Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2024.100734
Asif Shariar, Mehedi Hasan Milan
In this work, an extremely large mode area (LMA) photonic crystal fiber (PCF) design has been proposed having single mode operation. A full-vectorial finite element method (FEM) approach is considered with perfectly matched layer (PML) boundary for hybrid cladding with fluorine-doped silica holes in the cladding. An ultrahigh effective mode area can be achieved along with maintaining robust single mode operation. The hybrid cladding structure of the fiber makes it possible to exhibit lower bending loss and confinement loss. The proposed PCF design achieves an effective mode area of at straight state and at bending state for a radius of at a wavelength of . The proposed fiber also exhibits both an extremely low confinement loss of and a bending loss of at of bending radius at wavelength. Moreover, the ultrahigh effective area of the fiber makes it possible to obtain an ultralower non-linear coefficient.
{"title":"Ultrahigh effective mode area photonic crystal fibers with extremely low bending loss for long distance transmission application","authors":"Asif Shariar, Mehedi Hasan Milan","doi":"10.1016/j.sbsr.2024.100734","DOIUrl":"10.1016/j.sbsr.2024.100734","url":null,"abstract":"<div><div>In this work, an extremely large mode area (LMA) photonic crystal fiber (PCF) design has been proposed having single mode operation. A full-vectorial finite element method (FEM) approach is considered with perfectly matched layer (PML) boundary for hybrid cladding with fluorine-doped silica holes in the cladding. An ultrahigh effective mode area can be achieved along with maintaining robust single mode operation. The hybrid cladding structure of the fiber makes it possible to exhibit lower bending loss and confinement loss. The proposed PCF design achieves an effective mode area of <span><math><mn>1727.55</mn><mi>μ</mi><msup><mi>m</mi><mn>2</mn></msup></math></span> at straight state and <span><math><mn>719.08</mn><mi>μ</mi><msup><mi>m</mi><mn>2</mn></msup></math></span> at bending state for a radius of <span><math><mn>30</mn><mi>cm</mi></math></span> at a wavelength of <span><math><mn>1550</mn><mi>nm</mi></math></span>. The proposed fiber also exhibits both an extremely low confinement loss of <span><math><mn>4.745</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mi>dB</mi><mo>/</mo><mi>Km</mi></math></span> and a bending loss of <span><math><mn>6.11</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mi>dB</mi><mo>/</mo><mi>Km</mi></math></span> at <span><math><mn>30</mn><mi>cm</mi></math></span> of bending radius at <span><math><mn>1550</mn><mi>nm</mi></math></span> wavelength. Moreover, the ultrahigh effective area of the fiber makes it possible to obtain an ultralower non-linear coefficient.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100734"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2024.100728
L. Mampane , K. Moothi , O. Ntwampe , N. Moloto , G. Ndlovu , A. Jijana , P. Tetyana , N. Mphuthi , A. Ngqalakwezi , P. Shumbula , B. Ntsendwana , L. Sikhwivhilu
Yerba-mate tea extracts were used to successfully synthesise nanoscale zero-valent iron (NZVI) particles. The tea extracts acted as both the reducing and capping agents. The morphological, optical and structural properties were characterized using Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), UV–vis absorption spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, respectively. The XRD and FTIR confirmed a complete reduction of Fe ions forming nanoparticles with an average size of 3 to 3.5 nm synthesized at 25 °C as shown by TEM images, indicating enhanced electrocatalytic sites. The as-synthesized NZVI particles were immobilized on AuSPE and evaluated on the electrocatalytic behaviour using ferri/ferrocyanide as a redox probe. Thus, they were modified on the screen-printed carbon electrodes to fabricate an electrochemical sensor for Pb2+ detection. The sensor was optimised to detect traces of Pb ions from 5 to 9 parts per billion concentrations. The surface concentration of the adsorbed electro-active film on the reduction half of AuSPE/NZVI modified electrodes was determined and estimated to be 1.32 × 10−10 mol cm−2. Moreover, the charge transfer coefficient of AuSPE/NZVI particles was estimated to be 5.43 × 10−17 cm2s−1. The sensor gave a relatively low limit of detection 2.56 ppb for Pb2+ ions. This was lower than most commercially available heavy metal detectors with a detection limit of 3.5 ppb.
{"title":"Yerba mate tea mediated synthesis of nanoscale zero valent iron particles and their application in detection of Pb ions in water","authors":"L. Mampane , K. Moothi , O. Ntwampe , N. Moloto , G. Ndlovu , A. Jijana , P. Tetyana , N. Mphuthi , A. Ngqalakwezi , P. Shumbula , B. Ntsendwana , L. Sikhwivhilu","doi":"10.1016/j.sbsr.2024.100728","DOIUrl":"10.1016/j.sbsr.2024.100728","url":null,"abstract":"<div><div>Yerba-mate tea extracts were used to successfully synthesise nanoscale zero-valent iron (NZVI) particles. The tea extracts acted as both the reducing and capping agents. The morphological, optical and structural properties were characterized using Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), UV–vis absorption spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, respectively. The XRD and FTIR confirmed a complete reduction of Fe ions forming nanoparticles with an average size of 3 to 3.5 nm synthesized at 25 °C as shown by TEM images, indicating enhanced electrocatalytic sites. The as-synthesized NZVI particles were immobilized on AuSPE and evaluated on the electrocatalytic behaviour using ferri/ferrocyanide as a redox probe. Thus, they were modified on the screen-printed carbon electrodes to fabricate an electrochemical sensor for Pb<sup>2+</sup> detection. The sensor was optimised to detect traces of Pb ions from 5 to 9 parts per billion concentrations. The surface concentration of the adsorbed electro-active film on the reduction half of AuSPE/NZVI modified electrodes was determined and estimated to be 1.32 × 10<sup>−10</sup> mol cm<sup>−2</sup><sub>.</sub> Moreover, the charge transfer coefficient of AuSPE/NZVI particles was estimated to be 5.43 × 10<sup>−17</sup> cm<sup>2</sup>s<sup>−1</sup>. The sensor gave a relatively low limit of detection 2.56 ppb for Pb<sup>2+</sup> ions. This was lower than most commercially available heavy metal detectors with a detection limit of 3.5 ppb.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100728"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2024.100725
Niamh Docherty , Lilian Collins , Susan Pang , Ying Fu , Stuart Milne , Damion Corrigan
Early detection of cardiac troponin I in blood is vital for acute myocardial infarction diagnosis. A low-cost thin film gold electrode array was used with affordable ELISA antibodies and reagents to fabricate two cardiac troponin I amperometric immunosensors. The HRP-labelled sandwich immunocomplex was constructed on the gold electrode surface, and chronoamperometry was used to quantify cTnI indirectly by measuring the amount of TMB+ produced at the electrode surface. First, the system was evaluated using a physisorption approach to immobilise the capture antibody to the electrode with a 309 pg/mL LOD observed. Subsequently, a second sensor variant was produced using sulfo-LC-SPDP as a crosslinker to control antibody immobilisation, which resulted in an improved sensitivity with an LOD of 109 pg/mL. The chemisorption sensor outperformed the working range of the commercially available ELISA kit used (8000–125 pg/mL), demonstrating the power of enhanced antibody immobilisation and electrochemical detection for clinically relevant levels of cardiac troponin I. Amperometric immunosensors offer vital advantages including being cost-effective, simple to use, and compatible with commercially available reagents. These features make the sensor accessible to users and easy to manufacture. With further improvements to sensitivity and performance in complex samples, the sensor could be deployed to streamline acute myocardial infarction diagnosis and reduce the burden of chest pain patients on the healthcare system.
{"title":"Cost-effective Amperometric Immunosensor for cardiac troponin I as a step towards affordable point-of-care diagnosis of acute myocardial infarction","authors":"Niamh Docherty , Lilian Collins , Susan Pang , Ying Fu , Stuart Milne , Damion Corrigan","doi":"10.1016/j.sbsr.2024.100725","DOIUrl":"10.1016/j.sbsr.2024.100725","url":null,"abstract":"<div><div>Early detection of cardiac troponin I in blood is vital for acute myocardial infarction diagnosis. A low-cost thin film gold electrode array was used with affordable ELISA antibodies and reagents to fabricate two cardiac troponin I amperometric immunosensors. The HRP-labelled sandwich immunocomplex was constructed on the gold electrode surface, and chronoamperometry was used to quantify cTnI indirectly by measuring the amount of TMB<sup>+</sup> produced at the electrode surface. First, the system was evaluated using a physisorption approach to immobilise the capture antibody to the electrode with a 309 pg/mL LOD observed. Subsequently, a second sensor variant was produced using sulfo-LC-SPDP as a crosslinker to control antibody immobilisation, which resulted in an improved sensitivity with an LOD of 109 pg/mL. The chemisorption sensor outperformed the working range of the commercially available ELISA kit used (8000–125 pg/mL), demonstrating the power of enhanced antibody immobilisation and electrochemical detection for clinically relevant levels of cardiac troponin I. Amperometric immunosensors offer vital advantages including being cost-effective, simple to use, and compatible with commercially available reagents. These features make the sensor accessible to users and easy to manufacture. With further improvements to sensitivity and performance in complex samples, the sensor could be deployed to streamline acute myocardial infarction diagnosis and reduce the burden of chest pain patients on the healthcare system.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100725"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phenobarbital (PB) is known for its sedative and anticonvulsant characteristics, making it a critical agent for the management of epilepsy and seizure disorders. Considering its narrow therapeutical range, accurate monitoring of this drug is highly recommended to prevent side effects. Herein, we successfully introduced trimetallic graphene oxide-based nanocomposite consisting of cerium oxide, nickel oxide, and copper oxide (III@N-rGO), which benefits the synergistic properties of each compound for electrochemical sensing applications. The structure of the nanostructures was evaluated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), Raman spectroscopy, field emission scanning electron microscope images (FE-SEM), and transmission electron microscope (TEM). Various electrochemical techniques were employed to investigate the sensor's electrocatalytic performance, following the carbon paste electrode's construction. The target electrode represented superior sensing efficiency, including a broad linear range of 0.1–840 μM, proper sensitivity of 1.389 ± 0.013 mA μM−1 cm−2, low detection limit of 9.10 ± 0.002 nM at the optimum potential of 0.72 V. Furthermore, III@N-rGO electrode illustrated good long-term stability, good reproducibility, and excellent selectivity. The results of recovery tests in human serum and pharmaceutical samples (94–106 %) with desired RSD values (below 3 %) demonstrated the practical applicability of the case-studied sensor. Hence, the proposed platform has the potential to serve as a promising model for PB detection.
{"title":"Multi-metal oxide/N-doped reduced graphene oxide modified electrode for ultrasensitive determination of phenobarbital","authors":"Seyed Saman Nemati , Gholamreza Dehghan , Simin Khataee , Zohreh Shaghaghi","doi":"10.1016/j.sbsr.2024.100720","DOIUrl":"10.1016/j.sbsr.2024.100720","url":null,"abstract":"<div><div>Phenobarbital (PB) is known for its sedative and anticonvulsant characteristics, making it a critical agent for the management of epilepsy and seizure disorders. Considering its narrow therapeutical range, accurate monitoring of this drug is highly recommended to prevent side effects. Herein, we successfully introduced trimetallic graphene oxide-based nanocomposite consisting of cerium oxide, nickel oxide, and copper oxide (III@N-rGO), which benefits the synergistic properties of each compound for electrochemical sensing applications. The structure of the nanostructures was evaluated using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), Raman spectroscopy, field emission scanning electron microscope images (FE-SEM), and transmission electron microscope (TEM). Various electrochemical techniques were employed to investigate the sensor's electrocatalytic performance, following the carbon paste electrode's construction. The target electrode represented superior sensing efficiency, including a broad linear range of 0.1–840 μM, proper sensitivity of 1.389 ± 0.013 mA μM<sup>−1</sup> cm<sup>−2</sup>, low detection limit of 9.10 ± 0.002 nM at the optimum potential of 0.72 V. Furthermore, III@N-rGO electrode illustrated good long-term stability, good reproducibility, and excellent selectivity. The results of recovery tests in human serum and pharmaceutical samples (94–106 %) with desired RSD values (below 3 %) demonstrated the practical applicability of the case-studied sensor. Hence, the proposed platform has the potential to serve as a promising model for PB detection.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100720"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Healthcare is one of the most essential fields in providing accurate and fast medical care. With the advancement of technology, nanosensors have become a new tool that has enabled early diagnosis and continuous monitoring of diseases with high accuracy. With the ability to identify molecular and cellular changes, nanosensors can accurately detect biomarkers of diseases even in the initial stages and provide detailed information about the state of the body, especially in complex and costly diseases such as cancer. However, in this process, there are challenges such as biocompatibility and long-term stability of nanosensors in biological environments, immune reactions, and the possibility of their destruction. The present article has identified the challenges and evaluated the new methods of this technology by systematically reviewing the application of nanosensors in healthcare. This article aims to provide a comprehensive view of how to use nanotechnology as nanosensors in healthcare. The findings show that using nanosensors in the healthcare field can increase the accuracy of disease diagnosis (ADD) by 35 % and improve the quality of personal health monitoring (PHM) by 23 %. Also, this technology has reduced diagnostic response time (DRT) by 21 %. Finally, this research has taken a practical step towards further developing the application of nanosensors in the healthcare field by providing valuable recommendations and examining open issues.
{"title":"Nanotechnology and nanosensors in personalized healthcare: A comprehensive review","authors":"Mohsen Ghorbian , Mostafa Ghobaei-Arani , Mohamad Reza Babaei , Saeid Ghorbian","doi":"10.1016/j.sbsr.2025.100740","DOIUrl":"10.1016/j.sbsr.2025.100740","url":null,"abstract":"<div><div>Healthcare is one of the most essential fields in providing accurate and fast medical care. With the advancement of technology, nanosensors have become a new tool that has enabled early diagnosis and continuous monitoring of diseases with high accuracy. With the ability to identify molecular and cellular changes, nanosensors can accurately detect biomarkers of diseases even in the initial stages and provide detailed information about the state of the body, especially in complex and costly diseases such as cancer. However, in this process, there are challenges such as biocompatibility and long-term stability of nanosensors in biological environments, immune reactions, and the possibility of their destruction. The present article has identified the challenges and evaluated the new methods of this technology by systematically reviewing the application of nanosensors in healthcare. This article aims to provide a comprehensive view of how to use nanotechnology as nanosensors in healthcare. The findings show that using nanosensors in the healthcare field can increase the accuracy of disease diagnosis (ADD) by 35 % and improve the quality of personal health monitoring (PHM) by 23 %. Also, this technology has reduced diagnostic response time (DRT) by 21 %. Finally, this research has taken a practical step towards further developing the application of nanosensors in the healthcare field by providing valuable recommendations and examining open issues.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100740"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2024.100732
Ali Mohammad Amani , Lobat Tayebi , Ehsan Vafa , Alireza Jahanbin , Milad Abbasi , Ahmad Vaez , Hesam Kamyab , Lalitha Gnanasekaran , Shreeshivadasan Chelliapan
MXenes are a novel type of nanostructured material that has received a lot of attention for their potential applications in bioanalysis owing to their unique features. These materials, made from transition metal nitrides, carbides, or carbonitrides, have a number of advantages, including high hydrophilicity, a large surface area, strong metallic conductivity, superior ion transport capabilities, biocompatibility, and low diffusion barriers. Their surfaces are easily manipulated, making them more adaptable for a variety of applications, including biosensing. The outstanding properties of MXenes have attracted researchers of different fields, including renewable energy, fuel cells, supercapacitors, electronics, and catalysis. In the context of biosensing, MXenes are particularly noteworthy because of their layered structure and composition, which render them suitable for both electrochemical and optical biosensors. The high electrical conductivity and multilayered design of MXenes facilitate effective charge transport and the preservation of biological activity when biomolecules are attached to their surfaces. This characteristic positions them as ideal candidates for the creation of sensitive and efficient electrochemical biosensors. Moreover, the inherent flexibility of MXenes allows for the development of sensors compatible with wearable technologies, presenting substantial opportunities for real-time, on-body detection of biomolecules. This review looks at various applications of MXenes in electrochemical and optical biosensing, with a focus on how they help improve sensor performance metrics like sensitivity, stability, and biocompatibility. It also discusses the obstacles and limitations that must be overcome to fully realize MXenes' potential in biosensor technology, such as issues with large-scale manufacturing, surface modification, and long-term stability. The review concludes by discussing future directions and advancements in this field.
{"title":"MXenes in biosensing: Enhancing sensitivity and flexibility – A review of properties, applications, and future directions","authors":"Ali Mohammad Amani , Lobat Tayebi , Ehsan Vafa , Alireza Jahanbin , Milad Abbasi , Ahmad Vaez , Hesam Kamyab , Lalitha Gnanasekaran , Shreeshivadasan Chelliapan","doi":"10.1016/j.sbsr.2024.100732","DOIUrl":"10.1016/j.sbsr.2024.100732","url":null,"abstract":"<div><div>MXenes are a novel type of nanostructured material that has received a lot of attention for their potential applications in bioanalysis owing to their unique features. These materials, made from transition metal nitrides, carbides, or carbonitrides, have a number of advantages, including high hydrophilicity, a large surface area, strong metallic conductivity, superior ion transport capabilities, biocompatibility, and low diffusion barriers. Their surfaces are easily manipulated, making them more adaptable for a variety of applications, including biosensing. The outstanding properties of MXenes have attracted researchers of different fields, including renewable energy, fuel cells, supercapacitors, electronics, and catalysis. In the context of biosensing, MXenes are particularly noteworthy because of their layered structure and composition, which render them suitable for both electrochemical and optical biosensors. The high electrical conductivity and multilayered design of MXenes facilitate effective charge transport and the preservation of biological activity when biomolecules are attached to their surfaces. This characteristic positions them as ideal candidates for the creation of sensitive and efficient electrochemical biosensors. Moreover, the inherent flexibility of MXenes allows for the development of sensors compatible with wearable technologies, presenting substantial opportunities for real-time, on-body detection of biomolecules. This review looks at various applications of MXenes in electrochemical and optical biosensing, with a focus on how they help improve sensor performance metrics like sensitivity, stability, and biocompatibility. It also discusses the obstacles and limitations that must be overcome to fully realize MXenes' potential in biosensor technology, such as issues with large-scale manufacturing, surface modification, and long-term stability. The review concludes by discussing future directions and advancements in this field.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100732"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2024.100726
Jillian Gamboa , Carmen Linares , Virginia Cebrián , Hamidreza Enshaei , Óscar Ahumada , Francesc Estrany , Juan Torras
Thrombosis, a leading cause of heart attacks, strokes, and venous thromboembolism (VTE), contributes to 25 % of global deaths. Factors like aging and immobility increase VTE risk. D-dimer (DD), whose elevated levels indicate conditions such as pulmonary embolism and severe COVID-19, is a key biomarker for thrombus detection, predicting higher mortality risks. Traditional DD detection methods are time-consuming and costly. Emerging point-of-care (POCT) biosensors offer faster, cost-effective alternatives, utilizing electrochemical or optical detection and nanostructured films. This study aims to develop a sensitive, label-free electrochemical immunosensor for DD detection using carbon quantum dots (CQDs) functionalized electrodes and electrochemical impedance spectroscopy (EIS). CQDs enhance electrode sensitivity by improving conductivity and providing anchoring sites for monoclonal antibody (Ab). The biosensor was made by activating a carbon screen printed electrode with KOH, adding amino groups via 3-Aminopropyltriethoxysilane, linking CQDs with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), and immobilizing DD Ab on CQD surface. Raman spectroscopy and EIS confirmed successful functionalization and increased resistance with Ab and bovine serum albumin layers. The biosensor effectively detected DD antigens, with a calibration curve ranging from 10 to 1000 ng mL−1 and a low limit of detection of 13.4 ng mL−1. CQDs improved sensitivity, and low Ab concentrations reduced costs. This CQD-based impedance immunosensor offers a practical approach for early thrombosis detection and monitoring diseases like VTE and COVID-19 at the point of care.
{"title":"CQD-based electrochemical immunosensor for sensitive D-dimer detection in thrombosis and COVID-19","authors":"Jillian Gamboa , Carmen Linares , Virginia Cebrián , Hamidreza Enshaei , Óscar Ahumada , Francesc Estrany , Juan Torras","doi":"10.1016/j.sbsr.2024.100726","DOIUrl":"10.1016/j.sbsr.2024.100726","url":null,"abstract":"<div><div>Thrombosis, a leading cause of heart attacks, strokes, and venous thromboembolism (VTE), contributes to 25 % of global deaths. Factors like aging and immobility increase VTE risk. D-dimer (DD), whose elevated levels indicate conditions such as pulmonary embolism and severe COVID-19, is a key biomarker for thrombus detection, predicting higher mortality risks. Traditional DD detection methods are time-consuming and costly. Emerging point-of-care (POCT) biosensors offer faster, cost-effective alternatives, utilizing electrochemical or optical detection and nanostructured films. This study aims to develop a sensitive, label-free electrochemical immunosensor for DD detection using carbon quantum dots (CQDs) functionalized electrodes and electrochemical impedance spectroscopy (EIS). CQDs enhance electrode sensitivity by improving conductivity and providing anchoring sites for monoclonal antibody (Ab). The biosensor was made by activating a carbon screen printed electrode with KOH, adding amino groups via 3-Aminopropyltriethoxysilane, linking CQDs with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/<em>N</em>-hydroxysuccinimide (EDC/NHS), and immobilizing DD Ab on CQD surface. Raman spectroscopy and EIS confirmed successful functionalization and increased resistance with Ab and bovine serum albumin layers. The biosensor effectively detected DD antigens, with a calibration curve ranging from 10 to 1000 ng mL<sup>−1</sup> and a low limit of detection of 13.4 ng mL<sup>−1</sup>. CQDs improved sensitivity, and low Ab concentrations reduced costs. This CQD-based impedance immunosensor offers a practical approach for early thrombosis detection and monitoring diseases like VTE and COVID-19 at the point of care.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100726"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2025.100745
Santhy Wyantuti , Nur Azizah Ferdiana , Sahlaa Alifah Zahra , Retna Putri Fauzia , Irkham , Husain Akbar Sumeru , Qi Jia , Dikdik Kurnia , Husein H. Bahti
Samarium oxide (Sm2O3), such as electrochemical sensors, is a promising material in various application prospects and industries. Additionally, Sm2O3 leverages electron transport capabilities, high electrical conductivity, and thermal stability to develop an effective material in electrode modification for detecting hazardous pollutants. Hydrazine and p-nitrophenol are compounds commonly used in producing insecticides, pesticides, pharmaceuticals, and the chemical industry. However, these compounds can become hazardous environmental pollutants and pose serious health risks to humans. Therefore, this research aims to examine the impact of modifying gold electrode (GE) with Sm2O3 nanoparticles, characterizing the electrochemical results, and assessing sensor performance through the use of the GE/Sm2O3 NP electrode. In this context, the purpose is to detect hydrazine and p-nitrophenol through voltammetry, with analytical parameters including recovery, repeatability, detection limit, quantification limit, and linear range. The results show that the synthesis of Sm2O3 nanoparticles and the performance of the sensor and analytical parameters of GE/Sm2O3 NP are carried out in detecting hydrazine and p-nitrophenol using the Cyclic Voltammetry (CV) method. Furthermore, the significant increase in the current response validates the improvement of GE conductivity as an electron transporter. The sensor performance has been studied, and analytical parameters have been determined. For hydrazine and p-nitrophenol, the values are recovery of 98.74 % and 99.01 %, repeatability of 99.42 % and 98.45 %, limit of detection (LoD) of 0.4684 μM and 0.50332 μM, limit of quantification (LoQ) of 1.4194 μM and 1.5252 μM, and linear concentration range for both analytes from 0.1 μM to 7 μM.
{"title":"Samarium oxide nanoparticle-modified gold electrodes for enhanced Voltammetric sensing of hydrazine and p-Nitrophenol","authors":"Santhy Wyantuti , Nur Azizah Ferdiana , Sahlaa Alifah Zahra , Retna Putri Fauzia , Irkham , Husain Akbar Sumeru , Qi Jia , Dikdik Kurnia , Husein H. Bahti","doi":"10.1016/j.sbsr.2025.100745","DOIUrl":"10.1016/j.sbsr.2025.100745","url":null,"abstract":"<div><div>Samarium oxide (Sm<sub>2</sub>O<sub>3</sub>), such as electrochemical sensors, is a promising material in various application prospects and industries. Additionally, Sm<sub>2</sub>O<sub>3</sub> leverages electron transport capabilities, high electrical conductivity, and thermal stability to develop an effective material in electrode modification for detecting hazardous pollutants. Hydrazine and p-nitrophenol are compounds commonly used in producing insecticides, pesticides, pharmaceuticals, and the chemical industry. However, these compounds can become hazardous environmental pollutants and pose serious health risks to humans. Therefore, this research aims to examine the impact of modifying gold electrode (GE) with Sm<sub>2</sub>O<sub>3</sub> nanoparticles, characterizing the electrochemical results, and assessing sensor performance through the use of the GE/Sm<sub>2</sub>O<sub>3</sub> NP electrode. In this context, the purpose is to detect hydrazine and p-nitrophenol through voltammetry, with analytical parameters including recovery, repeatability, detection limit, quantification limit, and linear range. The results show that the synthesis of Sm<sub>2</sub>O<sub>3</sub> nanoparticles and the performance of the sensor and analytical parameters of GE/Sm<sub>2</sub>O<sub>3</sub> NP are carried out in detecting hydrazine and p-nitrophenol using the Cyclic Voltammetry (CV) method. Furthermore, the significant increase in the current response validates the improvement of GE conductivity as an electron transporter. The sensor performance has been studied, and analytical parameters have been determined. For hydrazine and p-nitrophenol, the values are recovery of 98.74 % and 99.01 %, repeatability of 99.42 % and 98.45 %, limit of detection (LoD) of 0.4684 μM and 0.50332 μM, limit of quantification (LoQ) of 1.4194 μM and 1.5252 μM, and linear concentration range for both analytes from 0.1 μM to 7 μM.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100745"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal-organic frameworks (MOFs) are porous substances characterized by elevated surface areas and adjustable pore dimensions used in diverse applications, including gas storage, catalysis, drug delivery, and sensing. Biosensing is a promising field that aims to identify and quantify biomolecules such as DNA, RNA, and proteins with high sensitivity and specificity. Biosensors use a transducer and a biological recognition element to make an output correlated with the level of the target analyte. They have advantages over conventional methods, such as simplicity, rapidity, portability, and low cost. Recently, a new type of biosensor has emerged that integrates MOFs with CRISPR, a powerful gene editing tool. Biosensing can utilize CRISPR-Cas systems, as the cleavage of target DNA or RNA by Cas proteins generates detectable signals. MOFs can be used to hold, protect, and release CRISPR-Cas parts; improve signal transduction and amplification; and provide a wide range of functions and tunability for CRISPR-based biosensors by incorporating various metal nodes, organic linkers, pore sizes, and surface modifications. This review discusses recent advancements and challenges in MOF-CRISPR biosensor development, focusing on design principles, sensing mechanisms, and performance. It explores potential applications in biomedical and environmental fields like disease diagnosis, gene therapy, and pollutant monitoring and offers future directions for improvement.
{"title":"CRISPR-integrated metal-organic frameworks for biosensing applications: Recent advances and future perspective","authors":"Babak Mikaeeli Kangarshahi , Anahita Beigi Javazm , Seyed Morteza Naghib","doi":"10.1016/j.sbsr.2025.100736","DOIUrl":"10.1016/j.sbsr.2025.100736","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are porous substances characterized by elevated surface areas and adjustable pore dimensions used in diverse applications, including gas storage, catalysis, drug delivery, and sensing. Biosensing is a promising field that aims to identify and quantify biomolecules such as DNA, RNA, and proteins with high sensitivity and specificity. Biosensors use a transducer and a biological recognition element to make an output correlated with the level of the target analyte. They have advantages over conventional methods, such as simplicity, rapidity, portability, and low cost. Recently, a new type of biosensor has emerged that integrates MOFs with CRISPR, a powerful gene editing tool. Biosensing can utilize CRISPR-Cas systems, as the cleavage of target DNA or RNA by Cas proteins generates detectable signals. MOFs can be used to hold, protect, and release CRISPR-Cas parts; improve signal transduction and amplification; and provide a wide range of functions and tunability for CRISPR-based biosensors by incorporating various metal nodes, organic linkers, pore sizes, and surface modifications. This review discusses recent advancements and challenges in MOF-CRISPR biosensor development, focusing on design principles, sensing mechanisms, and performance. It explores potential applications in biomedical and environmental fields like disease diagnosis, gene therapy, and pollutant monitoring and offers future directions for improvement.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100736"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.sbsr.2024.100729
Wulan Khaerani , Abdullahi Umar Ibrahim , Uji Pratomo , Souvia Rahimah , Irkham , Yeni Wahyuni Hartati
Highly selective alcohol detection systems are being developed for use in the food, pharmaceutical and clinical industries, as well as for rapidly growing alcohol fuel sector. Several methods, including chromatography, refractometry, and spectroscopy, have been reported for determining alcohol content in various samples. Molecularly Imprinted Polymer (MIPs) is a highly selective polymer with active recognition sites in the form of cavities that can specifically bind to target molecules, including alcohol compounds. The use of MIPs in combination with alcohol targets is advantageous due to their reusability and high selectivity. Most existing studies have primarily focused on the synthesis of MIPs using large, non-volatile molecular templates. Therefore, this review focuses on the synthesis of MIPs using various types of alcohol as templates and their application in alcohol detection. It covers the definition, key components, synthesis approaches, and different methods of MIP synthesis, as well as the detection of alcohol using conventional techniques and the application of MIPs for alcohol detection in various sample types.
{"title":"Advancements in synthesis of Molecularly Imprinted Polymer (MIPs) for highly selective alcohol sensors","authors":"Wulan Khaerani , Abdullahi Umar Ibrahim , Uji Pratomo , Souvia Rahimah , Irkham , Yeni Wahyuni Hartati","doi":"10.1016/j.sbsr.2024.100729","DOIUrl":"10.1016/j.sbsr.2024.100729","url":null,"abstract":"<div><div>Highly selective alcohol detection systems are being developed for use in the food, pharmaceutical and clinical industries, as well as for rapidly growing alcohol fuel sector. Several methods, including chromatography, refractometry, and spectroscopy, have been reported for determining alcohol content in various samples. Molecularly Imprinted Polymer (MIPs) is a highly selective polymer with active recognition sites in the form of cavities that can specifically bind to target molecules, including alcohol compounds. The use of MIPs in combination with alcohol targets is advantageous due to their reusability and high selectivity. Most existing studies have primarily focused on the synthesis of MIPs using large, non-volatile molecular templates. Therefore, this review focuses on the synthesis of MIPs using various types of alcohol as templates and their application in alcohol detection. It covers the definition, key components, synthesis approaches, and different methods of MIP synthesis, as well as the detection of alcohol using conventional techniques and the application of MIPs for alcohol detection in various sample types.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100729"},"PeriodicalIF":5.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}