首页 > 最新文献

Sensing and Bio-Sensing Research最新文献

英文 中文
TraxVBF: A hybrid transformer-xLSTM framework for EMG signal processing and assistive technology development in rehabilitation
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100749
Seyyed Ali Zendehbad , Athena Sharifi Razavi , Marzieh Allami Sanjani , Zahra Sedaghat , Saleh Lashkari
The fact that people with mobility impairments often have great difficulties in performing essential Activities of Daily Living (ADL) shows the importance of developing effective rehabilitation strategies. To address this need, we propose TraxVBF, a multimodal visual biofeedback submodel using surface Electromyography (sEMG) signals and kinematic movement data to exploit muscle synergy patterns. TraxVBF offers innovative real time visual feedback that can be used to enhance neurorehabilitation systems. Pre-processing and extracting muscle synergy patterns is performed by the Hierarchical Fast Alternating Least Squares (Fast-HALS) algorithm, and key movement points are identified with the Modified MediaPipe algorithm to capture temporal and spatial dynamics with precision using TraxVBF, which is driven by Extended Long Short-Term Memory (xLSTM) and Transformer architectures. This allows the model to predict movement trajectories accurately, enabling motor learning and functional recovery of patients through real time feedback without the expensive hardware. The model is shown to significantly improve performance metrics such as Mean Square Error (MSE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2). For healthy participants, TraxVBF-type Base outperforms state of the art models (LSTM and GRU) with an MSE of 0.06 and R2 of 0.89. Practical evaluations with an average R2 of 0.880 for healthy participants and 0.327 for patients demonstrate the model generalizability. These results indicate that TraxVBF may be a useful tool to improve motor learning and rehabilitation, and longer term clinical trials and multi-sensory biofeedback are needed.
{"title":"TraxVBF: A hybrid transformer-xLSTM framework for EMG signal processing and assistive technology development in rehabilitation","authors":"Seyyed Ali Zendehbad ,&nbsp;Athena Sharifi Razavi ,&nbsp;Marzieh Allami Sanjani ,&nbsp;Zahra Sedaghat ,&nbsp;Saleh Lashkari","doi":"10.1016/j.sbsr.2025.100749","DOIUrl":"10.1016/j.sbsr.2025.100749","url":null,"abstract":"<div><div>The fact that people with mobility impairments often have great difficulties in performing essential Activities of Daily Living (ADL) shows the importance of developing effective rehabilitation strategies. To address this need, we propose TraxVBF, a multimodal visual biofeedback submodel using surface Electromyography (sEMG) signals and kinematic movement data to exploit muscle synergy patterns. TraxVBF offers innovative real time visual feedback that can be used to enhance neurorehabilitation systems. Pre-processing and extracting muscle synergy patterns is performed by the Hierarchical Fast Alternating Least Squares (Fast-HALS) algorithm, and key movement points are identified with the Modified MediaPipe algorithm to capture temporal and spatial dynamics with precision using TraxVBF, which is driven by Extended Long Short-Term Memory (xLSTM) and Transformer architectures. This allows the model to predict movement trajectories accurately, enabling motor learning and functional recovery of patients through real time feedback without the expensive hardware. The model is shown to significantly improve performance metrics such as Mean Square Error (MSE), Root Mean Square Error (RMSE), and Coefficient of Determination (R<sup>2</sup>). For healthy participants, TraxVBF-type Base outperforms state of the art models (LSTM and GRU) with an MSE of 0.06 and R<sup>2</sup> of 0.89. Practical evaluations with an average R<sup>2</sup> of 0.880 for healthy participants and 0.327 for patients demonstrate the model generalizability. These results indicate that TraxVBF may be a useful tool to improve motor learning and rehabilitation, and longer term clinical trials and multi-sensory biofeedback are needed.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100749"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced point-of-care biomarker testing for the diagnosis of cardiovascular diseases
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100747
Wenjun Ming , Yidan Zhu , Wenjun Jiang , Jing Zhang , Jinxia Liu , Li Wu , Yuling Qin
Cardiovascular disease (CVD) stands as the primary cause of global mortality, necessitating early diagnosis for mitigating death rates and improving quality of life. Conventional CVD diagnostic techniques necessitate the use of bulky hospital instruments for electrocardiogram recording and immunoassay, resulting in time-consuming and inconvenient limitations. Point-of-care testing (POCT) presents unique benefits compared to traditional central laboratory (CLT) methods, such as accelerated turnaround times for results, enhanced portability, and ease of use, which are especially beneficial in resource-constrained healthcare environments. As a result, POCT is increasingly recognized as an innovative diagnostic strategy for the management of CVD, achieving significant standing across a variety of healthcare scenarios. The present review offers a comprehensive overview of the prevailing categories of cardiovascular diseases and emphasizes the diagnostic application of cardiac biomarkers detected through blood tests. The focus of this study is specifically on POCT devices used for the detection of biomarkers related to cardiovascular disease. Additionally, their performance will be compared and evaluated against traditional CLT methods and commercially available equipment. With the growing implementation of hierarchical medical policies and increasing demand for health management services, the market for POCT cardiac biomarkers testing is expected to expand further as a crucial development direction within the field of medicine.
{"title":"Advanced point-of-care biomarker testing for the diagnosis of cardiovascular diseases","authors":"Wenjun Ming ,&nbsp;Yidan Zhu ,&nbsp;Wenjun Jiang ,&nbsp;Jing Zhang ,&nbsp;Jinxia Liu ,&nbsp;Li Wu ,&nbsp;Yuling Qin","doi":"10.1016/j.sbsr.2025.100747","DOIUrl":"10.1016/j.sbsr.2025.100747","url":null,"abstract":"<div><div>Cardiovascular disease (CVD) stands as the primary cause of global mortality, necessitating early diagnosis for mitigating death rates and improving quality of life. Conventional CVD diagnostic techniques necessitate the use of bulky hospital instruments for electrocardiogram recording and immunoassay, resulting in time-consuming and inconvenient limitations. Point-of-care testing (POCT) presents unique benefits compared to traditional central laboratory (CLT) methods, such as accelerated turnaround times for results, enhanced portability, and ease of use, which are especially beneficial in resource-constrained healthcare environments. As a result, POCT is increasingly recognized as an innovative diagnostic strategy for the management of CVD, achieving significant standing across a variety of healthcare scenarios. The present review offers a comprehensive overview of the prevailing categories of cardiovascular diseases and emphasizes the diagnostic application of cardiac biomarkers detected through blood tests. The focus of this study is specifically on POCT devices used for the detection of biomarkers related to cardiovascular disease. Additionally, their performance will be compared and evaluated against traditional CLT methods and commercially available equipment. With the growing implementation of hierarchical medical policies and increasing demand for health management services, the market for POCT cardiac biomarkers testing is expected to expand further as a crucial development direction within the field of medicine.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100747"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A wireless instrumented insole for monitoring plantar pressure during human locomotion
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100752
Mariana Alegria , Mariana Ballesteros , David Cruz-Ortiz
This work proposes a wireless instrumented insole for monitoring plantar pressure (PP) during human locomotion. The insole is composed of two elements. The first is a mold manufactured with thermoplastic polyurethane using tridimensional printing techniques. The second one is a soft cover fabricated with a liquid polymer Ecoflex™ 00–30 from Smooth-On. The insole considers a microcontroller Arduino Nano and 24 force-sensing resistors located in ten anatomic regions of the foot with a sampling frequency of 70 Hz. The device sends the data through wireless communication based on a Bluetooth module to a graphical user interface in a computer where the data is received, displayed, and stored. A test was carried out with ten healthy volunteers (five men and five women) to validate the PP measured with the device. The data obtained were analyzed and compared with the literature, considering relevant characteristics in the PP analysis.
{"title":"A wireless instrumented insole for monitoring plantar pressure during human locomotion","authors":"Mariana Alegria ,&nbsp;Mariana Ballesteros ,&nbsp;David Cruz-Ortiz","doi":"10.1016/j.sbsr.2025.100752","DOIUrl":"10.1016/j.sbsr.2025.100752","url":null,"abstract":"<div><div>This work proposes a wireless instrumented insole for monitoring plantar pressure (PP) during human locomotion. The insole is composed of two elements. The first is a mold manufactured with thermoplastic polyurethane using tridimensional printing techniques. The second one is a soft cover fabricated with a liquid polymer Ecoflex™ 00–30 from Smooth-On. The insole considers a microcontroller Arduino Nano and 24 force-sensing resistors located in ten anatomic regions of the foot with a sampling frequency of 70 Hz. The device sends the data through wireless communication based on a Bluetooth module to a graphical user interface in a computer where the data is received, displayed, and stored. A test was carried out with ten healthy volunteers (five men and five women) to validate the PP measured with the device. The data obtained were analyzed and compared with the literature, considering relevant characteristics in the PP analysis.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100752"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143353638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniaturized multispectral imaging for microfluidic pH sensing
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100764
Yushan Meng , Dechuan Sun , Bryce Widdicombe , Dina Thankom Jacob , Yiling Yang , Xumei Gao , Alastair G. Stewart , Ranjith Rajasekharan Unnithan
Multispectral lab-on-chip imaging based on complementary metal-oxide semiconductor (CMOS) is an innovative technology that supports portable microfluidic platforms and enables the extraction of spectral information from specimens under multiple wavelengths. Accurate pH sensing is essential across a diverse range of chemical, biological, medical, and environmental applications. In this paper, we presented a new approach for pH sensing using the CMOS-based multispectral lab-on-chip imaging. Using a six-band color filter array that spans the optical spectrum in the visible and near-infrared range and a U-shape PDMS microfluidic channel, images of solutions with specific pH values were captured by a monochrome CMOS image sensor. To predict pH values, we developed a Support Vector Regression (SVR) model, which was trained using captured images of the six bands. Predicted pH values were obtained by the model with an RMSE of 0.364. Our research demonstrates that multispectral lab-on-chip imaging represents a miniature and rapid method to achieve pH sensing with high sensitivity and accuracy.
{"title":"Miniaturized multispectral imaging for microfluidic pH sensing","authors":"Yushan Meng ,&nbsp;Dechuan Sun ,&nbsp;Bryce Widdicombe ,&nbsp;Dina Thankom Jacob ,&nbsp;Yiling Yang ,&nbsp;Xumei Gao ,&nbsp;Alastair G. Stewart ,&nbsp;Ranjith Rajasekharan Unnithan","doi":"10.1016/j.sbsr.2025.100764","DOIUrl":"10.1016/j.sbsr.2025.100764","url":null,"abstract":"<div><div>Multispectral lab-on-chip imaging based on complementary metal-oxide semiconductor (CMOS) is an innovative technology that supports portable microfluidic platforms and enables the extraction of spectral information from specimens under multiple wavelengths. Accurate pH sensing is essential across a diverse range of chemical, biological, medical, and environmental applications. In this paper, we presented a new approach for pH sensing using the CMOS-based multispectral lab-on-chip imaging. Using a six-band color filter array that spans the optical spectrum in the visible and near-infrared range and a U-shape PDMS microfluidic channel, images of solutions with specific pH values were captured by a monochrome CMOS image sensor. To predict pH values, we developed a Support Vector Regression (SVR) model, which was trained using captured images of the six bands. Predicted pH values were obtained by the model with an RMSE of 0.364. Our research demonstrates that multispectral lab-on-chip imaging represents a miniature and rapid method to achieve pH sensing with high sensitivity and accuracy.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100764"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simplified optical monitoring systems for detecting leukocyte-derived hypochlorite ions using small amounts of whole blood
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2024.100722
Kozo Takeuchi , Toshiyuki Miwa , Takayuki Sato , Takahiro Shikayama , Hiroshi Tsuchiya , Kimiko Kazumura
Here, we developed two simplified optical systems, FLP-H3200 and FLP-H4200, designed to detect leukocyte-derived hypochlorite ions via fluorescence (FL-OCl) using only three microliters of whole blood. First, the new systems employed a lower-cost photodiode as the photodetector instead of a photomultiplier tube in their preceding system CFL-H2200. The systems featured a simplified optical configuration optimized for the blood measurement fluidic chip, enabling efficient focusing of the desired FL-OCl signal and obtaining a signal intensity comparable to that obtained with CFL-H2200. These improvements made the new systems more compact, lightweight, and cost-effective than CFL-H2200. Additionally, in FLP-H4200, the intensity of the excitation light source, the light-emitting diode, was set higher than that in FLP-H3200, further enhancing the FL-OCl signal. Using the fluorescent reagent fluorescein, we confirmed that the fluorescence sensitivity of the new systems was comparable to that of CFL-H2200. Finally, blood analysis data using FLP-H3200 and FLP-H4200 showed a high correlation. This study broadens the scope of clinical examinations by providing accessible and efficient tools for monitoring leukocyte activity using whole blood.
{"title":"Simplified optical monitoring systems for detecting leukocyte-derived hypochlorite ions using small amounts of whole blood","authors":"Kozo Takeuchi ,&nbsp;Toshiyuki Miwa ,&nbsp;Takayuki Sato ,&nbsp;Takahiro Shikayama ,&nbsp;Hiroshi Tsuchiya ,&nbsp;Kimiko Kazumura","doi":"10.1016/j.sbsr.2024.100722","DOIUrl":"10.1016/j.sbsr.2024.100722","url":null,"abstract":"<div><div>Here, we developed two simplified optical systems, FLP-H3200 and FLP-H4200, designed to detect leukocyte-derived hypochlorite ions via fluorescence (FL-OCl<sup>−</sup>) using only three microliters of whole blood. First, the new systems employed a lower-cost photodiode as the photodetector instead of a photomultiplier tube in their preceding system CFL-H2200. The systems featured a simplified optical configuration optimized for the blood measurement fluidic chip, enabling efficient focusing of the desired FL-OCl<sup>−</sup> signal and obtaining a signal intensity comparable to that obtained with CFL-H2200. These improvements made the new systems more compact, lightweight, and cost-effective than CFL-H2200. Additionally, in FLP-H4200, the intensity of the excitation light source, the light-emitting diode, was set higher than that in FLP-H3200, further enhancing the FL-OCl<sup>−</sup> signal. Using the fluorescent reagent fluorescein, we confirmed that the fluorescence sensitivity of the new systems was comparable to that of CFL-H2200. Finally, blood analysis data using FLP-H3200 and FLP-H4200 showed a high correlation. This study broadens the scope of clinical examinations by providing accessible and efficient tools for monitoring leukocyte activity using whole blood.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100722"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A data ensemble-based approach for detecting vocal disorders using replicated acoustic biomarkers from electroglottography
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100741
Lizbeth Naranjo , Carlos J. Pérez , Daniel F. Merino

Introduction

The relevant prevalence of voice-related pathologies underscores the need for robust computer-aided diagnostic (CAD) systems capable of supporting early detection and continuous monitoring. Electroglottography (EGG), a non-invasive technique measuring vocal fold contact area, has proven valuable in identifying and diagnosing vocal disorders.

Problem statement

Traditional diagnostic methods struggle with the dependent nature of EGG measurements within subjects, leading to challenges in managing within-subject variability and supporting multi-class classification.

Objectives

This study aims to design, implement, and evaluate two ensemble-based approaches that address the dependency in EGG measurements. The goal is to enhance the detection of vocal disorders by managing within-subject variability and facilitating multi-class classification.

Methods

The proposed methods utilize replicated acoustic biomarkers derived from EGG signals. Simulation-based experiments were conducted to assess the robustness and effectiveness of these methods. Additionally, experiments were performed using EGG signals from the Saarbrüecken Voice Database (SVD).

Results

Simulation results indicate that integrating replicated data improves accuracy rates compared to non-replicated models. Experiments on SVD demonstrated the robustness of the proposed methodology across different vowels in classifying healthy individuals, patients with laryngitis, and those with vocal fold paralysis.

Conclusion

The data ensemble-based approaches developed effectively manage the dependent nature of EGG measurements, enhancing the detection and classification of vocal disorders. These methods can be applied to other data types where replications play a key role. Future research should focus on collecting comprehensive EGG databases and further exploring multi-class classification methods to solidify EGG and machine learning as a valuable tool for non-invasive assessment of laryngeal function.
{"title":"A data ensemble-based approach for detecting vocal disorders using replicated acoustic biomarkers from electroglottography","authors":"Lizbeth Naranjo ,&nbsp;Carlos J. Pérez ,&nbsp;Daniel F. Merino","doi":"10.1016/j.sbsr.2025.100741","DOIUrl":"10.1016/j.sbsr.2025.100741","url":null,"abstract":"<div><h3>Introduction</h3><div>The relevant prevalence of voice-related pathologies underscores the need for robust computer-aided diagnostic (CAD) systems capable of supporting early detection and continuous monitoring. Electroglottography (EGG), a non-invasive technique measuring vocal fold contact area, has proven valuable in identifying and diagnosing vocal disorders.</div></div><div><h3>Problem statement</h3><div>Traditional diagnostic methods struggle with the dependent nature of EGG measurements within subjects, leading to challenges in managing within-subject variability and supporting multi-class classification.</div></div><div><h3>Objectives</h3><div>This study aims to design, implement, and evaluate two ensemble-based approaches that address the dependency in EGG measurements. The goal is to enhance the detection of vocal disorders by managing within-subject variability and facilitating multi-class classification.</div></div><div><h3>Methods</h3><div>The proposed methods utilize replicated acoustic biomarkers derived from EGG signals. Simulation-based experiments were conducted to assess the robustness and effectiveness of these methods. Additionally, experiments were performed using EGG signals from the Saarbrüecken Voice Database (SVD).</div></div><div><h3>Results</h3><div>Simulation results indicate that integrating replicated data improves accuracy rates compared to non-replicated models. Experiments on SVD demonstrated the robustness of the proposed methodology across different vowels in classifying healthy individuals, patients with laryngitis, and those with vocal fold paralysis.</div></div><div><h3>Conclusion</h3><div>The data ensemble-based approaches developed effectively manage the dependent nature of EGG measurements, enhancing the detection and classification of vocal disorders. These methods can be applied to other data types where replications play a key role. Future research should focus on collecting comprehensive EGG databases and further exploring multi-class classification methods to solidify EGG and machine learning as a valuable tool for non-invasive assessment of laryngeal function.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100741"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of petrochemicals using photonic crystal fiber (PCF) in terahertz domain
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100737
Md. Anowar Kabir , Md. Selim Hossain , Ashik Muhammed Arman , Md. Al-Amin , Shuvo Sen
A photonic crystal fiber (PCF) with a hexahedron core has been introduced for usage in petrochemical sensing operations. The performance of the proposed sensor has been statistically analyzed in the frequency band of 1.0 to 3.0 THz. Pure petrol, kerosene, and diesel are poured into the hexahedron core hole. The Finite element Method (FEM) is handled for the simulation and precise calculation and investigation. The sensor utilizing PCF exhibits a relative sensitivity of about 97.80 %, 97.45 %, and 96.25 % and a confinement loss of approximately 1.88 × 10−8 dB/m, 1.90 × 10−8 dB/m, and 1.85 × 10−8 dB/m at 2.20 THz for all investigated Petrol, Kerosene, and Diesel petrochemicals. Moreover, effective areas are values of 7.75 × 10−8 m2, 7.80 × 10−8 m2, and 6.98 × 10−8 m2, and the effective material loss for Petrol, Kerosene, and Diesel of 0.0066168 cm−1, 0.0066955 cm−1 and 0.0066988 cm−1, respectively at 2.20 THz. Both 3D printing and extrusion can be used to create this photonic crystal fiber (PCF) sensor. In addition, this heptagonal photonic crystal fiber sensor will be used for biomedical sensing and various industry fields related to sensing sectors.
{"title":"Detection of petrochemicals using photonic crystal fiber (PCF) in terahertz domain","authors":"Md. Anowar Kabir ,&nbsp;Md. Selim Hossain ,&nbsp;Ashik Muhammed Arman ,&nbsp;Md. Al-Amin ,&nbsp;Shuvo Sen","doi":"10.1016/j.sbsr.2025.100737","DOIUrl":"10.1016/j.sbsr.2025.100737","url":null,"abstract":"<div><div>A photonic crystal fiber (PCF) with a hexahedron core has been introduced for usage in petrochemical sensing operations. The performance of the proposed sensor has been statistically analyzed in the frequency band of 1.0 to 3.0 THz. Pure petrol, kerosene, and diesel are poured into the hexahedron core hole. The Finite element Method (FEM) is handled for the simulation and precise calculation and investigation. The sensor utilizing PCF exhibits a relative sensitivity of about 97.80 %, 97.45 %, and 96.25 % and a confinement loss of approximately 1.88 × 10<sup>−8</sup> dB/m, 1.90 × 10<sup>−8</sup> dB/m, and 1.85 × 10<sup>−8</sup> dB/m at 2.20 THz for all investigated Petrol, Kerosene, and Diesel petrochemicals. Moreover, effective areas are values of 7.75 × 10<sup>−8</sup> m<sup>2</sup>, 7.80 × 10<sup>−8</sup> m<sup>2</sup>, and 6.98 × 10<sup>−8</sup> m<sup>2</sup>, and the effective material loss for Petrol, Kerosene, and Diesel of 0.0066168 cm<sup>−1</sup>, 0.0066955 cm<sup>−1</sup> and 0.0066988 cm<sup>−1</sup>, respectively at 2.20 THz. Both 3D printing and extrusion can be used to create this photonic crystal fiber (PCF) sensor. In addition, this heptagonal photonic crystal fiber sensor will be used for biomedical sensing and various industry fields related to sensing sectors.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100737"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface acoustic waves (SAW) sensor for the active detection of Microcystin-LR (Cyanobacteria)
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2024.100724
Debdyuti Mandal , Tally Bovender , Robert D. Geil , Debabrata Sahoo , Sourav Banerjee
Cyanobacteria are a family of prokaryotic bacteria whose death causes the release of harmful toxins. Upon ingestion, these toxins produce symptoms similar to food poisoning and are dangerous to humans, as well as livestock. As there is no easily accessible way to remove cyanotoxins from water sources, thus detection before consumption is vitally important. In this article, we report a shear horizontal surface acoustic wave (SH-SAW) based sensor for the active detection of the microcystin congener, microcystin-LR (MC-LR). The sensing platform was devised on 36° YX cut-LiTaO3 which is a piezoelectric substrate. The sensor system was designed based on delay line configuration and was actively coated with silicon dioxide as a waveguide layer for better mass-load sensitivity. Unlike conventional SAW, the sensing platform utilizes a 5-count tone burst signal, enhancing sensitivity due to its sensitive coda waves. Signal transformation and analysis were made for distinct detection in the frequency domain. The sensor also incorporates the functionalization of gold nanospheres for a high surface-to-volume ratio and enhanced degree of orientation leading to better sensitivity. The sensor detection limit was down to 5.13 nM. Further evidence was provided by selectivity analysis and the sensor could identify MC-LR from the other biomarkers.
{"title":"Surface acoustic waves (SAW) sensor for the active detection of Microcystin-LR (Cyanobacteria)","authors":"Debdyuti Mandal ,&nbsp;Tally Bovender ,&nbsp;Robert D. Geil ,&nbsp;Debabrata Sahoo ,&nbsp;Sourav Banerjee","doi":"10.1016/j.sbsr.2024.100724","DOIUrl":"10.1016/j.sbsr.2024.100724","url":null,"abstract":"<div><div>Cyanobacteria are a family of prokaryotic bacteria whose death causes the release of harmful toxins. Upon ingestion, these toxins produce symptoms similar to food poisoning and are dangerous to humans, as well as livestock. As there is no easily accessible way to remove cyanotoxins from water sources, thus detection before consumption is vitally important. In this article, we report a shear horizontal surface acoustic wave (SH-SAW) based sensor for the active detection of the microcystin congener, microcystin-LR (MC-LR). The sensing platform was devised on 36° YX cut-LiTaO<sub>3</sub> which is a piezoelectric substrate. The sensor system was designed based on delay line configuration and was actively coated with silicon dioxide as a waveguide layer for better mass-load sensitivity. Unlike conventional SAW, the sensing platform utilizes a 5-count tone burst signal, enhancing sensitivity due to its sensitive coda waves. Signal transformation and analysis were made for distinct detection in the frequency domain. The sensor also incorporates the functionalization of gold nanospheres for a high surface-to-volume ratio and enhanced degree of orientation leading to better sensitivity. The sensor detection limit was down to 5.13 nM. Further evidence was provided by selectivity analysis and the sensor could identify MC-LR from the other biomarkers.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100724"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ternary metal oxide of CuNiCo2O4nanorods (1D) distributed on g-C3N4 (2D) nanocomposite for non-enzymatic glucose sensing application
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2025.100757
R. Thenmozhi, R. Navamathavan
Non-enzymatic glucose sensing has a major demand in research community for developing a good glucose sensor. Because enzyme based glucose sensor has several disadvantages such as high cost, difficult fabrication process and instability. To overcome these disadvantages, transition metal oxides (TMO) with g-C3N4 nanocomposite are a good choice for non-enzymatic medium for developing a good glucose sensor. Transition metal oxide has multiple oxidation state, different morphology, high conductivity, enhanced catalytic activity and 2D graphitic carbon nitride has a higher stability. In this work, our particular interest in ternary metal oxide (CuNiCo2O4) nanorods (1D) distributed on surface of the g-C3N4 (2D) nanocomposite were prepared by simple hydrothermal method. The prepared nanocomposite was performed a basic studies such as XRD, FESEM, HRTEM, FTIR, XPS and an electrochemical studies using nickel foam as a current collector. Chronoampermetry analysis produced a sensitivity of 4368 μA Cm−2 mM−1 and low detection limit (LOD) 1.91 μM. The produced response time is 4 s. The measured results of the CuNiCo2O4nanorods (1D) on the surface of g-C3N4 (2D) nanocomposite could be a satisfied material for non-enzymatic glucose sensor.
{"title":"Ternary metal oxide of CuNiCo2O4nanorods (1D) distributed on g-C3N4 (2D) nanocomposite for non-enzymatic glucose sensing application","authors":"R. Thenmozhi,&nbsp;R. Navamathavan","doi":"10.1016/j.sbsr.2025.100757","DOIUrl":"10.1016/j.sbsr.2025.100757","url":null,"abstract":"<div><div>Non-enzymatic glucose sensing has a major demand in research community for developing a good glucose sensor. Because enzyme based glucose sensor has several disadvantages such as high cost, difficult fabrication process and instability. To overcome these disadvantages, transition metal oxides (TMO) with g-C<sub>3</sub>N<sub>4</sub> nanocomposite are a good choice for non-enzymatic medium for developing a good glucose sensor. Transition metal oxide has multiple oxidation state, different morphology, high conductivity, enhanced catalytic activity and 2D graphitic carbon nitride has a higher stability. In this work, our particular interest in ternary metal oxide (CuNiCo<sub>2</sub>O<sub>4</sub>) nanorods (1D) distributed on surface of the g-C<sub>3</sub>N<sub>4</sub> (2D) nanocomposite were prepared by simple hydrothermal method. The prepared nanocomposite was performed a basic studies such as XRD, FESEM, HRTEM, FTIR, XPS and an electrochemical studies using nickel foam as a current collector. Chronoampermetry analysis produced a sensitivity of 4368 μA Cm<sup>−2</sup> mM<sup>−1</sup> and low detection limit (LOD) 1.91 μM. The produced response time is 4 s. The measured results of the CuNiCo<sub>2</sub>O<sub>4</sub>nanorods (1D) on the surface of g-C<sub>3</sub>N<sub>4</sub> (2D) nanocomposite could be a satisfied material for non-enzymatic glucose sensor.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100757"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of nanotechnology in electrochemical sensors for medical diagnostic purposes: A review
IF 5.4 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-01 DOI: 10.1016/j.sbsr.2024.100733
Ali R. Jalalvand, Mohammad Mehdi Karami
The rapid advancements in nanotechnology have significantly enhanced the capabilities of electrochemical sensors, particularly in the realm of medical diagnostics. This review article explores the integration of nanomaterials such as nanoparticles, nanowires, nanotubes, and graphene in electrochemical sensors and their transformative impact on disease detection and health monitoring. Nanotechnology-enhanced sensors offer remarkable improvements in sensitivity, specificity, miniaturization, and making them ideal for point-of-care testing and real-time analysis. This review article provides a comprehensive information about the types and mechanisms of electrochemical sensors, the unique properties of nanomaterials that enhance sensor performance, and the diverse medical applications ranging from biomarker detection to pathogen identification. Despite the promising benefits, several challenges including technical, regulatory, and market barriers are discussed alongside potential strategies to overcome these hurdles. The ongoing research and development in this field promise to revolutionize medical diagnostics by providing rapid, accurate, and accessible testing solutions ultimately improving patient outcomes and healthcare efficiency.
{"title":"Roles of nanotechnology in electrochemical sensors for medical diagnostic purposes: A review","authors":"Ali R. Jalalvand,&nbsp;Mohammad Mehdi Karami","doi":"10.1016/j.sbsr.2024.100733","DOIUrl":"10.1016/j.sbsr.2024.100733","url":null,"abstract":"<div><div>The rapid advancements in nanotechnology have significantly enhanced the capabilities of electrochemical sensors, particularly in the realm of medical diagnostics. This review article explores the integration of nanomaterials such as nanoparticles, nanowires, nanotubes, and graphene in electrochemical sensors and their transformative impact on disease detection and health monitoring. Nanotechnology-enhanced sensors offer remarkable improvements in sensitivity, specificity, miniaturization, and making them ideal for point-of-care testing and real-time analysis. This review article provides a comprehensive information about the types and mechanisms of electrochemical sensors, the unique properties of nanomaterials that enhance sensor performance, and the diverse medical applications ranging from biomarker detection to pathogen identification. Despite the promising benefits, several challenges including technical, regulatory, and market barriers are discussed alongside potential strategies to overcome these hurdles. The ongoing research and development in this field promise to revolutionize medical diagnostics by providing rapid, accurate, and accessible testing solutions ultimately improving patient outcomes and healthcare efficiency.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100733"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sensing and Bio-Sensing Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1