Pub Date : 2021-12-22DOI: 10.21122/2220-9506-2021-12-4-292-300
S. Dmitriev, A. Khrobostov, D. N. Solncev, A. Barinov, A. Chesnokov, I. Konovalov, M. Makarov, T. K. Zyryanova
The correlation method for measuring of the coolant fl rate is used in the operation of nuclear power plants and is widespread in research practice including study of turbulent fl hydrodynamics. However the question of its applicability and possibilities in studies using the matrix conductometry method remains open. Earlier the algorithm for determining of the correlation fl rate using a conductometric measuring system was highlighted and the error of the results obtained was estimated and the dependence of the influence of noise and the time of data collection on the reliability of results was investigated. These works were carried out using two independent mesh sensors and the issue of the resolution of local velocity components was not covered. The purpose of this work was to test the correlation method for measuring velocity with temporal and spatial sampling using two-layer mesh conductometric sensors.As the result velocity cartograms were obtained over the cross-section of the experimental model with quasi-stationary mixing and the value of the average flow rate is in good agreement with the values obtained from the standard flow meters of the stand. Also measurements were carried out at a non-stationary setting of the experiment and realizations of the flow rate and velocity components of the flow at the measuring points were obtained.Analysis of the obtained values allows to conclude about the optimal data collection time for correlation measurements, as well as the reliability of results.
{"title":"Application of the Correlation Measurement Method for Reconstructing of the Velocity Profile with Spatial and Temporal Discretization in Studies of the Hydrodynamics of Turbulent Flows Based on the Matrix Conductometry Method","authors":"S. Dmitriev, A. Khrobostov, D. N. Solncev, A. Barinov, A. Chesnokov, I. Konovalov, M. Makarov, T. K. Zyryanova","doi":"10.21122/2220-9506-2021-12-4-292-300","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-4-292-300","url":null,"abstract":"The correlation method for measuring of the coolant fl rate is used in the operation of nuclear power plants and is widespread in research practice including study of turbulent fl hydrodynamics. However the question of its applicability and possibilities in studies using the matrix conductometry method remains open. Earlier the algorithm for determining of the correlation fl rate using a conductometric measuring system was highlighted and the error of the results obtained was estimated and the dependence of the influence of noise and the time of data collection on the reliability of results was investigated. These works were carried out using two independent mesh sensors and the issue of the resolution of local velocity components was not covered. The purpose of this work was to test the correlation method for measuring velocity with temporal and spatial sampling using two-layer mesh conductometric sensors.As the result velocity cartograms were obtained over the cross-section of the experimental model with quasi-stationary mixing and the value of the average flow rate is in good agreement with the values obtained from the standard flow meters of the stand. Also measurements were carried out at a non-stationary setting of the experiment and realizations of the flow rate and velocity components of the flow at the measuring points were obtained.Analysis of the obtained values allows to conclude about the optimal data collection time for correlation measurements, as well as the reliability of results.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"47 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78793704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-22DOI: 10.21122/2220-9506-2021-12-4-286-291
V. Vasilevich, M. V. Zbyshinskaya
The main reason of voltage instability in stand-alone power supply systems is the electric drive motors inrush current, which are usually higher than their nominal value. The most reasonable way to solve this problem is using capacitive energy storage. The purpose of research is shape and measurement monitoring of battery-capacitive energy storage device inrush current characteristics. Parameters comparative analysis for lithium-ion battery (LIB) part and capacitive part of the energy storage device was holding with the twochannel digital oscilloscope.Measuring testing bench included parallel connected LIB part and capacitive part of the storage device and connected to the power source. The LIB part of the storage device is made on the basis of the ATOM 10 multifunctional motor drive device of the new generation, which contains 15 V lithium-ion battery and 9.4 A·h capacity. The capacitive part of the storage device is the INSPECTOR Booster supercapacitor with an 80 F electrostatic capacitance and 15.5 V voltage. A 12 V AC/DC step-down converter was used as a power source. An electric air automobile compressor M-14001 was used as a current drain. The testing bench measuring part consisted of a two-channel digital oscilloscope and two standard measuring shunts with 15000 μOm resistance serial attached to LIB part and capacitive part of the storage device. Shape and measurement monitoring of inrush current characteristics of LIB part and capacitive part of the energy storage device was held synchronously using a two-channel digital oscilloscope with recording data to FAT32 file system USB flash drive. Obtained data was transferred to a personal computer and analyzed.The measurement results showed that 82.3 % of the energy losses compensation of the motor start is taken over by the capacitive part of the energy storage device, what makes longer LIB’s life. By adjusting the oscilloscope sweep trace index you can analyze more detailed time response shape and its duration. The values of the inrush current amplitudes were calculated in proportion to the voltage drop on the shunts and their resistances.The developed method for monitoring shape and measurement inrush current characteristics can be used in various technical applications: smart stand-alone photovoltaic system, uninterruptible power supply devices, electric drive control systems, etc.
{"title":"Shape and Measurement Monitoring of Inrush Current Characteristics of a Battery-Capacitive Energy Storage Device with Two-Channel Digital Oscilloscope","authors":"V. Vasilevich, M. V. Zbyshinskaya","doi":"10.21122/2220-9506-2021-12-4-286-291","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-4-286-291","url":null,"abstract":"The main reason of voltage instability in stand-alone power supply systems is the electric drive motors inrush current, which are usually higher than their nominal value. The most reasonable way to solve this problem is using capacitive energy storage. The purpose of research is shape and measurement monitoring of battery-capacitive energy storage device inrush current characteristics. Parameters comparative analysis for lithium-ion battery (LIB) part and capacitive part of the energy storage device was holding with the twochannel digital oscilloscope.Measuring testing bench included parallel connected LIB part and capacitive part of the storage device and connected to the power source. The LIB part of the storage device is made on the basis of the ATOM 10 multifunctional motor drive device of the new generation, which contains 15 V lithium-ion battery and 9.4 A·h capacity. The capacitive part of the storage device is the INSPECTOR Booster supercapacitor with an 80 F electrostatic capacitance and 15.5 V voltage. A 12 V AC/DC step-down converter was used as a power source. An electric air automobile compressor M-14001 was used as a current drain. The testing bench measuring part consisted of a two-channel digital oscilloscope and two standard measuring shunts with 15000 μOm resistance serial attached to LIB part and capacitive part of the storage device. Shape and measurement monitoring of inrush current characteristics of LIB part and capacitive part of the energy storage device was held synchronously using a two-channel digital oscilloscope with recording data to FAT32 file system USB flash drive. Obtained data was transferred to a personal computer and analyzed.The measurement results showed that 82.3 % of the energy losses compensation of the motor start is taken over by the capacitive part of the energy storage device, what makes longer LIB’s life. By adjusting the oscilloscope sweep trace index you can analyze more detailed time response shape and its duration. The values of the inrush current amplitudes were calculated in proportion to the voltage drop on the shunts and their resistances.The developed method for monitoring shape and measurement inrush current characteristics can be used in various technical applications: smart stand-alone photovoltaic system, uninterruptible power supply devices, electric drive control systems, etc.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"15 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87244814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-22DOI: 10.21122/2220-9506-2021-12-4-301-310
A. R. Baev, N. V. Levkovitch, M. V. Asadchaya, A. L. Mayorov, G. I. Razmyslovich, A. Y. Burnos
Повышение эффективности акустической диагностики объектов со слоистой структурой применительно к выявлению слабо выявляемых дефектов сцепления материалов является важной производственной задачей. Цель работы состояла в экспериментальном моделировании рассеяния ультразвуковых волн на образцах предложенных конструкций имитаторов дефектов с дискретно и плавно изменяющимися граничными условиями, коррелирующими с фазовой характеристикой продольных волн в процессе их взаимодействия с дефектной границей контактирующих материалов.Проведён краткий анализ некоторых методов и средств экспериментального моделирования рассеяния объёмных и поверхностных волн на границах контактирующих материалов применительно к совершенствованию метода обнаружения слабо выявляемых дефектов сцепления (адгезии) материалов. Для этого разработана и изготовлена иммерсионная установка, работающая в теневом режиме и позволяющая моделировать пространственные поля рассеянных продольных волн на неоднородной или дефектной границе сцепления материалов. Как предполагается, взаимодействующие с такой границей волны приобретают дискретный или плавно изменяющийся фазовый сдвиг, существенно сказывающийся на формировании поля рассеяния в его периферийной зоне. Увеличение же этого сдвига позволяет значительно повысить чувствительность обнаружения слабо выявляемых дефектов.Проведено экспериментальное исследование рассеяния продольных волн на разработанной установке и имитаторах дефектов, моделирующих дискретно и плавно изменяющиеся граничные условия, которые согласуются с изменением фазового сдвига рассеиваемых волн. Получены амплитудные зависимости поля рассеяния в зависимости от угла их приема в диапазоне от 20º до + 20º и смещения центра моделируемого дефекта относительно оси зондирующего акустического луча. Как установлено, наблюдается качественное соответствие между расчётными и опытными данными.Настоящие исследования представляют интерес для решения ряда задач по повышению эффективности ультразвукового контроля современных объектов со слоистой структурой и будут способствовать расширению возможностей использования предложенного метода.
{"title":"Влияние геометрии и граничных условий в области сцепления материалов на рассеяние ультразвуковых волн. Ч. 2. Особенности экспериментального моделирования","authors":"A. R. Baev, N. V. Levkovitch, M. V. Asadchaya, A. L. Mayorov, G. I. Razmyslovich, A. Y. Burnos","doi":"10.21122/2220-9506-2021-12-4-301-310","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-4-301-310","url":null,"abstract":"Повышение эффективности акустической диагностики объектов со слоистой структурой применительно к выявлению слабо выявляемых дефектов сцепления материалов является важной производственной задачей. Цель работы состояла в экспериментальном моделировании рассеяния ультразвуковых волн на образцах предложенных конструкций имитаторов дефектов с дискретно и плавно изменяющимися граничными условиями, коррелирующими с фазовой характеристикой продольных волн в процессе их взаимодействия с дефектной границей контактирующих материалов.Проведён краткий анализ некоторых методов и средств экспериментального моделирования рассеяния объёмных и поверхностных волн на границах контактирующих материалов применительно к совершенствованию метода обнаружения слабо выявляемых дефектов сцепления (адгезии) материалов. Для этого разработана и изготовлена иммерсионная установка, работающая в теневом режиме и позволяющая моделировать пространственные поля рассеянных продольных волн на неоднородной или дефектной границе сцепления материалов. Как предполагается, взаимодействующие с такой границей волны приобретают дискретный или плавно изменяющийся фазовый сдвиг, существенно сказывающийся на формировании поля рассеяния в его периферийной зоне. Увеличение же этого сдвига позволяет значительно повысить чувствительность обнаружения слабо выявляемых дефектов.Проведено экспериментальное исследование рассеяния продольных волн на разработанной установке и имитаторах дефектов, моделирующих дискретно и плавно изменяющиеся граничные условия, которые согласуются с изменением фазового сдвига рассеиваемых волн. Получены амплитудные зависимости поля рассеяния в зависимости от угла их приема в диапазоне от 20º до + 20º и смещения центра моделируемого дефекта относительно оси зондирующего акустического луча. Как установлено, наблюдается качественное соответствие между расчётными и опытными данными.Настоящие исследования представляют интерес для решения ряда задач по повышению эффективности ультразвукового контроля современных объектов со слоистой структурой и будут способствовать расширению возможностей использования предложенного метода.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"21 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72537648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-22DOI: 10.21122/2220-9506-2021-12-4-323-331
A. V. Isaev, U. V. Suchodolov, A. S. Sushko, A. A. Sheinikau
In modern diagnostics, much attention is paid to measuring of time parameters, as well as their change over time. The purpose of this work is to develop a method for measuring of time intervals which made it possible to increase the measurement accuracy by reducing errors associated with the instability of main parameters of the pulse signal.In the most of approaches used, the error associated with the instability of main parameters of signals under study is not enough taken into account. As an alternative, a spectral method is proposed in which the measurement of time intervals, as well as their changes, is performed based on the analysis of pulse sequences formed on the basis of characteristic points of the measured signal. For this a double pulse sequence was considered, an equation for the amplitudes of its spectral components was obtained, and in accordance with this it was determined that the delay time between double pulses is the most informative parameter.Using the Mathcad software, an analysis of the sensitivity regions was carried out for the change in the main parameters of the pulse sequence, namely the repetition rate, as the main destabilizing factor.As a result of the implementation of the developed technique, a structural diagram of the measuring system is proposed and an analysis of the measurement error associated with the instability of the main parameters of the pulse sequence is carried out. This error is estimated to be less than 0.01 %.The considered method makes it possible to increase the accuracy of measuring time intervals due to the almost complete elimination of the influence of the instability of the reference frequency and the amplitude of the generated pulses which is unattainable with modern hardware, including digital signal processing.
{"title":"Increasing of the Accuracy of Signalsʼ Time Parameters Measuring Using Double Pulse Trains","authors":"A. V. Isaev, U. V. Suchodolov, A. S. Sushko, A. A. Sheinikau","doi":"10.21122/2220-9506-2021-12-4-323-331","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-4-323-331","url":null,"abstract":"In modern diagnostics, much attention is paid to measuring of time parameters, as well as their change over time. The purpose of this work is to develop a method for measuring of time intervals which made it possible to increase the measurement accuracy by reducing errors associated with the instability of main parameters of the pulse signal.In the most of approaches used, the error associated with the instability of main parameters of signals under study is not enough taken into account. As an alternative, a spectral method is proposed in which the measurement of time intervals, as well as their changes, is performed based on the analysis of pulse sequences formed on the basis of characteristic points of the measured signal. For this a double pulse sequence was considered, an equation for the amplitudes of its spectral components was obtained, and in accordance with this it was determined that the delay time between double pulses is the most informative parameter.Using the Mathcad software, an analysis of the sensitivity regions was carried out for the change in the main parameters of the pulse sequence, namely the repetition rate, as the main destabilizing factor.As a result of the implementation of the developed technique, a structural diagram of the measuring system is proposed and an analysis of the measurement error associated with the instability of the main parameters of the pulse sequence is carried out. This error is estimated to be less than 0.01 %.The considered method makes it possible to increase the accuracy of measuring time intervals due to the almost complete elimination of the influence of the instability of the reference frequency and the amplitude of the generated pulses which is unattainable with modern hardware, including digital signal processing. ","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"43 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81398312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-22DOI: 10.21122/2220-9506-2021-12-4-259-271
N. Bezuglaya, A. A. Haponiuk, D. Bondariev, S. Poluectov, V. Chornyi, M. Bezuglyi
Biomedical photometersʼ information-measuring systems with ellipsoidal reflectors have acceptable results in determining of biological tissues optical properties in the visible and near-infrared spectral range. These photometers make it possible to study the optical radiation propagation in turbid media for direct and inverse problems of light-scattering optics. The purpose of this work is to study the influence of the ellipsoidal reflectors design parameters on the results of biomedical photometry when simulating the optical radiation propagation in a system of biological tissue and reflectors in transmitted and reflected light.The paper substantiates the choice of the ellipsoidal reflectors’ focal parameter for efficient registration of forward and backscattered light. The methodology of the process is illustrated by the results of a model experiment using the Monte Carlo simulation for samples of human brain white and gray matter at the visible range of 405 nm, 532 nm, and 650 nm. The total transmittance, diffuse reflectance, and absorption graphs depending on the sample thickness were obtained. Based on the introduced concepts of the ellipsoidal reflector efficiency index and its efficiency factor, the expediency of choosing the ellipsoidal reflectors focal parameter is analyzed to ensure the registration of the maximum amount of scattered light. The graphs of efficiency index in reflected and transmitted light for different thickness samples of white and gray matter and efficiency factors depending on the sample thickness were obtained.The influence of the reflectors ellipticity on the illuminance of various zones of photometric images using the example of an absorbing biological medium – pig liver tissue – at wavelength of 405 nm with a Monte Carlo simulation was analyzed.The optical properties of biological media (scattering and absorption coefficients, scattering anisotropy factor, refractive index) and the samples’ geometric dimensions, particularly the thickness, are predetermined when choosing the ellipsoidal reflectors parameters for registration of the scattered light. Coordinates of the output of photons and their statistical weight obtained in the Monte Carlo simulation of light propagation in biological tissue have a physical effect on a characteristic scattering spot formation in the receiving plane of a biomedical photometer with ellipsoidal reflectors.
{"title":"Rationale for the Choice of the Ellipsoidal Reflector Parameters for Biomedical Photometers","authors":"N. Bezuglaya, A. A. Haponiuk, D. Bondariev, S. Poluectov, V. Chornyi, M. Bezuglyi","doi":"10.21122/2220-9506-2021-12-4-259-271","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-4-259-271","url":null,"abstract":"Biomedical photometersʼ information-measuring systems with ellipsoidal reflectors have acceptable results in determining of biological tissues optical properties in the visible and near-infrared spectral range. These photometers make it possible to study the optical radiation propagation in turbid media for direct and inverse problems of light-scattering optics. The purpose of this work is to study the influence of the ellipsoidal reflectors design parameters on the results of biomedical photometry when simulating the optical radiation propagation in a system of biological tissue and reflectors in transmitted and reflected light.The paper substantiates the choice of the ellipsoidal reflectors’ focal parameter for efficient registration of forward and backscattered light. The methodology of the process is illustrated by the results of a model experiment using the Monte Carlo simulation for samples of human brain white and gray matter at the visible range of 405 nm, 532 nm, and 650 nm. The total transmittance, diffuse reflectance, and absorption graphs depending on the sample thickness were obtained. Based on the introduced concepts of the ellipsoidal reflector efficiency index and its efficiency factor, the expediency of choosing the ellipsoidal reflectors focal parameter is analyzed to ensure the registration of the maximum amount of scattered light. The graphs of efficiency index in reflected and transmitted light for different thickness samples of white and gray matter and efficiency factors depending on the sample thickness were obtained.The influence of the reflectors ellipticity on the illuminance of various zones of photometric images using the example of an absorbing biological medium – pig liver tissue – at wavelength of 405 nm with a Monte Carlo simulation was analyzed.The optical properties of biological media (scattering and absorption coefficients, scattering anisotropy factor, refractive index) and the samples’ geometric dimensions, particularly the thickness, are predetermined when choosing the ellipsoidal reflectors parameters for registration of the scattered light. Coordinates of the output of photons and their statistical weight obtained in the Monte Carlo simulation of light propagation in biological tissue have a physical effect on a characteristic scattering spot formation in the receiving plane of a biomedical photometer with ellipsoidal reflectors.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"2 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81969592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-15DOI: 10.21122/2220-9506-2021-12-3-202-210
N. Poklonski, I. I. Anikeev, S. A. Vyrko
The study of the electrophysical characteristics of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant varactors. The capacitance-voltage characteristics of a disordered semiconductor can be used to determine the concentration of point defects in its crystal matrix. The purpose of this work is to calculate the low-frequency admittance of a capacitor with the working substance “insulator–crystalline semiconductor with point t-defects in charge states (−1), (0) and (+1)–insulator”. A layer of a partially disordered semiconductor with a thickness of 150 μm is separated from the metal plates of the capacitor by insulating layers of polyimide with a thickness of 3 μm. The partially disordered semiconductor of the working substance of the capacitor can be, for example, a highly defective crystalline silicon containing point t-defects randomly (Poissonian) distributed over the crystal in charge states (−1), (0), and (+1), between which single electrons migrate in a hopping manner. It is assumed that the electron hops occur only from t-defects in the charge state (−1) to t-defects in the charge state (0) and from t-defects in the charge state (0) to t-defects in the charge state (+1).In this work, for the first time, the averaging of the hopping diffusion coefficients over all probable electron hopping lengths via t-defects in the charge states (−1), (0) and (0), (+1) in the covalent crystal matrix was carried out. For such an element, the low-frequency admittance and phase shift angle between current and voltage as the functions on the voltage applied to the capacitor electrodes were calculated at the t-defect concentration of 3∙1019 cm−3 for temperatures of 250, 300, and 350 K and at temperature of 300 K for the t-defect concentrations of 1∙1019, 3∙1019, and 1∙1020 cm−3.
{"title":"Low-Frequency Admittance of Capacitor with Working Substance “Insulator–Partially Disordered Semiconductor– Insulator”","authors":"N. Poklonski, I. I. Anikeev, S. A. Vyrko","doi":"10.21122/2220-9506-2021-12-3-202-210","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-3-202-210","url":null,"abstract":"The study of the electrophysical characteristics of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant varactors. The capacitance-voltage characteristics of a disordered semiconductor can be used to determine the concentration of point defects in its crystal matrix. The purpose of this work is to calculate the low-frequency admittance of a capacitor with the working substance “insulator–crystalline semiconductor with point t-defects in charge states (−1), (0) and (+1)–insulator”. A layer of a partially disordered semiconductor with a thickness of 150 μm is separated from the metal plates of the capacitor by insulating layers of polyimide with a thickness of 3 μm. The partially disordered semiconductor of the working substance of the capacitor can be, for example, a highly defective crystalline silicon containing point t-defects randomly (Poissonian) distributed over the crystal in charge states (−1), (0), and (+1), between which single electrons migrate in a hopping manner. It is assumed that the electron hops occur only from t-defects in the charge state (−1) to t-defects in the charge state (0) and from t-defects in the charge state (0) to t-defects in the charge state (+1).In this work, for the first time, the averaging of the hopping diffusion coefficients over all probable electron hopping lengths via t-defects in the charge states (−1), (0) and (0), (+1) in the covalent crystal matrix was carried out. For such an element, the low-frequency admittance and phase shift angle between current and voltage as the functions on the voltage applied to the capacitor electrodes were calculated at the t-defect concentration of 3∙1019 cm−3 for temperatures of 250, 300, and 350 K and at temperature of 300 K for the t-defect concentrations of 1∙1019, 3∙1019, and 1∙1020 cm−3. ","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"4 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81518799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-25DOI: 10.21122/2220-9506-2021-12-2-146-155
Дмитрий Михайлович Малютин
The development of wave solid-state gyroscopes (VTG) is one of the promising areas of development of gyroscopic angular velocity sensors. VTG from the standpoint of manufacturing technology, tuning and control systems, as well as accuracy characteristics, has a number of advantages compared to other types of gyroscopes. When developing VTG, they strive to reduce the gyroscope's own care, zero signal bias, and the non-linearity of the scale factor in the operating temperature range However, when creating the device, due attention is often not paid to the existing opportunities to improve the dynamic accuracy of the gyroscope by developing promising structural solutions for building control circuits and information processing. The solution to this problem was the goal of the work.Using the methods of the theory of automatic control, the dynamics of a wave solid-state gyroscope with a metal resonator and piezoelectric elements in the closed-loop mode of Сoriolis acceleration compensation are studied. Piezoelectric elements perform the functions of displacement and force sensors.Two promising structural solutions for constructing VTG control and information processing circuits are proposed and considered. Relations are established for selecting the parameters of the links of these contours, which provide an increase in the dynamic accuracy of the gyroscope. In the first case, the proposed structure for constructing the VTG allows us to significantly reduce the dynamic errors caused by the difference in the scale coefficient of the VTG at different frequencies of the measured angular velocity in the bandwidth. Such a structure for constructing a VTG can be recommended when solving a measurement problem in which it is necessary to accurately measure the angular velocity, and the phase lag of the output signal in relation to the measured angular velocity is of secondary importance. In the second case, the proposed structure of the VTG construction corresponds to the transfer function of the relative measurement error with secondorder astatism, and the absolute measurement error in the frequency band of 10 Hz does not exceed 0.1 %.
{"title":"Structural Solutions that Increase the Dynamic Accuracy of a Wave Solid-State Gyroscope","authors":"Дмитрий Михайлович Малютин","doi":"10.21122/2220-9506-2021-12-2-146-155","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-2-146-155","url":null,"abstract":"The development of wave solid-state gyroscopes (VTG) is one of the promising areas of development of gyroscopic angular velocity sensors. VTG from the standpoint of manufacturing technology, tuning and control systems, as well as accuracy characteristics, has a number of advantages compared to other types of gyroscopes. When developing VTG, they strive to reduce the gyroscope's own care, zero signal bias, and the non-linearity of the scale factor in the operating temperature range However, when creating the device, due attention is often not paid to the existing opportunities to improve the dynamic accuracy of the gyroscope by developing promising structural solutions for building control circuits and information processing. The solution to this problem was the goal of the work.Using the methods of the theory of automatic control, the dynamics of a wave solid-state gyroscope with a metal resonator and piezoelectric elements in the closed-loop mode of Сoriolis acceleration compensation are studied. Piezoelectric elements perform the functions of displacement and force sensors.Two promising structural solutions for constructing VTG control and information processing circuits are proposed and considered. Relations are established for selecting the parameters of the links of these contours, which provide an increase in the dynamic accuracy of the gyroscope. In the first case, the proposed structure for constructing the VTG allows us to significantly reduce the dynamic errors caused by the difference in the scale coefficient of the VTG at different frequencies of the measured angular velocity in the bandwidth. Such a structure for constructing a VTG can be recommended when solving a measurement problem in which it is necessary to accurately measure the angular velocity, and the phase lag of the output signal in relation to the measured angular velocity is of secondary importance. In the second case, the proposed structure of the VTG construction corresponds to the transfer function of the relative measurement error with secondorder astatism, and the absolute measurement error in the frequency band of 10 Hz does not exceed 0.1 %.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"1 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89040008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-25DOI: 10.21122/2220-9506-2021-12-2-156-165
A. M. Timofeev
Receiving modules of single-photon communication channels should provide the least loss of transmitted information when measuring low-power optical signals. In this regard, it is advisable to use photon counters. They are highly sensitive, but are characterized by data logging errors. Therefore, the purpose of this work was to investigate the effect of the intensity of the recorded optical radiation during the transmission of binary symbols «0» on the probability of erasing these symbols in a single-photon communication channel containing a photon counter based on an avalanche photodetector as a receiving module with a passive avalanche suppression scheme.The lower and upper threshold levels of pulses recorded at the output of the photon counter, as well as the statistical distributions of the mixture of the number of dark and signal pulses at the output of the photon counter when registering binary symbols «0» Pst0( N ) and «1» Pst1( N ) were determined. For this, a technique was used to reduce information loss. As a result, the minimum probability of erasing binary symbols «0» P(–/0) was achieved.The performed experimental results showed that to achieve the minimum probability of erasing binary symbols «0» P(–/0) = 0,11·10−2, it is important to select not only the intensity of the used optical radiation J , but also the supply voltage of the avalanche photodetector U, at which the dead time of the photon counter is −2 minimal, and its quantum detection efficiency is maximum: J0 ≥ 98,94·10−2 rel. units and U = 52,54 V.
{"title":"Measurement of the Probability of a Binary Symbol «0» Erasing in a Single-Photon Asynchronous Communication Channel with a Receiver Based on a Photon Counter","authors":"A. M. Timofeev","doi":"10.21122/2220-9506-2021-12-2-156-165","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-2-156-165","url":null,"abstract":"Receiving modules of single-photon communication channels should provide the least loss of transmitted information when measuring low-power optical signals. In this regard, it is advisable to use photon counters. They are highly sensitive, but are characterized by data logging errors. Therefore, the purpose of this work was to investigate the effect of the intensity of the recorded optical radiation during the transmission of binary symbols «0» on the probability of erasing these symbols in a single-photon communication channel containing a photon counter based on an avalanche photodetector as a receiving module with a passive avalanche suppression scheme.The lower and upper threshold levels of pulses recorded at the output of the photon counter, as well as the statistical distributions of the mixture of the number of dark and signal pulses at the output of the photon counter when registering binary symbols «0» Pst0( N ) and «1» Pst1( N ) were determined. For this, a technique was used to reduce information loss. As a result, the minimum probability of erasing binary symbols «0» P(–/0) was achieved.The performed experimental results showed that to achieve the minimum probability of erasing binary symbols «0» P(–/0) = 0,11·10−2, it is important to select not only the intensity of the used optical radiation J , but also the supply voltage of the avalanche photodetector U, at which the dead time of the photon counter is −2 minimal, and its quantum detection efficiency is maximum: J0 ≥ 98,94·10−2 rel. units and U = 52,54 V. ","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"11 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75092839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21122/2220-9506-2021-12-3-211-219
A. Baev, A. I. Мitkovets, M. Asadchaya, A. Mayorov
Magnetic fluids belong to the class of nanomaterials with a high gain of light absorption, aggregative and sedimentation stability as well as controllability by external fields, which is of interest to use in the field of optoacoustics. The purpose of the work was to experimentally study the effect of the optoacoustic transformation in a magnetic fluid, depending on the concentration of magnetic colloidal particles, boundary conditions, intensity of the laser as well as to identify the possibilities of using the magnetic fluid as an element of the optoacoustic transformation in a number of applications.A brief analysis of the optoacoustic transformation mechanism in a magnetic fluid was carried out and a technique and an installation that implements the shadow measurement variant developed. A Lotis type laser was used as a source of ultrasonic pulse-laser excitation in magnetic fluids. A quartz and air were used as a material transmitting the energy of laser radiation in a magnetic fluid. Receiving of ultrasound signals was made by a piezoelectric probe at a working frequency of 5 MHz. In the measurement process, the concentration of the dispersed phase in tmagnetic fluid was varied from zero to 8 % and the energy in the impulse – from zero to 10 mJ.For the first time, it was established that: a) an amplitude of the function of the optoacoustic transformation in a magnetic fluid, depending on the concentration of the dispersed phase, has a maximum determined by the fluid physical properties and boundary conditions; b) for all samples within the measurement error, a quasilinear dependence of the specified amplitude of energy in the laser pulse in the range of 0–8 MJ has been established.A number ways of the optoacoustic effects in magnetic fluids to use in ultrasonic testing, measuring the intensity of the laser radiation had been suggested.
{"title":"Impulsively-Laser Excitation and Propagation of Ultrasonic Waves through Nanomagnetic Fluid","authors":"A. Baev, A. I. Мitkovets, M. Asadchaya, A. Mayorov","doi":"10.21122/2220-9506-2021-12-3-211-219","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-3-211-219","url":null,"abstract":"Magnetic fluids belong to the class of nanomaterials with a high gain of light absorption, aggregative and sedimentation stability as well as controllability by external fields, which is of interest to use in the field of optoacoustics. The purpose of the work was to experimentally study the effect of the optoacoustic transformation in a magnetic fluid, depending on the concentration of magnetic colloidal particles, boundary conditions, intensity of the laser as well as to identify the possibilities of using the magnetic fluid as an element of the optoacoustic transformation in a number of applications.A brief analysis of the optoacoustic transformation mechanism in a magnetic fluid was carried out and a technique and an installation that implements the shadow measurement variant developed. A Lotis type laser was used as a source of ultrasonic pulse-laser excitation in magnetic fluids. A quartz and air were used as a material transmitting the energy of laser radiation in a magnetic fluid. Receiving of ultrasound signals was made by a piezoelectric probe at a working frequency of 5 MHz. In the measurement process, the concentration of the dispersed phase in tmagnetic fluid was varied from zero to 8 % and the energy in the impulse – from zero to 10 mJ.For the first time, it was established that: a) an amplitude of the function of the optoacoustic transformation in a magnetic fluid, depending on the concentration of the dispersed phase, has a maximum determined by the fluid physical properties and boundary conditions; b) for all samples within the measurement error, a quasilinear dependence of the specified amplitude of energy in the laser pulse in the range of 0–8 MJ has been established.A number ways of the optoacoustic effects in magnetic fluids to use in ultrasonic testing, measuring the intensity of the laser radiation had been suggested.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"8 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83380263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.21122/2220-9506-2021-12-3-220-221
V. Yakimov
The method of averaging modified periodograms is one of the main methods for estimating the power spectral density (PSD). The aim of this work was the development of mathematical and algorithmic support, which can increase the computational efficiency of signals digital spectral analysis by this method.The solution to this problem is based on the use of binary-sign stochastic quantization for converting the analyzed signal into a digital code. A special feature of this quantization is the use of a randomizing uniformly distributed auxiliary signal as a stochastic continuous quantization threshold (threshold function). Taking into account the theory of discrete-event modeling the result of binary-sign quantization is interpreted as a chronological sequence of instantaneous events in which its values change. In accordance with this we have a set of time samples that uniquely determine the result of binary-sign quantization in discrete-time form. Discrete-event modeling made it possible to discretize the process of calculating PSD estimates. As a result, the calculation of PSD estimates was reduced to discrete processing of the cosine and sine Fourier transforms for window functions. These Fourier transforms are calculated analytically based on the applied window functions. The obtained mathematical equations for calculating the PSD estimates practically do not require multiplication operations. The main operations of these equations are addition and subtraction. As a consequence, the time spent on digital spectral analysis of signals is reduced.Numerical experiments have shown that the developed mathematical and algorithmic support allows us to calculate the PSD estimates by the method of averaging modified periodograms with a high frequency resolution and accuracy even for a sufficiently low signal-to-noise ratio. This result is especially important for spectral analysis of broadband signals.The developed software module is a problem-oriented component that can be used as part of metrologically significant software for the operational analysis of complex signals.
{"title":"Digital Spectral Analysis by means of the Method of Averag Modified Periodograms Using Binary-Sign Stochastic Quantization of Signals","authors":"V. Yakimov","doi":"10.21122/2220-9506-2021-12-3-220-221","DOIUrl":"https://doi.org/10.21122/2220-9506-2021-12-3-220-221","url":null,"abstract":"The method of averaging modified periodograms is one of the main methods for estimating the power spectral density (PSD). The aim of this work was the development of mathematical and algorithmic support, which can increase the computational efficiency of signals digital spectral analysis by this method.The solution to this problem is based on the use of binary-sign stochastic quantization for converting the analyzed signal into a digital code. A special feature of this quantization is the use of a randomizing uniformly distributed auxiliary signal as a stochastic continuous quantization threshold (threshold function). Taking into account the theory of discrete-event modeling the result of binary-sign quantization is interpreted as a chronological sequence of instantaneous events in which its values change. In accordance with this we have a set of time samples that uniquely determine the result of binary-sign quantization in discrete-time form. Discrete-event modeling made it possible to discretize the process of calculating PSD estimates. As a result, the calculation of PSD estimates was reduced to discrete processing of the cosine and sine Fourier transforms for window functions. These Fourier transforms are calculated analytically based on the applied window functions. The obtained mathematical equations for calculating the PSD estimates practically do not require multiplication operations. The main operations of these equations are addition and subtraction. As a consequence, the time spent on digital spectral analysis of signals is reduced.Numerical experiments have shown that the developed mathematical and algorithmic support allows us to calculate the PSD estimates by the method of averaging modified periodograms with a high frequency resolution and accuracy even for a sufficiently low signal-to-noise ratio. This result is especially important for spectral analysis of broadband signals.The developed software module is a problem-oriented component that can be used as part of metrologically significant software for the operational analysis of complex signals.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"3 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87875230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}