Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101824
Jiaqi Fang , Wenlong Sun
The synthesis and photocatalytic properties of cobalt-incorporated polyoxometalate H18[α1-P2W17Co(H2O)O61]-[Co4(H2O)2(PW9O34)2] (1) were reported, and split into α1-H8-[P2W17Co(H2O)O61] (2) and H10[Co4(H2O)2(PW9O34)2] (3) by adjusting the types of acids and solvents in the reaction. The photocatalytic production of O2 and H2 from water by compounds 1, 2 and 3 was evaluated. Notably, compounds 1 and 2 demonstrate superior performance in the photocatalytic production of both hydrogen and oxygen, whereas compound 3 solely exhibits activity in the photocatalytic generation of oxygen. The significantly enhanced performance against the control [P2W18O62]6− can be attributed to the modulation of the electronic structures of these novel POMs facilitated by the incorporation of cobalt.
{"title":"Photocatalytic water splitting for hydrogen and oxygen evolution using cobalt- substituted polyoxometalates","authors":"Jiaqi Fang , Wenlong Sun","doi":"10.1016/j.rechem.2024.101824","DOIUrl":"10.1016/j.rechem.2024.101824","url":null,"abstract":"<div><div>The synthesis and photocatalytic properties of cobalt-incorporated polyoxometalate H<sub>18</sub>[α<sub>1</sub>-P<sub>2</sub>W<sub>17</sub>Co(H<sub>2</sub>O)O<sub>61</sub>]-[Co<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(PW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>] (<strong>1</strong>) were reported, and split into α<sub>1</sub>-H<sub>8</sub>-[P<sub>2</sub>W<sub>17</sub>Co(H<sub>2</sub>O)O<sub>61</sub>] (<strong>2</strong>) and H<sub>10</sub>[Co<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>(PW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>] (<strong>3</strong>) by adjusting the types of acids and solvents in the reaction. The photocatalytic production of O<sub>2</sub> and H<sub>2</sub> from water by compounds <strong>1</strong>, <strong>2</strong> and <strong>3</strong> was evaluated. Notably, compounds <strong>1</strong> and <strong>2</strong> demonstrate superior performance in the photocatalytic production of both hydrogen and oxygen, whereas compound 3 solely exhibits activity in the photocatalytic generation of oxygen. The significantly enhanced performance against the control [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6−</sup> can be attributed to the modulation of the electronic structures of these novel POMs facilitated by the incorporation of cobalt.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101824"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101841
H. Shashidharagowda , Shridhar Mathad , Shridhar Malladi , C.G. Kusuma , Vinod Gubbiveeranna , S. Nagaraju , H. Ravi Kumar , Sahebagouda Jambaladinni , Huda Wazzan , Anish Khan , Khalid A Alzahrani , Hadi M Marwani , Mohammad A. Wazzan , Asmaa M. Malash
Copper subbed zinc manganite Zn(1-x)CuxMn2O4 (x = 0.05,0.15,0.25,0.35,0.45,0.55) (BCZMO) NPs were prepared by sol–gel co-precipitation technique at surrounding temperature. BCZMO NPs were analyzed by XRD, SEMfor microstructure characterizations. XRD study confirms the tetragon structure of BCZMO NPs and effect of copper on ZMO NPs. SEM micrographs supports our findings. The BCZMO NPs interfered in blood coagulation and exhibited pro-coagulant property. BCZMO NPs decreased the coagulation time of citrated plasma from control 4.31 min to 1.35 min. In addition, the BCZMO NPs aggregated platelets up to 80 % at a concentration of 600 µg while the agonist epinephrine prompted platelet collection of around 90 % at 10 mM concentration.No kind of hemolytic activity in RBC cells shown by these BCZMO-NPs insisting their non-toxic nature. These BCZMO-NPs exhibited pro-coagulant effect with their interference in blood coagulation cascade and initiation in platelet aggregation. Thus, BCZMO NPs can be a potential candidate in biomedical field as hemostatic agents.
{"title":"Fabrication, microstructure and hemostatic activity of Cu-Zn manganite nanoparticles","authors":"H. Shashidharagowda , Shridhar Mathad , Shridhar Malladi , C.G. Kusuma , Vinod Gubbiveeranna , S. Nagaraju , H. Ravi Kumar , Sahebagouda Jambaladinni , Huda Wazzan , Anish Khan , Khalid A Alzahrani , Hadi M Marwani , Mohammad A. Wazzan , Asmaa M. Malash","doi":"10.1016/j.rechem.2024.101841","DOIUrl":"10.1016/j.rechem.2024.101841","url":null,"abstract":"<div><div>Copper subbed zinc manganite Zn(1-x)CuxMn<sub>2</sub>O<sub>4</sub> (x = 0.05,0.15,0.25,0.35,0.45,0.55) (BCZMO) NPs were prepared by sol–gel co-precipitation technique at surrounding temperature. BCZMO NPs were analyzed by XRD, SEMfor microstructure characterizations. XRD study confirms the tetragon structure of BCZMO NPs and effect of copper on ZMO NPs. SEM micrographs supports our findings. The BCZMO NPs interfered in blood coagulation and exhibited pro-coagulant property. BCZMO NPs decreased the coagulation time of citrated plasma from control 4.31 min to 1.35 min. In addition, the BCZMO NPs aggregated platelets up to 80 % at a concentration of 600 µg while the agonist epinephrine prompted platelet collection of around 90 % at 10 mM <span><span>concentration.No</span><svg><path></path></svg></span> kind of hemolytic activity in RBC cells shown by these BCZMO-NPs insisting their non-toxic nature. These BCZMO-NPs exhibited pro-coagulant effect with their interference in blood coagulation cascade and initiation in platelet aggregation. Thus, BCZMO NPs can be a potential candidate in biomedical field as hemostatic agents.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101841"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101822
Salah M. El-Bahy , Ahmad O. Babalghith , Refat El-Sayed , Khaled F. Debbabi , Alaa S. Amin
An innovative and exceptionally responsive optical sensing device engineered to selectively identify Bi(III) ions in water-based solutions. The sensing component, 5-(2′,4′-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (DMPAHPD), is incorporated into a plasticized polyvinyl chloride (PVC) membrane. The sensor demonstrates an exceptional selectivity for Bi(III) within a broad dynamic range spanning from 7.5 × 10−10 to 4.2 × 10−5 M at pH 2.25. Notably, it achieves lower quantification and detection limits of 7.25 × 10−10 and 2.15 × 10−10 M, respectively. The optode membrane’s response to Bi(III) proves to be entirely reversible, demonstrating remarkable selectivity for Bi(III) ions over a diverse range of other cations and anions. The sensor exhibits favorable performance characteristics, including good reversibility, a wide dynamic range, a prolonged lifespan, sustained response stability over the long term, and high reproducibility. This visual chemical sensor exhibits potential for real-world usage, offering consistent outcomes when assessing Bi(III) levels in matrices such as water, soil, plants, biological and synthetic mixtures. Importantly, the sensor’s performance is comparable to corresponding data achieved from inductively coupled plasma atomic emission spectroscopy (ICP-AES).
{"title":"Revolutionizing sensing technologies: Crafting a green, ultra-sensitive bismuth optical sensor via fixation of 5-(2′,4′-dimethyl-phenylazo)-6-hydroxypyrimidine-2,4-dione on PVC membrane","authors":"Salah M. El-Bahy , Ahmad O. Babalghith , Refat El-Sayed , Khaled F. Debbabi , Alaa S. Amin","doi":"10.1016/j.rechem.2024.101822","DOIUrl":"10.1016/j.rechem.2024.101822","url":null,"abstract":"<div><div>An innovative and exceptionally responsive optical sensing device engineered to selectively identify Bi(III) ions in water-based solutions. The sensing component, 5-(2′,4′-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (DMPAHPD), is incorporated into a plasticized polyvinyl chloride (PVC) membrane. The sensor demonstrates an exceptional selectivity for Bi(III) within a broad dynamic range spanning from 7.5 × 10<sup>−10</sup> to 4.2 × 10<sup>−5</sup> M at pH 2.25. Notably, it achieves lower quantification and detection limits of 7.25 × 10<sup>−10</sup> and 2.15 × 10<sup>−10</sup> M, respectively. The optode membrane’s response to Bi(III) proves to be entirely reversible, demonstrating remarkable selectivity for Bi(III) ions over a diverse range of other cations and anions. The sensor exhibits favorable performance characteristics, including good reversibility, a wide dynamic range, a prolonged lifespan, sustained response stability over the long term, and high reproducibility. This visual chemical sensor exhibits potential for real-world usage, offering consistent outcomes when assessing Bi(III) levels in matrices such as water, soil, plants, biological and synthetic mixtures. Importantly, the sensor’s performance is comparable to corresponding data achieved from inductively coupled plasma atomic emission spectroscopy (ICP-AES).</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101822"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proton exchange membrane fuel cells (PEMFCs) have attracted extensive interest in both automotive and stationary applications. However, the drawback hindering the large-scale commercialization of PEMFCs is related to problems such as insufficient power density, high cost, and short operation duration. The major reason for these problems is the sluggish oxygen reduction reaction (ORR) kinetics which takes place on the cathode side of the fuel cell due to the poor catalytic activity and durability of the expensive Platinum (Pt)-based catalyst employed. Subsequently, current research efforts are focusing on the design and development of an advanced Pt-based catalyst that is highly active and durable. As a result, alloying Pt with 3d-transition metals has been known to improve the ORR kinetics, especially of faceted polyhedrons, hollow nanostructures, and one-dimensional nanocrystals. This review therefore focuses on the synthesis protocols of the shaped and structured Pt-3d-transition metal (Pt-TM) alloys. As such, the synthesis control of the shape/structure, size, and chemical composition of various Pt-TM nano-alloys will be extensively reviewed here followed by a discussion of their electrocatalytic activity as applied in ORR reactions. Lastly, it discusses the outlook on the potential challenges and prospects of shape/structure-controlled electrocatalysts.
{"title":"Shaped and structured Pt-3d-transition metal alloy nanocrystals as electrocatalysts for the oxygen reduction reaction","authors":"Siphelo Ngqoloda , Nyiko Chauke , Thelma Ngwenya , Mpfunzeni Raphulu","doi":"10.1016/j.rechem.2024.101831","DOIUrl":"10.1016/j.rechem.2024.101831","url":null,"abstract":"<div><div>Proton exchange membrane fuel cells (PEMFCs) have attracted extensive interest in both automotive and stationary applications. However, the drawback hindering the large-scale commercialization of PEMFCs is related to problems such as insufficient power density, high cost, and short operation duration. The major reason for these problems is the sluggish oxygen reduction reaction (ORR) kinetics which takes place on the cathode side of the fuel cell<!--> <!-->due to the poor catalytic activity and durability of the<!--> <!-->expensive<!--> <!-->Platinum (Pt)-based catalyst employed. Subsequently, current research efforts are focusing on the design and development of an advanced Pt-based catalyst that is highly active and durable. As a result, alloying Pt with<!--> <em>3d</em>-transition metals has been known to improve the ORR kinetics, especially of faceted polyhedrons, hollow nanostructures, and one-dimensional nanocrystals. This review therefore focuses on the synthesis protocols<!--> <!-->of the shaped and structured Pt-<em>3d</em>-transition metal (Pt-TM) alloys. As such, the synthesis control of the shape/structure, size, and chemical composition of various Pt-TM nano-alloys will be extensively reviewed here followed by a discussion of their electrocatalytic activity as applied in ORR reactions. Lastly, it discusses the outlook on the potential challenges and prospects of shape/structure-controlled electrocatalysts.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101831"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hazardous organic pollutants in industrial wastewaters are becoming a major global challenge that threatens life on earth and particularly poses a serious health risk to human beings. 4-Nitrophenol (4-NP) is a highly hazardous organic contaminant that has been extensively utilized across multiple industries, and their wastewater disposal into water streams leads to a higher accumulation of 4-NP. It is therefore important for both academia and industry to make catalysts that are cheap, very effective, good for the environment, easy to recover, and can be used more than once for reducing 4-NP in normal conditions. This paper reports the synthesis, characterization, and application of Cu/kaolin nanocomposite (NC) as an efficient heterogeneous catalyst for decomposing 4-NP, a model organic molecule. The catalyst was synthesized by incorporating a copper precursor into layered kaolin clay and directly reducing the metal precursor using sodium borohydride (NaBH4). The morphology, structure, surface property, and interaction of the resulting Cu/kaolin NC were characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron spectroscopy/energy-dispersive X-ray spectroscopy, selected area electron diffraction, X-ray diffraction, and N2 adsorption/desorption, and the results clearly demonstrated the growth of copper nanoparticles on the kaolin surface. It was discovered that the Cu nanoparticles (NPs) on the kaolin surface had a crystallite size of about 23.6 nm. The significance of Cu NPs and the high catalytic activity of the synthesized Cu/kaolin NC toward 4-NP reduction by NaBH4 were evaluated by the catalytic reduction experiments. Among the different nanocomposites synthesized, 30-Cu/kaolin showed the highest catalytic activity for 4-NP reduction, with a reduction efficiency of over 99 % within 4 min with a pseudo-first-order rate constant, kapp, of 1.23 min−1. Furthermore, the reusability test indicated that Cu/kaolin NC can be reused for up to six runs efficiently without significant decrease in its catalytic performance, indicating the nanocomposite has excellent stability and great potential applications in industrial and agricultural wastewater treatment.
{"title":"Facile fabrication of Cu/kaolin nanocomposite as highly efficient heterogeneous catalyst for 4-nitrophenol reduction in aqueous solution","authors":"Zinabu Gashaw Asmare , Belete Asefa Aragaw , Minaleshewa Atlabachew , Amare Aregahegn Dubale","doi":"10.1016/j.rechem.2024.101836","DOIUrl":"10.1016/j.rechem.2024.101836","url":null,"abstract":"<div><div>Hazardous organic pollutants in industrial wastewaters are becoming a major global challenge that threatens life on earth and particularly poses a serious health risk to human beings. 4-Nitrophenol (4-NP) is a highly hazardous organic contaminant that has been extensively utilized across multiple industries, and their wastewater disposal into water streams leads to a higher accumulation of 4-NP. It is therefore important for both academia and industry to make catalysts that are cheap, very effective, good for the environment, easy to recover, and can be used more than once for reducing 4-NP in normal conditions. This paper reports the synthesis, characterization, and application of Cu/kaolin nanocomposite (NC) as an efficient heterogeneous catalyst for decomposing 4-NP, a model organic molecule. The catalyst was synthesized by incorporating a copper precursor into layered kaolin clay and directly reducing the metal precursor using sodium borohydride (NaBH<sub>4</sub>). The morphology, structure, surface property, and interaction of the resulting Cu/kaolin NC were characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron spectroscopy/energy-dispersive X-ray spectroscopy, selected area electron diffraction, X-ray diffraction, and N<sub>2</sub> adsorption/desorption, and the results clearly demonstrated the growth of copper nanoparticles on the kaolin surface. It was discovered that the Cu nanoparticles (NPs) on the kaolin surface had a crystallite size of about 23.6 nm. The significance of Cu NPs and the high catalytic activity of the synthesized Cu/kaolin NC toward 4-NP reduction by NaBH<sub>4</sub> were evaluated by the catalytic reduction experiments. Among the different nanocomposites synthesized, 30-Cu/kaolin showed the highest catalytic activity for 4-NP reduction, with a reduction efficiency of over 99 % within 4 min with a pseudo-first-order rate constant, k<sub>app</sub>, of 1.23 min<sup>−1</sup>. Furthermore, the reusability test indicated that Cu/kaolin NC can be reused for up to six runs efficiently without significant decrease in its catalytic performance, indicating the nanocomposite has excellent stability and great potential applications in industrial and agricultural wastewater treatment.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101836"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101807
Mohamed Abdel-Megid , Kamelia M. El-mahdy , Azza.M. Elkazak , Sylvia E. Zarif , Mostafa E. Salem
Thiazolopyrimidines are bicyclic compounds formed by the fusion of thiazole and pyrimidine rings in a single molecular frame. The fusion of these two heterocyclic systems containing bridgehead nitrogen atom is attracting the attention of many medicinal chemists throughout the worldwide to explore the framework for its potential. This review article is an attempt to cover the literature survey of thiazolopyrimidine ring structures with bridging-head nitrogen covers thiazolo[3,2-a]pyrimidines, preparation of the ring system via thioxopyrimidines, thiazoles and other miscellaneous approaches. In addition, some properties related to a broad bioactivity and pharmacology have been reported.
{"title":"Synthetic approaches and biological evaluation of nitrogen bridgehead thiazolo[3,2-a]pyrimidines","authors":"Mohamed Abdel-Megid , Kamelia M. El-mahdy , Azza.M. Elkazak , Sylvia E. Zarif , Mostafa E. Salem","doi":"10.1016/j.rechem.2024.101807","DOIUrl":"10.1016/j.rechem.2024.101807","url":null,"abstract":"<div><div>Thiazolopyrimidines are bicyclic compounds formed by the fusion of thiazole and pyrimidine rings in a single molecular frame. The fusion of these two heterocyclic systems containing bridgehead nitrogen atom is attracting the attention of many medicinal chemists throughout the worldwide to explore the framework for its potential. This review article is an attempt to cover the literature survey of thiazolopyrimidine ring structures with bridging-head nitrogen covers thiazolo[3,2-<em>a</em>]pyrimidines, preparation of the ring system <em>via</em> thioxopyrimidines, thiazoles and other miscellaneous approaches. In addition, some properties related to a broad bioactivity and pharmacology have been reported.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101807"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101809
Sania Parveen , Shoaib Khan , Tayyiaba Iqbal , Ayed A. Dera , Rafaqat Hussain , Yousaf Khan
{"title":"Corrigendum to “Synthesis, spectroscopy and biological investigation via DFT, ADMET and molecular docking of Thiadiazole/Oxadiazole based bis-Schiff bases: A potential towards diabetes and microbes” [Results Chem. 11 (2024) 101787]","authors":"Sania Parveen , Shoaib Khan , Tayyiaba Iqbal , Ayed A. Dera , Rafaqat Hussain , Yousaf Khan","doi":"10.1016/j.rechem.2024.101809","DOIUrl":"10.1016/j.rechem.2024.101809","url":null,"abstract":"","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101809"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101797
Chinyere B. Ezekannagha , Okechukwu D. Onukwuli , Ikechukwu A. Nnanwube , Uchenna L. Ezeamaku , Chukwudi M. Ohaegbulam
Climate change in addition to the imminent depletion of the fossil fuel reserve has necessitated the search for a sustainable alternative fuel. In this research, the catalytic capability of a green heterogeneous alkali catalyst, thermally activated banana-plantain-peel-ash catalyst was examined in optimized waste lard oil (WLO) transesterification process in lard-oil-methyl-ester (LOME) synthesis. The catalyst was derived from a banana-plantain-peel-ash mixture and subjected to a calcination process while the catalyst properties were described via Scanning electron microscope-Energy dispersive atomic-x-ray-spectroscopy (SEM-EDX), X-ray diffraction-(XRD), Fourier Transform Infra-Red (FTIR) as well as Brunauer-Emmett-Teller (BET). Optimization of the waste lard oil transesterification process was conducted with the Desirability Explore Algorithm (DEA) in Central Composite Design (CCD) of Response Surface Methodology (RSM). A 99.9 % conversion of WLO to LOME was attained at the optimum reaction settings of 57 °C temperature, catalyst amount-2.5 wt%, time-1.5 h, and methanol to WLO molar ratio of 10.5:1 with a total desirability of 0.99 which was evaluated experimentally as 99 %. In the LOME synthesis procedure, the resulting empirical model demonstrated statistical significance and suitability based on its high F-value of 35.59 and infinitesimal p-value of less than 0.0001. The determined LOME fuel qualities met the applicable standard specifications (ASTM-D6751 and EN-14241) hence, have the potential to function as a diesel fuel substitute. The fused influence of WLO and the thermally activated bio-mixture catalyst was highly effective in biodiesel synthesis. Thus; a promising cheap feedstock source for green and sustainable biodiesel production was achieved.
气候变化以及化石燃料储备即将枯竭,使得人们有必要寻找一种可持续的替代燃料。本研究考察了一种绿色异相碱催化剂--热活化香蕉-蕉皮-灰催化剂在优化的猪油-甲基酯(LOME)合成中的废猪油(WLO)酯交换过程中的催化能力。催化剂从香蕉-蕉皮-灰混合物中提取,并经过煅烧过程,同时通过扫描电子显微镜-能量色散原子-X 射线光谱(SEM-EDX)、X 射线衍射(XRD)、傅立叶变换红外(FTIR)以及布鲁瑙尔-艾美特-泰勒(BET)分析了催化剂的特性。采用响应面方法学(RSM)的中央复合设计(CCD)中的可取性探索算法(DEA)对废猪油酯交换工艺进行了优化。在温度为 57 °C、催化剂用量为 2.5 wt%、时间为 1.5 h、甲醇与 WLO 的摩尔比为 10.5:1 的最佳反应设置下,WLO 转化为 LOME 的转化率为 99.9%,总可取性为 0.99,实验评估结果为 99%。在 LOME 合成过程中,根据 35.59 的高 F 值和小于 0.0001 的无穷小 P 值,得出的经验模型具有统计意义和适用性。所确定的 LOME 燃料质量符合适用的标准规范(ASTM-D6751 和 EN-14241),因此具有作为柴油燃料替代品的潜力。WLO 和热激活生物混合物催化剂的融合影响在生物柴油合成中非常有效。因此,为绿色和可持续生物柴油生产提供了一种前景广阔的廉价原料来源。
{"title":"Green hetero-alkali catalyst in optimized waste lard oil transesterification for biodiesel synthesis","authors":"Chinyere B. Ezekannagha , Okechukwu D. Onukwuli , Ikechukwu A. Nnanwube , Uchenna L. Ezeamaku , Chukwudi M. Ohaegbulam","doi":"10.1016/j.rechem.2024.101797","DOIUrl":"10.1016/j.rechem.2024.101797","url":null,"abstract":"<div><div>Climate change in addition to the imminent depletion of the fossil fuel reserve has necessitated the search for a sustainable alternative fuel. In this research, the catalytic capability of a green heterogeneous alkali catalyst, thermally activated banana-plantain-peel-ash catalyst was examined in optimized waste lard oil (WLO) transesterification process in lard-oil-methyl-ester (LOME) synthesis. The catalyst was derived from a banana-plantain-peel-ash mixture and subjected to a calcination process while the catalyst properties were described via Scanning electron microscope-Energy dispersive atomic-x-ray-spectroscopy (SEM-EDX), X-ray diffraction-(XRD), Fourier Transform Infra-Red (FTIR) as well as Brunauer-Emmett-Teller (BET). Optimization of the waste lard oil transesterification process was conducted with the Desirability Explore Algorithm (DEA) in Central Composite Design (CCD) of Response Surface Methodology (RSM). A 99.9 % conversion of WLO to LOME was attained at the optimum reaction settings of 57 °C temperature, catalyst amount-2.5 wt%, time-1.5 h, and methanol to WLO molar ratio of 10.5:1 with a total desirability of 0.99 which was evaluated experimentally as 99 %. In the LOME synthesis procedure, the resulting empirical model demonstrated statistical significance and suitability based on its high F-value of 35.59 and infinitesimal p-value of less than 0.0001. The determined LOME fuel qualities met the applicable standard specifications (ASTM-D6751 and EN-14241) hence, have the potential to function as a diesel fuel substitute. The fused influence of WLO and the thermally activated bio-mixture catalyst was highly effective in biodiesel synthesis. Thus; a promising cheap feedstock source for green and sustainable biodiesel production was achieved.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101797"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101832
Hayat Ullah , Imad Uddin , Hafeeza Zafar Ali , Wagma Hassan , Gul Mehnaz , Laiba Maryam , Maliha Sarfraz , Muhammad Saleem Khan , Mohammad Shahidul Islam , Zainab M. Almarhoon , Rashid Iqbal , Muhammad Nabi
The present study reports the design and synthesis of new benzimidazole-oxadiazole compounds as potent inhibitors of α-glucosidase and α-amylase. The synthesized molecules were characterized through different techniques such as 1HNMR, 13CNMR, HREI-MS and evaluated for their in vitro inhibitory activities against these enzymes. Among the compounds screened, compound 8 demonstrated the highest inhibitory activity against both α-glucosidase (IC50 = 11.60 µM) and α-amylase (IC50 = 6.20 µM). Molecular docking analyses were conducted to investigate the binding modes and interactions of the active compounds within the enzyme active sites. The results demonstrate that several benzimidazole-oxadiazole hybrids exhibited potent inhibitory effects on both α-glucosidase and α-amylase, suggesting their promise as antidiabetic agents.
{"title":"A promising α-glucosidase and α-amylase inhibitors based on benzimidazole-oxadiazole hybrid analogues: Evidence based in vitro and in silico studies","authors":"Hayat Ullah , Imad Uddin , Hafeeza Zafar Ali , Wagma Hassan , Gul Mehnaz , Laiba Maryam , Maliha Sarfraz , Muhammad Saleem Khan , Mohammad Shahidul Islam , Zainab M. Almarhoon , Rashid Iqbal , Muhammad Nabi","doi":"10.1016/j.rechem.2024.101832","DOIUrl":"10.1016/j.rechem.2024.101832","url":null,"abstract":"<div><div>The present study reports the design and synthesis of new benzimidazole-oxadiazole compounds as potent inhibitors of α-glucosidase and α-amylase. The synthesized molecules were characterized through different techniques such as <sup>1</sup>HNMR, <sup>13</sup>CNMR, HREI-MS and evaluated for their <em>in vitro</em> inhibitory activities against these enzymes. Among the compounds screened, compound <strong>8</strong> demonstrated the highest inhibitory activity against both <em>α</em>-glucosidase (IC<sub>50</sub> = 11.60 µM) and <em>α</em>-amylase (IC<sub>50</sub> = 6.20 µM). Molecular docking analyses were conducted to investigate the binding modes and interactions of the active compounds within the enzyme active sites. The results demonstrate that several benzimidazole-oxadiazole hybrids exhibited potent inhibitory effects on both α-glucosidase and α-amylase, suggesting their promise as antidiabetic agents<strong>.</strong></div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101832"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.rechem.2024.101828
Tomasz Szostek , Dagmara Otto-Ślusarczyk , Piotr Roszkowski , Marta Struga , Daniel Szulczyk
Thiazolidinone is a scaffold known for its diverse biological activities, drawing the interest of researchers seeking to explore its potential. Numerous libraries of molecules with diverse structures and properties can be created based on this scaffold. We propose the extraction of compounds with a defined central skeleton, resulting from a repeatable methodology of synthesis, to analyze the biological properties of a heterogeneous set of molecules. This review offers a comprehensive overview of recent research, focusing on a homogeneous group of (2-imino-4-oxo-1,3-thiazolidin-5-yl)acetic acid derivatives. It highlights the most promising compounds that have emerged from recent studies, their molecular targets, and the underlying mechanisms contributing to their biological activity.
{"title":"Exploring the bioactive potential of (2-imino-4-oxo-1,3-thiazolidin-5-yl)acetic acid derivatives: A comprehensive review","authors":"Tomasz Szostek , Dagmara Otto-Ślusarczyk , Piotr Roszkowski , Marta Struga , Daniel Szulczyk","doi":"10.1016/j.rechem.2024.101828","DOIUrl":"10.1016/j.rechem.2024.101828","url":null,"abstract":"<div><div>Thiazolidinone is a scaffold known for its diverse biological activities, drawing the interest of researchers seeking to explore its potential. Numerous libraries of molecules with diverse structures and properties can be created based on this scaffold. We propose the extraction of compounds with a defined central skeleton, resulting from a repeatable methodology of synthesis, to analyze the biological properties of a heterogeneous set of molecules. This review offers a comprehensive overview of recent research, focusing on a homogeneous group of (2-imino-4-oxo-1,3-thiazolidin-5-yl)acetic acid derivatives. It highlights the most promising compounds that have emerged from recent studies, their molecular targets, and the underlying mechanisms contributing to their biological activity.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101828"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}