramolecular assemblies, often manifest enhanced chiroptical responses and other intriguing chiral-related characteristics. However, challenges remain, particularly in precisely characterizing and understanding the governing factors and dynamics of these complex systems, as well as in synthesizing novel chiral macromolecules and chiral supramolecular assemblies that can efficiently interact with circularly polarized light. This review offers a comprehensive overview of the most recent advances in the synthesis, properties, characterization, and applications of chiral macromolecules and chiral supramolecular assemblies. In addition, it provides an insightful perspective on the current challenges and the future direction of research in this rapidly evolving field.

手性是整个自然界的固有特性,在从亚原子到银河系的广泛范围内发挥着举足轻重的作用,在化学、生物学和纳米技术等众多科学领域具有重要意义。自 1848 年发现分子手性以来,尤其是在手性大分子和手性超分子组装领域取得了巨大进步。这一进步主要由聚合物科学和超分子化学领域的创新推动,开辟了对映选择性传感、催化、光学和生物医学等众多应用领域。手性大分子(由手性或非手性成分合成)和手性超分子组装体通常都具有更强的自旋响应和其他与手性相关的有趣特性。然而,挑战依然存在,特别是在精确表征和理解这些复杂系统的支配因素和动力学方面,以及在合成能与圆偏振光有效相互作用的新型手性大分子和手性超分子组装体方面。本综述全面概述了手性大分子和手性超分子组装体的合成、特性、表征和应用方面的最新进展。此外,它还对这一快速发展领域当前面临的挑战和未来的研究方向提供了独到的见解。
{"title":"Chiral macromolecules and supramolecular assemblies: Synthesis, properties and applications","authors":"Mingyue Zhang ,&nbsp;Minju Kim ,&nbsp;Woosung Choi ,&nbsp;Jinyoung Choi ,&nbsp;Dong Ha Kim ,&nbsp;Yijiang Liu ,&nbsp;Zhiqun Lin","doi":"10.1016/j.progpolymsci.2024.101800","DOIUrl":"10.1016/j.progpolymsci.2024.101800","url":null,"abstract":"<div><p>Chirality, an inherent characteristic observed throughout nature, plays a pivotal role across a wide range of scales, from subatomic to galactic, and holds significance in myriad scientific fields, including chemistry, biology, and nanotechnology. Since the discovery of molecular chirality in 1848, there have been monumental advances, especially in the realm of chiral macromolecules and chiral supramolecular assemblies. This progress, primarily propelled by innovations in polymer science and supramolecular chemistry, has opened up numerous applications, spanning enantioselective sensing, catalysis, optics, and biomedicine. Both chiral macromolecules, synthesized either from chiral or achiral components, and chiral supramolecular assemblies, often manifest enhanced chiroptical responses and other intriguing chiral-related characteristics. However, challenges remain, particularly in precisely characterizing and understanding the governing factors and dynamics of these complex systems, as well as in synthesizing novel chiral macromolecules and chiral supramolecular assemblies that can efficiently interact with circularly polarized light. This review offers a comprehensive overview of the most recent advances in the synthesis, properties, characterization, and applications of chiral macromolecules and chiral supramolecular assemblies. In addition, it provides an insightful perspective on the current challenges and the future direction of research in this rapidly evolving field.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"151 ","pages":"Article 101800"},"PeriodicalIF":27.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139891315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional naturally derived bioadhesives: From strategic molecular design toward advanced biomedical applications 多功能天然生物粘合剂:从战略性分子设计到先进的生物医学应用
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-01-26 DOI: 10.1016/j.progpolymsci.2024.101792
Mahshid Kharaziha , Thomas Scheibel , Sahar Salehi

In the last decades, adhesives derived from natural resources (i.e., bioadhesives) have emerged as promising alternative to the standard wound closure devices, including sutures, clips, and strips, owing to relatively easy and rapid application, minimal tissue damage, fast hemostasis, and ability to decrease the risk of infection. Various synthetic and natural materials have been utilized as bioadhesives. These materials find extensive applications in various biomedical fields, ranging from simple wound sealing to controlled drug delivery, tissue regeneration, and noninvasive therapy. Considering the weak underwater adhesion, degradability, and biological performances of synthetic adhesives, naturally derived-based adhesives are more attractive. The first generation of these bioadhesives provided primarily only one function. Moreover, they had issues including long curing time, slow adhesion, high degradation rate, low mechanical properties, and the risk of transferring contamination to the wound. Various chemically and genetically engineered strategies have been applied to advance their multifunctionality. The synergy of bonding chemistry, topography, and mechanics of dissipation in their structure supports the improved adhesion and controlled degradation rate. Various naturally derived bioadhesives are developed that cover subjects from innovative biomaterial synthesis or functionalization and cutting-edge manufacturing processes. However, to fulfill all the criteria of an ideal bioadhesive for clinical applications, more efforts should be devoted to investigating the surface characteristics of target tissues and the long-term relationship between the physiochemical properties of natural polymers and cohesion and adhesion mechanisms, as well as adhesive functionality. This review outlines the recent progress on naturally-derived bioadhesives, including proteins and polysaccharides, focusing on designing approaches based on chemically and genetically engineering strategies, development, and applications. Furthermore, the challenges of current studies are summarized to show future perspectives for developing bioengineered and high-performance naturally-derived bioadhesives for clinical use.

在过去几十年中,从自然资源中提取的粘合剂(即生物粘合剂)因其应用相对简便、快速、对组织损伤小、止血快以及能够降低感染风险等优点,已成为缝合线、夹子和带子等标准伤口闭合装置的有前途的替代品。各种合成材料和天然材料已被用作生物粘合剂。这些材料广泛应用于各种生物医学领域,从简单的伤口密封到可控药物输送、组织再生和无创治疗。考虑到合成粘合剂的水下粘附性、降解性和生物性能较弱,天然衍生的粘合剂更具吸引力。第一代生物粘合剂主要只提供一种功能。此外,它们还存在固化时间长、粘附速度慢、降解率高、机械性能低以及将污染转移到伤口的风险等问题。为了提高多功能性,人们采用了各种化学和基因工程策略。生物粘合剂结构中的粘合化学、形貌和消散力学的协同作用有助于提高粘合力和控制降解率。各种天然衍生生物粘合剂的开发涵盖了创新生物材料合成或功能化以及尖端制造工艺等主题。然而,要满足临床应用中理想生物粘合剂的所有标准,就必须投入更多精力研究目标组织的表面特征、天然聚合物的理化性质与内聚和粘合机制之间的长期关系以及粘合剂的功能性。本综述概述了包括蛋白质和多糖在内的天然生物粘合剂的最新进展,重点介绍了基于化学和基因工程策略的设计方法、开发和应用。此外,还总结了当前研究面临的挑战,以展示开发用于临床的生物工程和高性能天然生物粘合剂的未来前景。
{"title":"Multifunctional naturally derived bioadhesives: From strategic molecular design toward advanced biomedical applications","authors":"Mahshid Kharaziha ,&nbsp;Thomas Scheibel ,&nbsp;Sahar Salehi","doi":"10.1016/j.progpolymsci.2024.101792","DOIUrl":"10.1016/j.progpolymsci.2024.101792","url":null,"abstract":"<div><p>In the last decades, adhesives derived from natural resources (i.e., bioadhesives) have emerged as promising alternative to the standard wound closure devices, including sutures, clips, and strips, owing to relatively easy and rapid application, minimal tissue damage, fast hemostasis, and ability to decrease the risk of infection. Various synthetic and natural materials have been utilized as bioadhesives. These materials find extensive applications in various biomedical fields, ranging from simple wound sealing to controlled drug delivery, tissue regeneration, and noninvasive therapy. Considering the weak underwater adhesion, degradability, and biological performances of synthetic adhesives, naturally derived-based adhesives are more attractive. The first generation of these bioadhesives provided primarily only one function. Moreover, they had issues including long curing time, slow adhesion, high degradation rate, low mechanical properties, and the risk of transferring contamination to the wound. Various chemically and genetically engineered strategies have been applied to advance their multifunctionality. The synergy of bonding chemistry, topography, and mechanics of dissipation in their structure supports the improved adhesion and controlled degradation rate. Various naturally derived bioadhesives are developed that cover subjects from innovative biomaterial synthesis or functionalization and cutting-edge manufacturing processes. However, to fulfill all the criteria of an ideal bioadhesive for clinical applications, more efforts should be devoted to investigating the surface characteristics of target tissues and the long-term relationship between the physiochemical properties of natural polymers and cohesion and adhesion mechanisms, as well as adhesive functionality. This review outlines the recent progress on naturally-derived bioadhesives, including proteins and polysaccharides, focusing on designing approaches based on chemically and genetically engineering strategies, development, and applications. Furthermore, the challenges of current studies are summarized to show future perspectives for developing bioengineered and high-performance naturally-derived bioadhesives for clinical use.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101792"},"PeriodicalIF":27.1,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000091/pdfft?md5=a4d05abdf25efab9a2679f8e716a6bf3&pid=1-s2.0-S0079670024000091-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities 分子印迹聚合物的严格识别模式分析--合理设计、挑战与机遇
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-01-19 DOI: 10.1016/j.progpolymsci.2024.101790
Yanxia Liu , Lulu Wang , Haitao Li , Lin Zhao , Yanfu Ma , Yagang Zhang , Jian Liu , Yen Wei

Supramolecular chemistry now presents an elaborate „enabling tool“ that offers exciting opportunities for novel functional material design. One of the areas to benefit from recent advances in supramolecular chemistry is the field of molecularly imprinted polymers (MIPs), also known as “synthetic antibodies”. It uses the memory of template molecules to form tailor-made binding sites in the polymer matrix. This review provides insights from rigorous recognition mode analysis perspectives and highlights evolving approaches in MIPs. First, the principles and recognition mode of molecular imprinting technology are carefully reviewed. The similarities and major differences between MIPs and enzymes are discussed. The internal 3D structure model of MIP is depicted, the origin and consequences of binding site heterogeneity are highlighted, and methods for the optimization of the recognition degree and imprinting efficiency are summarized. The criteria for evaluating imprinting efficacy and the role of chiral recognition in molecular imprinting are discussed. Subsequently, important approaches for the design and synthesis of MIPs a reviewed. Relevant approaches include dye displacement strategy for MIP sensors, multi-functional group recognition, monomolecular imprinting using dendrimers, solvent programmable polymer (SPP) based on restricted rotation, template activated molecular imprinting strategy, molecular imprinting with click chemistry, and evolution of molecular imprinting with computational strategies. Finally, the exciting progress of MIPs for recognition of biomacromolecules such as proteins, bacteria and viruses are discussed. The goal of this review is thus to inspire new applications of MIP materials and to provide a guide for how these applications might become a reality.

超分子化学是一种精心设计的 "赋能工具",为新型功能材料的设计提供了令人兴奋的机遇。分子印迹聚合物(MIPs)也被称为 "合成抗体",它是超分子化学最新进展的受益领域之一。它利用模板分子的记忆在聚合物基质中形成量身定制的结合位点。这篇综述从严格的识别模式分析角度提供了见解,并重点介绍了 MIPs 不断发展的方法。首先,仔细回顾了分子印迹技术的原理和识别模式。讨论了 MIPs 与酶的相似之处和主要区别。描绘了 MIP 的内部三维结构模型,强调了结合位点异质性的起源和后果,总结了优化识别度和印记效率的方法。讨论了压印效果的评估标准以及手性识别在分子压印中的作用。随后,综述了设计和合成 MIP 的重要方法。相关方法包括 MIP 传感器的染料置换策略、多功能基团识别、使用树枝状聚合物的单分子压印、基于受限旋转的溶剂可编程聚合物 (SPP)、模板激活分子压印策略、点击化学的分子压印以及计算策略的分子压印演化。最后,还讨论了 MIPs 在识别蛋白质、细菌和病毒等生物大分子方面取得的令人振奋的进展。因此,本综述的目的是激发 MIP 材料的新应用,并为如何将这些应用变为现实提供指导。
{"title":"Rigorous recognition mode analysis of molecularly imprinted polymers—Rational design, challenges, and opportunities","authors":"Yanxia Liu ,&nbsp;Lulu Wang ,&nbsp;Haitao Li ,&nbsp;Lin Zhao ,&nbsp;Yanfu Ma ,&nbsp;Yagang Zhang ,&nbsp;Jian Liu ,&nbsp;Yen Wei","doi":"10.1016/j.progpolymsci.2024.101790","DOIUrl":"10.1016/j.progpolymsci.2024.101790","url":null,"abstract":"<div><p>Supramolecular chemistry<span><span> now presents an elaborate „enabling tool“ that offers exciting opportunities for novel functional material<span> design. One of the areas to benefit from recent advances in supramolecular chemistry is the field of molecularly imprinted polymers (MIPs), also known as “synthetic antibodies”. It uses the memory of template molecules to form tailor-made binding sites in the </span></span>polymer matrix<span><span>. This review provides insights from rigorous recognition mode analysis perspectives and highlights evolving approaches in MIPs. First, the principles and recognition mode of molecular imprinting technology are carefully reviewed. The similarities and major differences between MIPs and enzymes are discussed. The internal 3D structure model of MIP is depicted, the origin and consequences of binding site heterogeneity are highlighted, and methods for the optimization of the recognition degree and imprinting efficiency are summarized. The criteria for evaluating imprinting efficacy and the role of chiral recognition in molecular imprinting are discussed. Subsequently, important approaches for the design and synthesis of MIPs a reviewed. Relevant approaches include dye displacement strategy for MIP sensors, multi-functional group recognition, monomolecular imprinting using dendrimers, solvent programmable polymer (SPP) based on </span>restricted rotation, template activated molecular imprinting strategy, molecular imprinting with click chemistry, and evolution of molecular imprinting with computational strategies. Finally, the exciting progress of MIPs for recognition of biomacromolecules such as proteins, bacteria and viruses are discussed. The goal of this review is thus to inspire new applications of MIP materials and to provide a guide for how these applications might become a reality.</span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101790"},"PeriodicalIF":27.1,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139505125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogels for bioinspired soft robots 用于生物启发软机器人的水凝胶
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-01-18 DOI: 10.1016/j.progpolymsci.2024.101791
Chang Seo Park , Yong-Woo Kang , Hyeonuk Na , Jeong-Yun Sun

Amid the ever-advancing landscape of industrial robotics, soft robots in particular have attracted substantial attention due to their remarkable structural adaptability and high efficiency and stability in dynamic environments. Living organisms are, in essence, natural soft robots, composed of diverse and efficient soft organs, each precisely performing assigned functions as a result of a long-term evolution. Fundamental components of organisms, such as material, designs, and working mechanisms, have been a paradigmatic model for the development of soft robots. Recently, these researches have been boosted with the advancement in hydrogel, a synthetic material that closely resembles the constituents of living organisms. The distinctive features of hydrogel - softness, stimuli-responsiveness, biocompatibility, ionicity, and transparency - have enabled the reproduction of nature-inspired strategies, significantly contributing to the progress in soft robots. In this review, we discuss how these properties have been exploited in various applications in soft robots to emulate blueprints found in nature. Moreover, we provide insightful perspectives on overcoming obstacles and research directions, offering a glimpse into future of soft robots.

在不断进步的工业机器人技术领域,软体机器人因其卓越的结构适应性、在动态环境中的高效性和稳定性而备受关注。从本质上讲,生物体就是天然的软体机器人,由各种高效的软体器官组成,每个器官都能精确地执行指定的功能,这是长期进化的结果。生物体的基本组成部分,如材料、设计和工作机制,一直是开发软机器人的典范。最近,随着与生物体成分极为相似的合成材料--水凝胶的发展,这些研究得到了进一步推动。水凝胶具有柔软性、刺激响应性、生物相容性、离子性和透明性等显著特征,这些特征使得受自然启发的策略得以再现,极大地推动了软机器人的发展。在本综述中,我们将讨论如何在软机器人的各种应用中利用这些特性来模拟自然界中的蓝图。此外,我们还对克服障碍和研究方向提出了独到的见解,为软机器人的未来提供了一瞥。
{"title":"Hydrogels for bioinspired soft robots","authors":"Chang Seo Park ,&nbsp;Yong-Woo Kang ,&nbsp;Hyeonuk Na ,&nbsp;Jeong-Yun Sun","doi":"10.1016/j.progpolymsci.2024.101791","DOIUrl":"10.1016/j.progpolymsci.2024.101791","url":null,"abstract":"<div><p>Amid the ever-advancing landscape of industrial robotics, soft robots in particular have attracted substantial attention due to their remarkable structural adaptability and high efficiency and stability in dynamic environments. Living organisms are, in essence, natural soft robots, composed of diverse and efficient soft organs, each precisely performing assigned functions as a result of a long-term evolution. Fundamental components of organisms, such as material, designs, and working mechanisms, have been a paradigmatic model for the development of soft robots. Recently, these researches have been boosted with the advancement in hydrogel, a synthetic material that closely resembles the constituents of living organisms. The distinctive features of hydrogel - softness, stimuli-responsiveness, biocompatibility, ionicity, and transparency - have enabled the reproduction of nature-inspired strategies, significantly contributing to the progress in soft robots. In this review, we discuss how these properties have been exploited in various applications in soft robots to emulate blueprints found in nature. Moreover, we provide insightful perspectives on overcoming obstacles and research directions, offering a glimpse into future of soft robots.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"150 ","pages":"Article 101791"},"PeriodicalIF":27.1,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139504737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugated microporous polymers for advanced chemical sensing applications 用于先进化学传感应用的共轭微孔聚合物
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.progpolymsci.2023.101770
Weisi He, Ju Duan, He Liu, Cheng Qian, Meifang Zhu, Weiyi Zhang, Yaozu Liao

Exploring advanced chemical sensing applications using porous materials is of critical importance for emerging industries such as Internet of Things, carbon neutrality, new energy resources, etc. Conjugated microporous polymers (CMPs), being well-renowned for their extended π-π conjugations, tunable pore structures, tailored chemical components, and high surface areas, have attracted increasing interests for chemical sensing applications. Here, recent milestones in the sensing applications of CMPs are presented, with an emphasis on the synthetic routes, structural requirements or parameters that dominate their sensing properties and functionalities. This review focuses on multiple chemical sensing devices including: i) fluorescent sensors, ii) electrochemical sensors, iii) colorimetric sensors, iv) resistive sensors, and v) versatile sensors. The key application areas of these CMPs-based sensors for detecting multiple matters including industrial exhausts, explosives, metal cations, halogen species, micropollutants, organic hazards, biological matters, and multiple. species, etc., are highlighted. The in-depth understanding of the sensing mechanisms and structure-property-function relationships of CMPs are also provided. Finally, a perspective on the future research directions and challenges of CMPs-based sensors is presented.

利用多孔材料探索先进的化学传感应用,对于物联网、碳中和、新能源等新兴产业具有至关重要的意义。共轭微孔聚合物(CMPs)以其扩展的π-π共轭、可调的孔结构、定制的化学成分和高表面积而闻名,在化学传感应用中引起了越来越多的兴趣。本文介绍了cmp传感应用的最新里程碑,重点介绍了控制其传感特性和功能的合成路线、结构要求或参数。本文综述了多种化学传感器件,包括:i)荧光传感器,ii)电化学传感器,iii)比色传感器,iv)电阻传感器和v)多功能传感器。重点介绍了基于cmps的传感器在工业废气、炸药、金属阳离子、卤素、微污染物、有机危害、生物物质、多物种等多物质检测中的关键应用领域。本文还对cmp的传感机理和结构-性能-功能关系进行了深入的研究。最后,对cmps传感器未来的研究方向和面临的挑战进行了展望。
{"title":"Conjugated microporous polymers for advanced chemical sensing applications","authors":"Weisi He,&nbsp;Ju Duan,&nbsp;He Liu,&nbsp;Cheng Qian,&nbsp;Meifang Zhu,&nbsp;Weiyi Zhang,&nbsp;Yaozu Liao","doi":"10.1016/j.progpolymsci.2023.101770","DOIUrl":"10.1016/j.progpolymsci.2023.101770","url":null,"abstract":"<div><p><span>Exploring advanced chemical sensing applications using porous materials is of critical importance for emerging industries such as Internet of Things, carbon neutrality, new energy resources, </span><em>etc.</em><span><span><span> Conjugated microporous polymers (CMPs), being well-renowned for their extended π-π conjugations, tunable </span>pore structures<span>, tailored chemical components, and high surface areas, have attracted increasing interests for chemical sensing applications. Here, recent milestones in the sensing applications of CMPs are presented, with an emphasis on the synthetic routes, structural requirements or parameters that dominate their sensing properties and functionalities. This review focuses on multiple chemical sensing devices including: i) fluorescent sensors, ii) electrochemical sensors, iii) colorimetric sensors, iv) resistive sensors, and v) versatile sensors. The key application areas of these CMPs-based sensors for detecting multiple matters including industrial exhausts, explosives, </span></span>metal cations, halogen species, micropollutants, organic hazards, biological matters, and multiple. species, </span><em>etc.</em>, are highlighted. The in-depth understanding of the sensing mechanisms and structure-property-function relationships of CMPs are also provided. Finally, a perspective on the future research directions and challenges of CMPs-based sensors is presented.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"148 ","pages":"Article 101770"},"PeriodicalIF":27.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138635620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Structural determinants of stimuli-responsiveness in amphiphilic macromolecular nano-assemblies 两亲大分子纳米组装中刺激-反应性的结构决定因素
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-01-01 DOI: 10.1016/j.progpolymsci.2023.101765
Hongxu Liu , Hung-Hsun Lu , Yasin Alp , Ruiling Wu , S. Thayumanavan

Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nano-assemblies and incentivize more explorations in stimuli-responsive soft matters.

由两亲性大分子组成的刺激响应纳米组装体在刺激下可发生可控的结构转变,并产生各种宏观现象。由于具有可控的响应性,它们已被广泛应用于材料和生物医学领域,如生物制剂输送、传感、成像和催化。了解组装-分解过程的机制以及响应特性背后的结构决定因素,对于设计具有可编程响应性的下一代纳米组装体至关重要。在这篇综述中,我们将重点讨论两亲性大分子组装体的结构决定因素及其在刺激下的大分子水平变化,例如组装体中亲水-亲油平衡(HLB)的破坏、解聚、解交联和分子堆积的变化,最终导致一系列实用的宏观现象。此外,还根据刺激响应纳米组装体的结构特征,总结了它们在递送、传感和成像方面的应用。我们希望这篇综述能让读者对纳米组装体的设计和应用中的结构因素有一个大致的了解,并激励人们对刺激响应软物质进行更多的探索。
{"title":"Structural determinants of stimuli-responsiveness in amphiphilic macromolecular nano-assemblies","authors":"Hongxu Liu ,&nbsp;Hung-Hsun Lu ,&nbsp;Yasin Alp ,&nbsp;Ruiling Wu ,&nbsp;S. Thayumanavan","doi":"10.1016/j.progpolymsci.2023.101765","DOIUrl":"10.1016/j.progpolymsci.2023.101765","url":null,"abstract":"<div><p><span>Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), </span>depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nano-assemblies and incentivize more explorations in stimuli-responsive soft matters.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"148 ","pages":"Article 101765"},"PeriodicalIF":27.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1