首页 > 最新文献

Progress in Polymer Science最新文献

英文 中文
Recent developments in synthetic approaches for macromolecular prodrugs 大分子原药合成方法的最新进展
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-08-01 DOI: 10.1016/j.progpolymsci.2024.101855
Julien Alex , Christine Weber , Carlos Guerrero-Sanchez , Ulrich S. Schubert

In the last decades, nanoscale drug delivery systems have gained great attention partly due to their ability to improve the bioavailability of water insoluble drugs. To this end, the general aim in developing nanomedicine is to enhance efficacy, drug stability and drug safety profile ideally by an active- or passive-cell specific targeting effect. Alteration of dose-response and potential personalization might be future trademarks of nanomedicine. Macromolecular prodrugs (MPDs) represent a sub-class of polymer-drug conjugates featuring a degradable linkage between a macromolecule and a drug. MPDs are in particular interesting due to their capability to prolong blood circulation and to reduce side effects caused by minimized premature drug leakage. The maximum drug loading capacity is another advantage of MPDs over conventional nanomedicines. The chemical accessibility of drug conjugates and polymer carrier materials as well as recent developments in the MPD design of the last five years are summarized in this review article.

过去几十年来,纳米级给药系统获得了极大关注,部分原因是它们能够提高水溶性药物的生物利用度。为此,开发纳米药物的总体目标是通过主动或被动的细胞特异性靶向效应来提高药效、药物稳定性和药物安全性。改变剂量反应和潜在的个性化可能是纳米药物未来的标志。大分子原药(MPDs)是聚合物-药物共轭物的一个亚类,其特点是大分子与药物之间具有可降解的连接。大分子原药具有延长血液循环和减少药物过早渗漏所带来的副作用的功能,因此特别引人关注。与传统纳米药物相比,MPD 的另一个优势是具有最大的药物负载能力。本综述文章概述了药物共轭物和聚合物载体材料的化学可及性以及过去五年中 MPD 设计的最新进展。
{"title":"Recent developments in synthetic approaches for macromolecular prodrugs","authors":"Julien Alex ,&nbsp;Christine Weber ,&nbsp;Carlos Guerrero-Sanchez ,&nbsp;Ulrich S. Schubert","doi":"10.1016/j.progpolymsci.2024.101855","DOIUrl":"10.1016/j.progpolymsci.2024.101855","url":null,"abstract":"<div><p>In the last decades, nanoscale drug delivery systems have gained great attention partly due to their ability to improve the bioavailability of water insoluble drugs. To this end, the general aim in developing nanomedicine is to enhance efficacy, drug stability and drug safety profile ideally by an active- or passive-cell specific targeting effect. Alteration of dose-response and potential personalization might be future trademarks of nanomedicine. Macromolecular prodrugs (MPDs) represent a sub-class of polymer-drug conjugates featuring a degradable linkage between a macromolecule and a drug. MPDs are in particular interesting due to their capability to prolong blood circulation and to reduce side effects caused by minimized premature drug leakage. The maximum drug loading capacity is another advantage of MPDs over conventional nanomedicines. The chemical accessibility of drug conjugates and polymer carrier materials as well as recent developments in the MPD design of the last five years are summarized in this review article.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"155 ","pages":"Article 101855"},"PeriodicalIF":26.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000728/pdfft?md5=527a3beda1a41282ad12447f2a9dfcde&pid=1-s2.0-S0079670024000728-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Janus gels for biomedical applications: Progress and future prospective 用于生物医学应用的 Janus 凝胶:进展与未来展望
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-08-01 DOI: 10.1016/j.progpolymsci.2024.101856
Shaowen Zhuo , Zexing Deng , Zhengying Wu , Yi Guo , Yaobin Wu , Xin Zhao , Yong Han , Baolin Guo

The "Janus" feature/structure inspired by the ancient Roman double-sided protector is prominent in the field of materials science due to its unique "asymmetric" concept and flexible and adjustable characteristics. The emergence of numerous biomaterials based on Janus properties/structures provides a different approach to material design for complex biomedical scenarios. Gel materials with excellent water absorption, flexibility and biocompatibility in various biomedical applications have greatly increased, and the structural design and functional integration of gels have reached some bottleneck. The Janus properties/structures completely subvert the traditional concept of "homogeneous gel" and break the limitation of "two-sided consistency" in biomedical gels. The concept of "two-sided asymmetry" led by "Adhesion-antiadhesion properties" and "hydrophilic-hydrophobic properties" has emerged and expanded the broad biomedical application prospects of Janus gels. In this review, we first summarize the various structural characteristics of Janus gel materials and the preparation technology of these gels, and explore the secret behind Janus structures from the raw materials and design concepts. Secondly, different kinds of asymmetries, including “hydrophilic-hydrophobic properties”, “Adhesion-antiadhesion properties”, structural heterogeneity and other unusual asymmetry, are discussed to show the relationship between Janus characteristics and structure. The applications of advanced Janus gels in biomedical fields such as tissue repair, anti-adhesion, substance delivery, hemostasis and human activity sensing are emphatically reviewed. In addition, the latest challenges and possible future direction of Janus gel are proposed.

受古罗马双面保护神启发的 "雅努斯 "特性/结构因其独特的 "非对称 "概念和灵活可调的特性而在材料科学领域大放异彩。基于 "雅努斯 "特性/结构的众多生物材料的出现,为复杂的生物医学场景提供了一种不同的材料设计方法。具有优异吸水性、柔韧性和生物相容性的凝胶材料在各种生物医学领域的应用大大增加,而凝胶的结构设计和功能集成已经达到了一定的瓶颈。杰纳斯特性/结构完全颠覆了传统的 "均质凝胶 "概念,打破了生物医学凝胶 "两面一致性 "的限制。以 "粘附-反粘附特性 "和 "亲水-疏水特性 "为主导的 "两面不对称 "概念应运而生,拓展了杰纳斯凝胶广阔的生物医学应用前景。在这篇综述中,我们首先总结了杰纳斯凝胶材料的各种结构特征及其制备技术,并从原材料和设计理念两方面探讨了杰纳斯结构背后的秘密。其次,讨论了不同种类的不对称性,包括 "亲水-疏水特性"、"粘附-反粘附特性"、结构异质性和其他不寻常的不对称性,以说明杰纳斯特性与结构之间的关系。重点评述了高级 Janus 凝胶在组织修复、抗粘连、物质输送、止血和人体活动传感等生物医学领域的应用。此外,还提出了杰纳斯凝胶面临的最新挑战和未来可能的发展方向。
{"title":"Janus gels for biomedical applications: Progress and future prospective","authors":"Shaowen Zhuo ,&nbsp;Zexing Deng ,&nbsp;Zhengying Wu ,&nbsp;Yi Guo ,&nbsp;Yaobin Wu ,&nbsp;Xin Zhao ,&nbsp;Yong Han ,&nbsp;Baolin Guo","doi":"10.1016/j.progpolymsci.2024.101856","DOIUrl":"10.1016/j.progpolymsci.2024.101856","url":null,"abstract":"<div><p>The \"Janus\" feature/structure inspired by the ancient Roman double-sided protector is prominent in the field of materials science due to its unique \"asymmetric\" concept and flexible and adjustable characteristics. The emergence of numerous biomaterials based on Janus properties/structures provides a different approach to material design for complex biomedical scenarios. Gel materials with excellent water absorption, flexibility and biocompatibility in various biomedical applications have greatly increased, and the structural design and functional integration of gels have reached some bottleneck. The Janus properties/structures completely subvert the traditional concept of \"homogeneous gel\" and break the limitation of \"two-sided consistency\" in biomedical gels. The concept of \"two-sided asymmetry\" led by \"Adhesion-antiadhesion properties\" and \"hydrophilic-hydrophobic properties\" has emerged and expanded the broad biomedical application prospects of Janus gels. In this review, we first summarize the various structural characteristics of Janus gel materials and the preparation technology of these gels, and explore the secret behind Janus structures from the raw materials and design concepts. Secondly, different kinds of asymmetries, including “hydrophilic-hydrophobic properties”, “Adhesion-antiadhesion properties”, structural heterogeneity and other unusual asymmetry, are discussed to show the relationship between Janus characteristics and structure. The applications of advanced Janus gels in biomedical fields such as tissue repair, anti-adhesion, substance delivery, hemostasis and human activity sensing are emphatically reviewed. In addition, the latest challenges and possible future direction of Janus gel are proposed.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"155 ","pages":"Article 101856"},"PeriodicalIF":26.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of ring-containing polymers: Macromolecular rotaxanes, polyrotaxanes and slide-ring networks 含环聚合物的动力学:大分子轮烷、聚轮烷和滑环网络
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-07-14 DOI: 10.1016/j.progpolymsci.2024.101854
Sina Ghiassinejad , Mostafa Ahmadi , Evelyne van Ruymbeke , Charles-André Fustin

A mechanical bond serves as a distinctive approach for harnessing the most beneficial features of both covalent and supramolecular chemistries, offering stability and structural adaptability owing to its unique dynamic nature. Molecules formed by mechanical bonding, known as mechanically interlocked molecules (MIMs) including catenanes, rotaxanes, and knots have opened new possibilities. Notably, the introduction of mechanically interlocked structures into polymers has led to the emergence of novel polymeric materials referred to as mechanically interlocked polymers (MIPs), such as polyrotaxanes and polycatenanes. The interlocked nature of these architectures can lead to particular conformational freedom and high mobility of their components, resulting in exceptional properties, such as ultra-stretchability, toughness, and immediate recoverability. These properties have found potential applications in diverse fields, including the development of tough hydrogels, scratch-resistant coatings, smart actuators, and batteries. Recent years have witnessed a surge in the synthesis and investigation of a diverse array of rotaxane-based MIPs, an essential class that has enabled researchers to begin grasping the impact of incorporating mechanical bonds within polymer structures, and of their mobility, on material properties. In this review, an overview of the dynamics of ring-containing polymers is presented. The review encompasses macromolecular rotaxanes, polyrotaxanes, and slide-ring networks, including the role of ring mobility in shaping the dynamics and properties of rotaxane polymers.

机械键是利用共价化学和超分子化学最有利特征的独特方法,由于其独特的动态性质,可提供稳定性和结构适应性。通过机械键形成的分子被称为机械互锁分子(MIMs),其中包括卡替烷烃、轮烷和结,为我们带来了新的可能性。值得注意的是,在聚合物中引入机械互锁结构后,出现了被称为机械互锁聚合物(MIPs)的新型聚合物材料,如聚罗他烷和聚卡他烯烷。这些结构的互锁性质可使其成分具有特殊的构象自由度和高流动性,从而产生超强的拉伸性、韧性和即时恢复性等优异特性。这些特性有望应用于各个领域,包括开发坚韧的水凝胶、抗划伤涂层、智能致动器和电池。近年来,基于轮烷的各种 MIPs 的合成和研究突飞猛进,这一重要类别使研究人员开始掌握在聚合物结构中加入机械键及其流动性对材料性能的影响。本综述概述了含环聚合物的动力学。综述涵盖了大分子轮烷、聚轮烷和滑环网络,包括环流动性在塑造轮烷聚合物动态和特性方面的作用。
{"title":"Dynamics of ring-containing polymers: Macromolecular rotaxanes, polyrotaxanes and slide-ring networks","authors":"Sina Ghiassinejad ,&nbsp;Mostafa Ahmadi ,&nbsp;Evelyne van Ruymbeke ,&nbsp;Charles-André Fustin","doi":"10.1016/j.progpolymsci.2024.101854","DOIUrl":"10.1016/j.progpolymsci.2024.101854","url":null,"abstract":"<div><p>A mechanical bond serves as a distinctive approach for harnessing the most beneficial features of both covalent and supramolecular chemistries, offering stability and structural adaptability owing to its unique dynamic nature. Molecules formed by mechanical bonding, known as mechanically interlocked molecules (MIMs) including catenanes, rotaxanes, and knots have opened new possibilities. Notably, the introduction of mechanically interlocked structures into polymers has led to the emergence of novel polymeric materials referred to as mechanically interlocked polymers (MIPs), such as polyrotaxanes and polycatenanes. The interlocked nature of these architectures can lead to particular conformational freedom and high mobility of their components, resulting in exceptional properties, such as ultra-stretchability, toughness, and immediate recoverability. These properties have found potential applications in diverse fields, including the development of tough hydrogels, scratch-resistant coatings, smart actuators, and batteries. Recent years have witnessed a surge in the synthesis and investigation of a diverse array of rotaxane-based MIPs, an essential class that has enabled researchers to begin grasping the impact of incorporating mechanical bonds within polymer structures, and of their mobility, on material properties. In this review, an overview of the dynamics of ring-containing polymers is presented. The review encompasses macromolecular rotaxanes, polyrotaxanes, and slide-ring networks, including the role of ring mobility in shaping the dynamics and properties of rotaxane polymers.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"155 ","pages":"Article 101854"},"PeriodicalIF":26.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polycatechols: Promising materials for biomedical applications 聚邻苯二酚:有望用于生物医学的材料
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-07-14 DOI: 10.1016/j.progpolymsci.2024.101857
Fang Zhu , Zhenliang Sun , Yiwen Li , Chao Chen , Yiyun Cheng

Polycatechols are a class of polymers bearing multiple catechol moieties. These polymers possess unique physiochemical properties such as antioxidant, bioadhesive, metal chelating, and dynamic covalent bonding. As a result, polycatechols have shown great promise in various biomedical applications i.e. drug delivery, gene and protein delivery, free radical scavenging, antimicrobials, bio-adhesions, tissue engineering, and bioimaging. The polymers have strong binding affinities with biomolecules such as genes, proteins, phospholipids, and extracellular matrices via non-covalent interactions, and are proposed as effective carriers for biotherapy and bioadhesives for tissue engineering. The abundant catechol moieties on polycatechols allow strong free radical scavenging to treat oxidative stress and inflammation. In addition, polycatechols form dynamic covalent linkages with boronate ligands, and are used to modulate the quorum-sensing signaling in bacteria, or deliver anticancer drug bortezomib to tumor microenvironments. Besides, polycatechols coordinate with metal ions such as gadolinium (III) to provide contrast reagents for magnetic resonance imaging. In this critical review, currently developed synthetic methods for polycatechols and their physiochemical properties will be introduced. The design principles for polycatechols in detailed biomedical applications will be intensively described. Finally, current challenges and future perspectives in the development of next-generation polycatechols will be discussed.

聚邻苯二酚是一类含有多个邻苯二酚分子的聚合物。这些聚合物具有独特的理化特性,如抗氧化性、生物黏附性、金属螯合性和动态共价键。因此,聚邻苯二酚在药物输送、基因和蛋白质输送、清除自由基、抗菌剂、生物粘附、组织工程和生物成像等各种生物医学应用中显示出巨大的前景。这种聚合物通过非共价相互作用与基因、蛋白质、磷脂和细胞外基质等生物大分子具有很强的结合亲和力,被建议用作生物疗法的有效载体和组织工程的生物粘合剂。聚邻苯二酚上丰富的儿茶酚分子可清除大量自由基,从而治疗氧化应激和炎症。此外,聚邻苯二酚还能与硼酸配体形成动态共价连接,用于调节细菌的法定人数感应信号,或将抗癌药物硼替佐米输送到肿瘤微环境中。此外,聚邻苯二酚还能与钆(III)等金属离子配位,为磁共振成像提供造影剂。本综述将介绍目前开发的聚邻苯二酚合成方法及其理化性质。详细介绍生物医学应用中聚邻苯二酚的设计原则。最后,还将讨论开发新一代聚碳酸酯的当前挑战和未来前景。
{"title":"Polycatechols: Promising materials for biomedical applications","authors":"Fang Zhu ,&nbsp;Zhenliang Sun ,&nbsp;Yiwen Li ,&nbsp;Chao Chen ,&nbsp;Yiyun Cheng","doi":"10.1016/j.progpolymsci.2024.101857","DOIUrl":"10.1016/j.progpolymsci.2024.101857","url":null,"abstract":"<div><p>Polycatechols are a class of polymers bearing multiple catechol moieties. These polymers possess unique physiochemical properties such as antioxidant, bioadhesive, metal chelating, and dynamic covalent bonding. As a result, polycatechols have shown great promise in various biomedical applications i.e. drug delivery, gene and protein delivery, free radical scavenging, antimicrobials, bio-adhesions, tissue engineering, and bioimaging. The polymers have strong binding affinities with biomolecules such as genes, proteins, phospholipids, and extracellular matrices via non-covalent interactions, and are proposed as effective carriers for biotherapy and bioadhesives for tissue engineering. The abundant catechol moieties on polycatechols allow strong free radical scavenging to treat oxidative stress and inflammation. In addition, polycatechols form dynamic covalent linkages with boronate ligands, and are used to modulate the quorum-sensing signaling in bacteria, or deliver anticancer drug bortezomib to tumor microenvironments. Besides, polycatechols coordinate with metal ions such as gadolinium (III) to provide contrast reagents for magnetic resonance imaging. In this critical review, currently developed synthetic methods for polycatechols and their physiochemical properties will be introduced. The design principles for polycatechols in detailed biomedical applications will be intensively described. Finally, current challenges and future perspectives in the development of next-generation polycatechols will be discussed.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"155 ","pages":"Article 101857"},"PeriodicalIF":26.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141700269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing phase separation in polymer gels: Strategies, functions and applications 构建聚合物凝胶中的相分离:策略、功能和应用
IF 26 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-07-01 DOI: 10.1016/j.progpolymsci.2024.101847
Zhenwu Wang , Wenlian Qiu, Qi Zhang

Over the past decades, there has been a flourishing of phase-separated polymer gels. Unlike traditional design methods that rely on chemical structure and polymer network construction, phase separation enables polymers to tune morphologies across the microscopic, mesoscopic, and macroscopic levels, thereby creating a new path for regulating and innovating the performance of polymer gels. This comprehensive review offers a deep dive into the mechanisms underlying phase separation formation in polymer gels and makes a particular focus on the methods used to induce phase separation in polymer gels. Additionally, the review highlights the potential performance improvements and innovations of polymer gels based on phase separation and explores the promising applications of phase separation polymers in various fields. Finally, this review emphasizes the potential benefits yet significant challenges associated with phase-separated polymer gels. The versatility and multi-scale applicability of this approach make it a promising pathway for developing cutting-edge materials with tailored properties and functionalities.

在过去的几十年里,相分离聚合物凝胶得到了蓬勃发展。与依赖化学结构和聚合物网络结构的传统设计方法不同,相分离使聚合物能够在微观、介观和宏观层面调整形态,从而为调节和创新聚合物凝胶的性能开辟了一条新路。本综述深入探讨了聚合物凝胶中相分离形成的基本机制,并特别关注了用于诱导聚合物凝胶中相分离的方法。此外,综述还强调了基于相分离的聚合物凝胶的潜在性能改进和创新,并探讨了相分离聚合物在各个领域的应用前景。最后,本综述强调了与相分离聚合物凝胶相关的潜在优势和重大挑战。这种方法的多功能性和多尺度适用性使其成为开发具有定制特性和功能的尖端材料的一条大有可为的途径。
{"title":"Constructing phase separation in polymer gels: Strategies, functions and applications","authors":"Zhenwu Wang ,&nbsp;Wenlian Qiu,&nbsp;Qi Zhang","doi":"10.1016/j.progpolymsci.2024.101847","DOIUrl":"10.1016/j.progpolymsci.2024.101847","url":null,"abstract":"<div><p>Over the past decades, there has been a flourishing of phase-separated polymer gels. Unlike traditional design methods that rely on chemical structure and polymer network construction, phase separation enables polymers to tune morphologies across the microscopic, mesoscopic, and macroscopic levels, thereby creating a new path for regulating and innovating the performance of polymer gels. This comprehensive review offers a deep dive into the mechanisms underlying phase separation formation in polymer gels and makes a particular focus on the methods used to induce phase separation in polymer gels. Additionally, the review highlights the potential performance improvements and innovations of polymer gels based on phase separation and explores the promising applications of phase separation polymers in various fields. Finally, this review emphasizes the potential benefits yet significant challenges associated with phase-separated polymer gels. The versatility and multi-scale applicability of this approach make it a promising pathway for developing cutting-edge materials with tailored properties and functionalities.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"154 ","pages":"Article 101847"},"PeriodicalIF":26.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloidal lignin valorization: From macromolecular design to targeted applications 胶体木质素价值化:从大分子设计到目标应用
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-05-22 DOI: 10.1016/j.progpolymsci.2024.101839
Pan Jiang , Bo Peng , Yanming Han , Gaiyun Li , Olli Ikkala , Fuxiang Chu

Converting lignin into useful colloidal entities with uniform size and shape offers exciting opportunities for utilization; however, this endeavor requires overcoming challenges caused by structural heterogeneity and gaining further understanding to exploit its unique functional possibilities. Still, colloidal lignin has already provided new insights into bio-polymeric materials and has triggered various innovative applications that have inspired the scientific community. This review aims to provide a comprehensive discussion of the current understanding of colloidal lignin and its emergent applications. First, a fundamental overview of lignin, including its chemistry and processing is provided. Subsequently, a multitude of technical routes to tune the properties of colloidal lignin using nano-/micro-fabrication approaches to control macroscale properties is presented. Thereafter, examples of innovative material technologies based on colloidal lignin in areas such as pollution remediation, polymeric materials, macromolecular materials, and drug delivery are given. Finally, open challenges and suggestions for future research will be discussed to guide future research to rationally expand the portfolio of promising lignin-based technologies.

将木质素转化为具有统一尺寸和形状的有用胶体实体为利用木质素提供了令人兴奋的机会;然而,这一努力需要克服结构异质性带来的挑战,并进一步了解利用其独特功能的可能性。不过,胶体木质素已经为生物聚合物材料提供了新的见解,并引发了各种创新应用,给科学界带来了启发。本综述旨在全面探讨当前对胶体木质素及其新兴应用的认识。首先,综述了木质素的基本情况,包括其化学性质和加工工艺。随后,介绍了利用纳米/微制造方法调整胶体木质素特性以控制宏观特性的多种技术路线。随后,举例说明了基于胶体木质素的创新材料技术在污染修复、聚合物材料、高分子材料和药物输送等领域的应用。最后,还将讨论未来研究面临的挑战和建议,以指导未来的研究工作,合理地扩展前景广阔的木质素技术组合。
{"title":"Colloidal lignin valorization: From macromolecular design to targeted applications","authors":"Pan Jiang ,&nbsp;Bo Peng ,&nbsp;Yanming Han ,&nbsp;Gaiyun Li ,&nbsp;Olli Ikkala ,&nbsp;Fuxiang Chu","doi":"10.1016/j.progpolymsci.2024.101839","DOIUrl":"10.1016/j.progpolymsci.2024.101839","url":null,"abstract":"<div><p>Converting lignin into useful colloidal entities with uniform size and shape offers exciting opportunities for utilization; however, this endeavor requires overcoming challenges caused by structural heterogeneity and gaining further understanding to exploit its unique functional possibilities. Still, colloidal lignin has already provided new insights into bio-polymeric materials and has triggered various innovative applications that have inspired the scientific community. This review aims to provide a comprehensive discussion of the current understanding of colloidal lignin and its emergent applications. First, a fundamental overview of lignin, including its chemistry and processing is provided. Subsequently, a multitude of technical routes to tune the properties of colloidal lignin using nano-/micro-fabrication approaches to control macroscale properties is presented. Thereafter, examples of innovative material technologies based on colloidal lignin in areas such as pollution remediation, polymeric materials, macromolecular materials, and drug delivery are given. Finally, open challenges and suggestions for future research will be discussed to guide future research to rationally expand the portfolio of promising lignin-based technologies.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"154 ","pages":"Article 101839"},"PeriodicalIF":27.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional polymer–ceramic hybrid coatings: Status, progress, and trend 功能性聚合物-陶瓷混合涂料:现状、进展与趋势
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-05-22 DOI: 10.1016/j.progpolymsci.2024.101840
Zhenqiang Zhang , Yinjie Huang , Qingyi Xie , Guojun Liu , Chunfeng Ma , Guangzhao Zhang

The pursuit of achieving both ceramic-like hardness and polymer-like flexibility in a coating, known as a polymer–ceramic hybrid coating, is a challenging yet highly desirable goal. The application of these coatings spans various domains such as foldable displays, wearable devices, maritime industries, and biomedical engineering. Particularly, endowing polymer–ceramic hybrid coatings with functions such as transparency, anti-liquid adhesion, anti-biofouling, and self-healing expand their potential in fields necessitating highly protective performance, which have gained significant attention in recent years. In this comprehensive review, our main objective is to provide interested readers with a clear framework for assessment and future exploration of this topic. We systematically outline the fundamentals of functional polymer-ceramic hybrid coatings, explaining their fabrication intricacies. Additionally, we explore their practical applications, intricately tailored to the unique requirements of each field. Concluding our review, we address the key challenges facing modern functional polymer–ceramic coatings and propose potential paths for future advancements.

在涂层中同时实现陶瓷般的硬度和聚合物般的柔韧性(即聚合物-陶瓷混合涂层)是一个极具挑战性但又非常理想的目标。这些涂层的应用领域广泛,如可折叠显示器、可穿戴设备、海洋工业和生物医学工程。特别是,赋予聚合物陶瓷杂化涂层透明性、防液体附着、防生物污损和自修复等功能,拓展了其在需要高防护性能领域的应用潜力,近年来已受到广泛关注。在这篇综述中,我们的主要目的是为感兴趣的读者提供一个清晰的框架,以便对这一主题进行评估和未来探索。我们系统地概述了功能性聚合物-陶瓷杂化涂层的基本原理,解释了其复杂的制造工艺。此外,我们还探讨了它们的实际应用,并针对每个领域的独特要求进行了深入分析。最后,我们探讨了现代功能性聚合物-陶瓷涂层所面临的主要挑战,并提出了未来发展的潜在途径。
{"title":"Functional polymer–ceramic hybrid coatings: Status, progress, and trend","authors":"Zhenqiang Zhang ,&nbsp;Yinjie Huang ,&nbsp;Qingyi Xie ,&nbsp;Guojun Liu ,&nbsp;Chunfeng Ma ,&nbsp;Guangzhao Zhang","doi":"10.1016/j.progpolymsci.2024.101840","DOIUrl":"10.1016/j.progpolymsci.2024.101840","url":null,"abstract":"<div><p>The pursuit of achieving both ceramic-like hardness and polymer-like flexibility in a coating, known as a polymer–ceramic hybrid coating, is a challenging yet highly desirable goal. The application of these coatings spans various domains such as foldable displays, wearable devices, maritime industries, and biomedical engineering. Particularly, endowing polymer–ceramic hybrid coatings with functions such as transparency, anti-liquid adhesion, anti-biofouling, and self-healing expand their potential in fields necessitating highly protective performance, which have gained significant attention in recent years. In this comprehensive review, our main objective is to provide interested readers with a clear framework for assessment and future exploration of this topic. We systematically outline the fundamentals of functional polymer-ceramic hybrid coatings, explaining their fabrication intricacies. Additionally, we explore their practical applications, intricately tailored to the unique requirements of each field. Concluding our review, we address the key challenges facing modern functional polymer–ceramic coatings and propose potential paths for future advancements.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"154 ","pages":"Article 101840"},"PeriodicalIF":27.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141140598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid crystal elastomers for actuation: A perspective on structure-property-function relation 用于驱动的液晶弹性体:结构-性能-功能关系透视
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-05-10 DOI: 10.1016/j.progpolymsci.2024.101829
Zhi-Chao Jiang , Qing Liu , Yao-Yu Xiao , Yue Zhao

Liquid crystal elastomers (LCEs) have long held significant promise as materials for artificial muscles and smart actuators. Recent advancements in this field have introduced innovative LCE structures at various scales, resulting in novel properties and functionalities that further accentuate their actuation advantages, bolstering their potential as future soft actuation systems. The ongoing pursuit of enhanced performance and functionality in LCE actuators, essential for advancing them towards superior material-based machines and devices, is intricately linked to the understanding of the fundamental structure-property-function relationships. This review provides a perspective on these relationships across multiple structural levels, encompassing chemical structures, mesophase structures, and micro-to-macroscale programmed structures. It delves into the impact of various LCE structures on key actuation-related properties, actuation features, and functionalities. This review aspires to provide valuable insights into the design of high-performance LCE actuators, the development of exceptional actuation modes and behaviors, and the expansion of achievable functionality.

长期以来,液晶弹性体(LCE)作为人工肌肉和智能致动器的材料一直大有可为。该领域的最新进展引入了各种尺度的创新 LCE 结构,从而产生了新的特性和功能,进一步突出了其致动优势,增强了其作为未来软致动系统的潜力。不断追求提高 LCE 执行器的性能和功能,是推动它们成为卓越的材料型机器和设备的关键,这与对基本结构-性能-功能关系的理解密不可分。本综述从化学结构、介相结构和微米到宏观尺度的程序结构等多个结构层面透视了这些关系。它深入探讨了各种 LCE 结构对关键致动相关特性、致动特征和功能的影响。本综述旨在为高性能 LCE 执行器的设计、特殊执行模式和行为的开发以及可实现功能的扩展提供有价值的见解。
{"title":"Liquid crystal elastomers for actuation: A perspective on structure-property-function relation","authors":"Zhi-Chao Jiang ,&nbsp;Qing Liu ,&nbsp;Yao-Yu Xiao ,&nbsp;Yue Zhao","doi":"10.1016/j.progpolymsci.2024.101829","DOIUrl":"10.1016/j.progpolymsci.2024.101829","url":null,"abstract":"<div><p>Liquid crystal elastomers (LCEs) have long held significant promise as materials for artificial muscles and smart actuators. Recent advancements in this field have introduced innovative LCE structures at various scales, resulting in novel properties and functionalities that further accentuate their actuation advantages, bolstering their potential as future soft actuation systems. The ongoing pursuit of enhanced performance and functionality in LCE actuators, essential for advancing them towards superior material-based machines and devices, is intricately linked to the understanding of the fundamental structure-property-function relationships. This review provides a perspective on these relationships across multiple structural levels, encompassing chemical structures, mesophase structures, and micro-to-macroscale programmed structures. It delves into the impact of various LCE structures on key actuation-related properties, actuation features, and functionalities. This review aspires to provide valuable insights into the design of high-performance LCE actuators, the development of exceptional actuation modes and behaviors, and the expansion of achievable functionality.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"153 ","pages":"Article 101829"},"PeriodicalIF":27.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000467/pdfft?md5=da0b8b4fb9340cf2e1344d6358b03929&pid=1-s2.0-S0079670024000467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in coacervation and underlying noncovalent molecular interaction mechanisms 共保持和基本非共价分子相互作用机制的最新进展
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-05-08 DOI: 10.1016/j.progpolymsci.2024.101827
Qiongyao Peng , Tao Wang , Diling Yang, Xuwen Peng, Hao Zhang, Hongbo Zeng

Coacervation is a liquid-liquid phase separation phenomenon. It involves the formation of a dense coacervate phase, rich in concentrated materials, and a co-existing immiscible dilute supernatant. This phenomenon can occur either from a homogeneous aqueous solution (simple coacervation) or when two different macromolecular aqueous solutions (proteins, polymers, and colloids) are brought into contact (complex coacervation). Coacervation has historical significance as it may have played a role in the origin of life, concentrating nutritious materials through liquid-liquid phase separation. It also reveals the underlying mechanisms of many biological phenomena such as intracellular biomolecular condensates, extracellular matrices, squid beak's gradient properties, sessile organism's wet adhesion, Alzheimer's diseases, and more. Coacervation provides insights and inspires promising solutions in areas like artificial cells/tissues, gradient materials, gene/drug delivery, underwater adhesives, and beyond. The driving forces of coacervation are noncovalent molecular interactions, often referred to as ‘chemistry beyond the molecule’, including hydrophobic interaction, electrostatic interaction, hydrogen-bonding interaction, cation-π interaction, π-π interaction, multivalency, etc. In this work, we have systematically reviewed the underlying noncovalent molecular interactions of simple coacervation and complex coacervation, respectively. We summarize commonly used materials and their corresponding molecular structures, discussing their applications. Some remaining challenge issues and perspectives for future studies are also presented. Understanding the underlying noncovalent molecular interactions of coacervation, alongside insights into molecular compositions and structures, can better guide the design of novel materials, elucidate various biological phenomena, and contribute to the development and optimization of relevant engineering technologies.

凝聚是一种液-液相分离现象。它包括形成富含浓缩物质的致密凝聚相和共存不相溶的稀释上清液。这种现象既可能发生在均相水溶液中(简单凝聚),也可能发生在两种不同的大分子水溶液(蛋白质、聚合物和胶体)接触时(复杂凝聚)。共凝具有重要的历史意义,因为它可能在生命起源过程中发挥了作用,通过液-液相分离浓缩了营养物质。它还揭示了许多生物现象的内在机理,如细胞内生物分子凝聚物、细胞外基质、乌贼喙的梯度特性、无柄生物的湿粘附、老年痴呆症等。共保温为人造细胞/组织、梯度材料、基因/药物输送、水下粘合剂等领域提供了深入的见解和有前景的解决方案。共保持的驱动力是非共价分子相互作用,通常被称为 "分子外化学",包括疏水相互作用、静电相互作用、氢键相互作用、阳离子-π相互作用、π-π相互作用、多价相互作用等。在这项工作中,我们分别对简单共保持和复杂共保持的基本非共价分子相互作用进行了系统回顾。我们总结了常用材料及其相应的分子结构,并讨论了它们的应用。此外,还介绍了一些尚存的挑战问题和未来研究的前景。了解共保持的基本非共价分子相互作用以及对分子组成和结构的见解,可以更好地指导新型材料的设计,阐明各种生物现象,并有助于相关工程技术的开发和优化。
{"title":"Recent advances in coacervation and underlying noncovalent molecular interaction mechanisms","authors":"Qiongyao Peng ,&nbsp;Tao Wang ,&nbsp;Diling Yang,&nbsp;Xuwen Peng,&nbsp;Hao Zhang,&nbsp;Hongbo Zeng","doi":"10.1016/j.progpolymsci.2024.101827","DOIUrl":"10.1016/j.progpolymsci.2024.101827","url":null,"abstract":"<div><p>Coacervation is a liquid-liquid phase separation phenomenon. It involves the formation of a dense coacervate phase, rich in concentrated materials, and a co-existing immiscible dilute supernatant. This phenomenon can occur either from a homogeneous aqueous solution (simple coacervation) or when two different macromolecular aqueous solutions (proteins, polymers, and colloids) are brought into contact (complex coacervation). Coacervation has historical significance as it may have played a role in the origin of life, concentrating nutritious materials through liquid-liquid phase separation. It also reveals the underlying mechanisms of many biological phenomena such as intracellular biomolecular condensates, extracellular matrices, squid beak's gradient properties, sessile organism's wet adhesion, Alzheimer's diseases, and more. Coacervation provides insights and inspires promising solutions in areas like artificial cells/tissues, gradient materials, gene/drug delivery, underwater adhesives, and beyond. The driving forces of coacervation are noncovalent molecular interactions, often referred to as ‘chemistry beyond the molecule’, including hydrophobic interaction, electrostatic interaction, hydrogen-bonding interaction, cation-π interaction, π-π interaction, multivalency, etc. In this work, we have systematically reviewed the underlying noncovalent molecular interactions of simple coacervation and complex coacervation, respectively. We summarize commonly used materials and their corresponding molecular structures, discussing their applications. Some remaining challenge issues and perspectives for future studies are also presented. Understanding the underlying noncovalent molecular interactions of coacervation, alongside insights into molecular compositions and structures, can better guide the design of novel materials, elucidate various biological phenomena, and contribute to the development and optimization of relevant engineering technologies.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"153 ","pages":"Article 101827"},"PeriodicalIF":27.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000443/pdfft?md5=45279cc09f57a281aba1ee38bdfc5703&pid=1-s2.0-S0079670024000443-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning for analyses and automation of structural characterization of polymer materials 用于聚合物材料结构表征分析和自动化的机器学习
IF 27.1 1区 化学 Q1 POLYMER SCIENCE Pub Date : 2024-05-03 DOI: 10.1016/j.progpolymsci.2024.101828
Shizhao Lu , Arthi Jayaraman

Structural characterization of polymer materials is a major step in the process of creating materials' design-structural-property relationships. With growing interests in artificial intelligence (AI)-driven materials design and high-throughput synthesis and measurements, there is now a critical need for development of complementary data-driven approaches (e.g., machine learning models and workflows) to enable fast and automated interpretation of the characterization results. This review sets out with a description of the needs for machine learning specifically in the context of three commonly used structural characterization techniques for polymer materials: microscopy, scattering, and spectroscopy. Subsequently, a review of notable work done on development and application of machine learning models / workflows for these three types of measurements is provided. Definitions are provided for common machine learning terms to help readers who may be less familiar with the terminologies used in the context of machine learning. Finally, a perspective on the current challenges and potential opportunities to successfully integrate such data-driven methods in parallel/sequentially with the measurements is provided. The need for innovative interdisciplinary training programs for researchers regardless of their career path/employment in academia, national laboratories, or research and development in industry is highlighted as a strategy to overcome the challenge associated with the sharing and curation of data and unifying metadata.

聚合物材料的结构表征是建立材料设计-结构-性能关系过程中的重要一步。随着人们对人工智能(AI)驱动的材料设计以及高通量合成和测量的兴趣与日俱增,现在迫切需要开发辅助的数据驱动方法(如机器学习模型和工作流程),以便能够快速、自动地解释表征结果。本综述首先介绍了机器学习在聚合物材料常用的三种结构表征技术(显微镜、散射和光谱)方面的具体需求。随后,综述了这三种测量方法的机器学习模型/工作流程的开发和应用情况。此外,还提供了常见机器学习术语的定义,以帮助不太熟悉机器学习术语的读者。最后,还介绍了成功将这些数据驱动方法与测量方法并行/顺序整合的当前挑战和潜在机遇。文章强调了为研究人员提供创新的跨学科培训计划的必要性,无论他们的职业道路/就业领域是学术界、国家实验室还是工业界的研发部门,都应将此作为克服与数据共享和整理以及统一元数据相关的挑战的一项战略。
{"title":"Machine learning for analyses and automation of structural characterization of polymer materials","authors":"Shizhao Lu ,&nbsp;Arthi Jayaraman","doi":"10.1016/j.progpolymsci.2024.101828","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2024.101828","url":null,"abstract":"<div><p>Structural characterization of polymer materials is a major step in the process of creating materials' design-structural-property relationships. With growing interests in artificial intelligence (AI)-driven materials design and high-throughput synthesis and measurements, there is now a critical need for development of complementary data-driven approaches (e.g., machine learning models and workflows) to enable fast and automated interpretation of the characterization results. This review sets out with a description of the needs for machine learning specifically in the context of three commonly used structural characterization techniques for polymer materials: microscopy, scattering, and spectroscopy. Subsequently, a review of notable work done on development and application of machine learning models / workflows for these three types of measurements is provided. Definitions are provided for common machine learning terms to help readers who may be less familiar with the terminologies used in the context of machine learning. Finally, a perspective on the current challenges and potential opportunities to successfully integrate such data-driven methods in parallel/sequentially with the measurements is provided. The need for innovative interdisciplinary training programs for researchers regardless of their career path/employment in academia, national laboratories, or research and development in industry is highlighted as a strategy to overcome the challenge associated with the sharing and curation of data and unifying metadata.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"153 ","pages":"Article 101828"},"PeriodicalIF":27.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1