首页 > 最新文献

Solar Energy最新文献

英文 中文
Photovoltaic power forecasting model employing epoch-dependent adaptive loss weighting and data assimilation
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-03-01 DOI: 10.1016/j.solener.2025.113351
Siyuan Fan , Hua Geng , Hengqi Zhang , Jie Yang , Kaneko Hiroichi
Accurate prediction of photovoltaic (PV) power output is crucial for optimizing energy management systems and enhancing grid stability. This study presents the Physics Constrained PV Power Prediction Network (PC-P3reNet), a dual-layer deep learning framework optimized for scenarios where local environmental data remain consistent while PV system characteristics vary. The framework integrates a physics-based model to calculate theoretical PV power outputs, which are then compared with actual measurements using the Huber Loss function. A unique feature of PC-P3reNet is its adaptive loss weighting, which dynamically adjusts the balance between theoretical and measured data across different training epochs. This feature allows the model to initially leverage theoretical insights for learning and later refine its predictions based on measured data, effectively capturing both trends and variability. The model’s performance was evaluated using data from four PV stations in Australia. The model demonstrated superior performance in multi-step forecasting compared to other methods. It achieved a minimum mean absolute error (MAE) of 0.1837 at the No. 18 power station. The mean square error (MSE) improvement was 4.68% higher on average for the proposed model than the baseline method.
{"title":"Photovoltaic power forecasting model employing epoch-dependent adaptive loss weighting and data assimilation","authors":"Siyuan Fan ,&nbsp;Hua Geng ,&nbsp;Hengqi Zhang ,&nbsp;Jie Yang ,&nbsp;Kaneko Hiroichi","doi":"10.1016/j.solener.2025.113351","DOIUrl":"10.1016/j.solener.2025.113351","url":null,"abstract":"<div><div>Accurate prediction of photovoltaic (PV) power output is crucial for optimizing energy management systems and enhancing grid stability. This study presents the Physics Constrained PV Power Prediction Network (PC-P<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>reNet), a dual-layer deep learning framework optimized for scenarios where local environmental data remain consistent while PV system characteristics vary. The framework integrates a physics-based model to calculate theoretical PV power outputs, which are then compared with actual measurements using the Huber Loss function. A unique feature of PC-P<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>reNet is its adaptive loss weighting, which dynamically adjusts the balance between theoretical and measured data across different training epochs. This feature allows the model to initially leverage theoretical insights for learning and later refine its predictions based on measured data, effectively capturing both trends and variability. The model’s performance was evaluated using data from four PV stations in Australia. The model demonstrated superior performance in multi-step forecasting compared to other methods. It achieved a minimum mean absolute error (MAE) of 0.1837 at the No. 18 power station. The mean square error (MSE) improvement was 4.68% higher on average for the proposed model than the baseline method.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113351"},"PeriodicalIF":6.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary indicators for passive solar greenhouse design
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-03-01 DOI: 10.1016/j.solener.2025.113385
Gian Luca Brunetti
Preliminary passive solar greenhouse design can be supported by design indicators related to solar access, such as the Solar Aperture (SA) and the Solar Fraction (SF), assuming that net solar heat gains are proportional to net incoming solar radiation. However, since net solar heat gains also depend on thermal losses, SA and SF are effective only for comparing greenhouses with similar shapes and, consequently, similar thermal heat loss profiles. Currently, no design indicator exists that combines SA or SF with thermal loss considerations. To address this gap, this study introduces two new design indicators: the Passive Solar Performance Ratio (PSPR) and the Solar Gain-Loss Ratio (SGLR). These indicators integrate solar gains and thermal losses, enabling their application to a broader range of greenhouse shapes and design scenarios. Benchmarking the PSPR and SGLR against transient simulation results revealed their superior effectiveness in ranking design options by expected net solar heat gains compared to SA and SF. Replacing SA and SF with PSPR and SGLR in design explorations led to optimal solutions with reductions in degree days and thermal loads for heating and cooling ranging from 3% to 30%.
{"title":"Preliminary indicators for passive solar greenhouse design","authors":"Gian Luca Brunetti","doi":"10.1016/j.solener.2025.113385","DOIUrl":"10.1016/j.solener.2025.113385","url":null,"abstract":"<div><div>Preliminary passive solar greenhouse design can be supported by design indicators related to solar access, such as the Solar Aperture (SA) and the Solar Fraction (SF), assuming that net solar heat gains are proportional to net incoming solar radiation. However, since net solar heat gains also depend on thermal losses, SA and SF are effective only for comparing greenhouses with similar shapes and, consequently, similar thermal heat loss profiles. Currently, no design indicator exists that combines SA or SF with thermal loss considerations. To address this gap, this study introduces two new design indicators: the Passive Solar Performance Ratio (PSPR) and the Solar Gain-Loss Ratio (SGLR). These indicators integrate solar gains and thermal losses, enabling their application to a broader range of greenhouse shapes and design scenarios. Benchmarking the PSPR and SGLR against transient simulation results revealed their superior effectiveness in ranking design options by expected net solar heat gains compared to SA and SF. Replacing SA and SF with PSPR and SGLR in design explorations led to optimal solutions with reductions in degree days and thermal loads for heating and cooling ranging from 3% to 30%.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113385"},"PeriodicalIF":6.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterative solution of the current-voltage relationship in a four-diode solar cell model using the Lambert W equation
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-03-01 DOI: 10.1016/j.solener.2025.113390
Martin Calasan
This brief presents an iterative approach using the Lambert W equation to solve the current–voltage (I-V) dependence in a four-diode solar cell model. The model has been rigorously tested using two well-known solar panels from existing literature, demonstrating its efficiency in terms of the number of iterations required to achieve the desired level of accuracy. Additionally, a novel formula for calculating the Root Mean Square Error (RMSE) is proposed, improving prediction accuracy. The results underscore the significant innovation this research brings to the field of solar cell modeling and optimization.
{"title":"Iterative solution of the current-voltage relationship in a four-diode solar cell model using the Lambert W equation","authors":"Martin Calasan","doi":"10.1016/j.solener.2025.113390","DOIUrl":"10.1016/j.solener.2025.113390","url":null,"abstract":"<div><div>This brief presents an iterative approach using the Lambert W equation to solve the current–voltage (I-V) dependence in a four-diode solar cell model. The model has been rigorously tested using two well-known solar panels from existing literature, demonstrating its efficiency in terms of the number of iterations required to achieve the desired level of accuracy. Additionally, a novel formula for calculating the Root Mean Square Error (RMSE) is proposed, improving prediction accuracy. The results underscore the significant innovation this research brings to the field of solar cell modeling and optimization.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113390"},"PeriodicalIF":6.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143526775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The happy and proud serial adopter: Emotional influences on solar PV adoption in Germany
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-28 DOI: 10.1016/j.solener.2025.113352
Julia Loder
To reach global decarbonisation targets, renewable energy technologies such as solar PV need to substitute fossil fuel-powered technologies. Previous research has analysed mainly cognitive factors in the context of motivations for or barriers of PV adoption. Emotions, despite being part of human decision making in addition to cognitions, have rarely been considered. In analysing what affects residential PV adoption decisions, this study adds emotional to cognitive factors such as cost perceptions. Thereby, it addresses a research gap on emotions in sustainability transitions. Furthermore, building on a nascent stream of recent literature, this research considers spillover effects from having adopted other clean energy solutions, heat pumps and electric vehicles, on PV adoption. The study uses ordinary least squares regression analysis based on survey data collected in Germany (n = 1003) to investigate the roles of three variable groups: emotions, cost perceptions, and spillover effects. The results show that the emotions pride (β ≈ 0.2) and happiness (β ≈ 0.2) and the adoption of a heat pump (β ≈ 0.2) and an electric vehicle (β ≈ 0.3) are positively and statistically significantly related to PV adoption. Operating cost perceptions (β ≈ −0.1) are negatively connected to PV adoption. With these insights, the study highlights the importance of including emotional and spillover factors in the analysis of factors influencing PV adoption. These factors have thus far been mostly sidelined in innovation adoption models. Furthermore, the results doubting the effectiveness of acquisition cost-centred policy incentives hold important implications for policymakers.
{"title":"The happy and proud serial adopter: Emotional influences on solar PV adoption in Germany","authors":"Julia Loder","doi":"10.1016/j.solener.2025.113352","DOIUrl":"10.1016/j.solener.2025.113352","url":null,"abstract":"<div><div>To reach global decarbonisation targets, renewable energy technologies such as solar PV need to substitute fossil fuel-powered technologies. Previous research has analysed mainly cognitive factors in the context of motivations for or barriers of PV adoption. Emotions, despite being part of human decision making in addition to cognitions, have rarely been considered. In analysing what affects residential PV adoption decisions, this study adds emotional to cognitive factors such as cost perceptions. Thereby, it addresses a research gap on emotions in sustainability transitions. Furthermore, building on a nascent stream of recent literature, this research considers spillover effects from having adopted other clean energy solutions, heat pumps and electric vehicles, on PV adoption. The study uses ordinary least squares regression analysis based on survey data collected in Germany (n = 1003) to investigate the roles of three variable groups: emotions, cost perceptions, and spillover effects. The results show that the emotions pride (β ≈ 0.2) and happiness (β ≈ 0.2) and the adoption of a heat pump (β ≈ 0.2) and an electric vehicle (β ≈ 0.3) are positively and statistically significantly related to PV adoption. Operating cost perceptions (β ≈ −0.1) are negatively connected to PV adoption. With these insights, the study highlights the importance of including emotional and spillover factors in the analysis of factors influencing PV adoption. These factors have thus far been mostly sidelined in innovation adoption models. Furthermore, the results doubting the effectiveness of acquisition cost-centred policy incentives hold important implications for policymakers.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113352"},"PeriodicalIF":6.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat losses in directly buried solar heat collection networks in high-altitude regions
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-28 DOI: 10.1016/j.solener.2025.113384
Hongsen Chen , Baichao Wang , Cong Song , Dengjia Wang , Yanfeng Liu
Due to the fluctuations in the medium temperature, the solar collector system (SCS) based on temperature difference control currently lacks a medium temperature value for accurately calculating the operational heat loss of directly buried solar heat collection pipelines. This research proposed a method for calculating heat loss utilizing an equivalent medium temperature (EMT). Initially, a computational model is established for assessing the heat loss of directly buried solar collector pipelines in Xizang plateau. Based on the primary factors influencing heat loss, the study investigated the temperature drop and operational heat loss patterns of directly buried solar heat collection pipelines. The ranges of regional equivalent medium temperature (REMT) and condition equivalent medium temperature (CEMT) were optimized using the gradient descent algorithm and heat loss calculation theory. The variations of REMT and CEMT with different regions and key heat loss factors were analyzed, and a CEMT association model was obtained. The EMT is highest in Lhasa and lowest in Gar, related to the ambient temperature for heating design and collector field operation time. For REMT, Lhasa ranges from 50.4 °C to 52.8 °C, and Gar from 31.1 °C to 33.4 °C. CEMT decreases with increasing flow rate coefficient and nominal diameter, ranging in Lhasa from 77.1 °C to 35.5 °C, and in Gar from 54.9 °C to 18.5 °C. The study aims to provide fundamental data and theoretical support for heat loss calculation and designing the insulation thickness of directly buried solar heat collection pipelines in high-altitude regions.
{"title":"Heat losses in directly buried solar heat collection networks in high-altitude regions","authors":"Hongsen Chen ,&nbsp;Baichao Wang ,&nbsp;Cong Song ,&nbsp;Dengjia Wang ,&nbsp;Yanfeng Liu","doi":"10.1016/j.solener.2025.113384","DOIUrl":"10.1016/j.solener.2025.113384","url":null,"abstract":"<div><div>Due to the fluctuations in the medium temperature, the solar collector system (SCS) based on temperature difference control currently lacks a medium temperature value for accurately calculating the operational heat loss of directly buried solar heat collection pipelines. This research proposed a method for calculating heat loss utilizing an equivalent medium temperature (EMT). Initially, a computational model is established for assessing the heat loss of directly buried solar collector pipelines in Xizang plateau. Based on the primary factors influencing heat loss, the study investigated the temperature drop and operational heat loss patterns of directly buried solar heat collection pipelines. The ranges of regional equivalent medium temperature (REMT) and condition equivalent medium temperature (CEMT) were optimized using the gradient descent algorithm and heat loss calculation theory. The variations of REMT and CEMT with different regions and key heat loss factors were analyzed, and a CEMT association model was obtained. The EMT is highest in Lhasa and lowest in Gar, related to the ambient temperature for heating design and collector field operation time. For REMT, Lhasa ranges from 50.4 °C to 52.8 °C, and Gar from 31.1 °C to 33.4 °C. CEMT decreases with increasing flow rate coefficient and nominal diameter, ranging in Lhasa from 77.1 °C to 35.5 °C, and in Gar from 54.9 °C to 18.5 °C. The study aims to provide fundamental data and theoretical support for heat loss calculation and designing the insulation thickness of directly buried solar heat collection pipelines in high-altitude regions.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113384"},"PeriodicalIF":6.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143520798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing the Net Zero emission building concept: Integrating photovoltaics and electrical storage for NZEB environmental performance in different energy and climate contexts
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-28 DOI: 10.1016/j.solener.2025.113331
Mohamed Oualid Mghazli , Myriam Bahrar , Mouatassim Charai , Nouzha Lamdouar , Mohamed El Mankibi
Net Zero Energy Building (NZEB) standards are instrumental to drive sustainable construction and climate resilience. However, most analysis focus on the operational phase, overlooking embodied impacts from materials, construction, and end-of-life processes. This study addresses this gap by using a life cycle approach to evaluate NZEB environmental impacts in two contrasting grid and climate contexts. A calibrated building energy simulation and life cycle assessment (LCA) were used to compare three configurations: a base case without renewables, PV integration, and PV with Battery Storage System (BSS) integration.
The study revealed significant context-specific differences. In Benguerir, PV integration reduced the climate change impact by 31 % (avoiding 2727 Kg.Co2eq/Year), and adding BSS further reduced it by 51 % (avoiding 4941 Kg.Co2eq/Year), achieving environmental payback in 39 and 26 years, respectively. Conversely, in Lyon, PV integration increased the climate change impact by 20 % (adding 370 Kg.Co2eq/Year), and adding BSS raised it by 50 % (adding 929 Kg.Co2eq/Year), as the renewable energy generated did not compensate for the embodied impacts. The findings demonstrate that grid context and climatic conditions significantly influence the sustainability performance of the same building, highlighting the importance of context-specific strategies for renewable energy integration and building design.
{"title":"Advancing the Net Zero emission building concept: Integrating photovoltaics and electrical storage for NZEB environmental performance in different energy and climate contexts","authors":"Mohamed Oualid Mghazli ,&nbsp;Myriam Bahrar ,&nbsp;Mouatassim Charai ,&nbsp;Nouzha Lamdouar ,&nbsp;Mohamed El Mankibi","doi":"10.1016/j.solener.2025.113331","DOIUrl":"10.1016/j.solener.2025.113331","url":null,"abstract":"<div><div>Net Zero Energy Building (NZEB) standards are instrumental to drive sustainable construction and climate resilience. However, most analysis focus on the operational phase, overlooking embodied impacts from materials, construction, and end-of-life processes. This study addresses this gap by using a life cycle approach to evaluate NZEB environmental impacts in two contrasting grid and climate contexts. A calibrated building energy simulation and life cycle assessment (LCA) were used to compare three configurations: a base case without renewables, PV integration, and PV with Battery Storage System (BSS) integration.</div><div>The study revealed significant context-specific differences. In Benguerir, PV integration reduced the climate change impact by 31 % (avoiding 2727 Kg.Co2eq/Year), and adding BSS further reduced it by 51 % (avoiding 4941 Kg.Co2eq/Year), achieving environmental payback in 39 and 26 years, respectively. Conversely, in Lyon, PV integration increased the climate change impact by 20 % (adding 370 Kg.Co2eq/Year), and adding BSS raised it by 50 % (adding 929 Kg.Co2eq/Year), as the renewable energy generated did not compensate for the embodied impacts. The findings demonstrate that grid context and climatic conditions significantly influence the sustainability performance of the same building, highlighting the importance of context-specific strategies for renewable energy integration and building design.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113331"},"PeriodicalIF":6.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single- and multi-facet variable-focus adaptive-optics heliostats: A review
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-27 DOI: 10.1016/j.solener.2025.113339
Ismail Loghmari, Kypros Milidonis, Wojciech Lipiński, Costas N. Papanicolas
The heliostat field is a critical component in the solar energy harnessing process of concentrated solar thermal (CST) central tower systems, which typically represents approximately 45% of the total capital cost of commercial plants. In commercial CST central tower systems, the heliostat field is composed of thousands of heliostats incorporating precision-engineered mirrors, which direct sunlight towards a central receiver. Typically, the mirrors maintain a fixed geometry, usually of parabolic shape, during the sun-tracking process, which is optimized to maximize the annual optical performance. However, such a design leads to subdaily energy losses stemming from alterations of the mirror geometry and from astigmatism errors. To achieve and maintain peak optical efficiency throughout the day, the adoption of variable-shape heliostats emerges as a promising solution. This review assesses the current state-of-the-art, the challenges, and the emerging trends and future directions for two types of heliostat technologies, the single facet and the multifaceted variable-focus adaptive optics heliostats. Single-facet heliostats have shown promise due to their simplified design and lower costs compared to multifaceted heliostats. However, achieving precise tracking and focusing remains a significant challenge, particularly in large-scale applications. In contrast, multifaceted heliostats provide superior accuracy and optical performance but are associated with increased design and operational complexity. While these technologies are still under development, advancements in design, materials, control systems, and tracking mechanisms highlight promising trends for the future.
{"title":"Single- and multi-facet variable-focus adaptive-optics heliostats: A review","authors":"Ismail Loghmari,&nbsp;Kypros Milidonis,&nbsp;Wojciech Lipiński,&nbsp;Costas N. Papanicolas","doi":"10.1016/j.solener.2025.113339","DOIUrl":"10.1016/j.solener.2025.113339","url":null,"abstract":"<div><div>The heliostat field is a critical component in the solar energy harnessing process of concentrated solar thermal (CST) central tower systems, which typically represents approximately 45% of the total capital cost of commercial plants. In commercial CST central tower systems, the heliostat field is composed of thousands of heliostats incorporating precision-engineered mirrors, which direct sunlight towards a central receiver. Typically, the mirrors maintain a fixed geometry, usually of parabolic shape, during the sun-tracking process, which is optimized to maximize the annual optical performance. However, such a design leads to subdaily energy losses stemming from alterations of the mirror geometry and from astigmatism errors. To achieve and maintain peak optical efficiency throughout the day, the adoption of variable-shape heliostats emerges as a promising solution. This review assesses the current state-of-the-art, the challenges, and the emerging trends and future directions for two types of heliostat technologies, the single facet and the multifaceted variable-focus adaptive optics heliostats. Single-facet heliostats have shown promise due to their simplified design and lower costs compared to multifaceted heliostats. However, achieving precise tracking and focusing remains a significant challenge, particularly in large-scale applications. In contrast, multifaceted heliostats provide superior accuracy and optical performance but are associated with increased design and operational complexity. While these technologies are still under development, advancements in design, materials, control systems, and tracking mechanisms highlight promising trends for the future.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113339"},"PeriodicalIF":6.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooling with colour: Passive-Coloured Radiative Coolers for energy-efficient temperature regulation in adverse climatic conditions
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-26 DOI: 10.1016/j.solener.2025.113343
Ioannis Kousis , Hassan Saeed Khan , Riccardo Paolini , James Edric Alan Webb , Jan Valenta , Mat Santamouris
Passive Daytime Radiative Cooling (PDRC) is a high-performance strategy to mitigate urban overheating by combining high solar reflectance and strong thermal emission, particularly within the Atmospheric Window wavelength range. However, several intrinsic challenges, such as glare, aesthetics, and winter overcooling, limit its widespread application. This study reports on the development and cooling performance of Passive Coloured Radiative Coolers (PCRCs) with a threefold heat-rejection mechanism: moderately high solar reflectance, high infrared emissivity, and sunlight-excited fluorescence. The objective was to create PCRCs with reduced reflectivity to diminish glare and aesthetic concerns, while the incorporation of fluorescence offsets the cooling decrease caused by lower reflectance. The development of PCRCs sought consistent performance throughout the year, reducing the winter heating penalty. Seven PCRCs–Green, Red, Orange, Reddish-orange, and Purple–were developed and tested in two climate zones with unfavourable conditions for radiative cooling: Sydney and Alice Springs, Australia, characterised by high humidity and dust concentrations, respectively. The developed PCRCs consistently maintained lower surface temperatures than their coloured non-fluorescent counterparts and the highly reflective white references. All PCRCs–except purple–outperformed the white reference, maintaining surface temperatures up to 5.4 °C lower in Sydney and 4.0 °C lower in Alice Springs. These findings highlight the potential of PCRCs to reduce urban surface temperatures and cooling energy demand and underline their role in advancing sustainable urban design. By addressing PDRCs’ limitations, PCRCs could facilitate the adoption of radiative cooling technologies in urban environments, supporting energy policy objectives and promoting resilient urban planning strategies aimed at combating climate change and urban overheating.
{"title":"Cooling with colour: Passive-Coloured Radiative Coolers for energy-efficient temperature regulation in adverse climatic conditions","authors":"Ioannis Kousis ,&nbsp;Hassan Saeed Khan ,&nbsp;Riccardo Paolini ,&nbsp;James Edric Alan Webb ,&nbsp;Jan Valenta ,&nbsp;Mat Santamouris","doi":"10.1016/j.solener.2025.113343","DOIUrl":"10.1016/j.solener.2025.113343","url":null,"abstract":"<div><div>Passive Daytime Radiative Cooling (PDRC) is a high-performance strategy to mitigate urban overheating by combining high solar reflectance and strong thermal emission, particularly within the Atmospheric Window wavelength range. However, several intrinsic challenges, such as glare, aesthetics, and winter overcooling, limit its widespread application. This study reports on the development and cooling performance of Passive Coloured Radiative Coolers (PCRCs) with a threefold heat-rejection mechanism: moderately high solar reflectance, high infrared emissivity, and sunlight-excited fluorescence. The objective was to create PCRCs with reduced reflectivity to diminish glare and aesthetic concerns, while the incorporation of fluorescence offsets the cooling decrease caused by lower reflectance. The development of PCRCs sought consistent performance throughout the year, reducing the winter heating penalty. Seven PCRCs–Green, Red, Orange, Reddish-orange, and Purple–were developed and tested in two climate zones with unfavourable conditions for radiative cooling: Sydney and Alice Springs, Australia, characterised by high humidity and dust concentrations, respectively. The developed PCRCs consistently maintained lower surface temperatures than their coloured non-fluorescent counterparts and the highly reflective white references. All PCRCs–except purple–outperformed the white reference, maintaining surface temperatures up to 5.4 °C lower in Sydney and 4.0 °C lower in Alice Springs. These findings highlight the potential of PCRCs to reduce urban surface temperatures and cooling energy demand and underline their role in advancing sustainable urban design. By addressing PDRCs’ limitations, PCRCs could facilitate the adoption of radiative cooling technologies in urban environments, supporting energy policy objectives and promoting resilient urban planning strategies aimed at combating climate change and urban overheating.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113343"},"PeriodicalIF":6.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposition of Sb2Se3 solar cells on ceramic tiles
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-25 DOI: 10.1016/j.solener.2025.113377
Samuel Porcar , Abderrahim Lahlahi , Jaime González Cuadra , Santiago Toca , Pablo Serna-Gallén , Diego Fraga , Tariq Jawhari , Xavier Alcobe , Lorenzo Calvo Barrio , Pedro Vidal-Fuentes , Alejandro Pérez-Rodríguez , Juan Bautista Carda
This work presents the first reported synthesis of Sb2Se3 solar cells deposited on ceramic substrates. A novel low-temperature two-step electroplating method was introduced for fabricating high-quality Sb2Se3 thin films, aimed at creating efficient and reproducible solar cells. The films were deposited on Mo-coated ceramic substrates, as well as on glass substrates, addressing challenges such as high surface roughness and potential short-circuiting in ceramics. Detailed characterization of the films included X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The performance of the solar cells was evaluated through I-V curve analysis, demonstrating that ceramic substrates are a viable alternative to glass substrates. These results represent a significant advancement in integrating Sb2Se3 solar cells into building materials, enhancing the potential of building-integrated photovoltaics (BIPV) technology.
{"title":"Electrodeposition of Sb2Se3 solar cells on ceramic tiles","authors":"Samuel Porcar ,&nbsp;Abderrahim Lahlahi ,&nbsp;Jaime González Cuadra ,&nbsp;Santiago Toca ,&nbsp;Pablo Serna-Gallén ,&nbsp;Diego Fraga ,&nbsp;Tariq Jawhari ,&nbsp;Xavier Alcobe ,&nbsp;Lorenzo Calvo Barrio ,&nbsp;Pedro Vidal-Fuentes ,&nbsp;Alejandro Pérez-Rodríguez ,&nbsp;Juan Bautista Carda","doi":"10.1016/j.solener.2025.113377","DOIUrl":"10.1016/j.solener.2025.113377","url":null,"abstract":"<div><div>This work presents the first reported synthesis of Sb<sub>2</sub>Se<sub>3</sub> solar cells deposited on ceramic substrates. A novel low-temperature two-step electroplating method was introduced for fabricating high-quality Sb<sub>2</sub>Se<sub>3</sub> thin films, aimed at creating efficient and reproducible solar cells. The films were deposited on Mo-coated ceramic substrates, as well as on glass substrates, addressing challenges such as high surface roughness and potential short-circuiting in ceramics. Detailed characterization of the films included X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The performance of the solar cells was evaluated through I-V curve analysis, demonstrating that ceramic substrates are a viable alternative to glass substrates. These results represent a significant advancement in integrating Sb<sub>2</sub>Se<sub>3</sub> solar cells into building materials, enhancing the potential of building-integrated photovoltaics (BIPV) technology.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113377"},"PeriodicalIF":6.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of non-uniform soiling loss in a utility-scale PV plant in India and strategies for enhanced performance through optimal cleaning schedules
IF 6 2区 工程技术 Q2 ENERGY & FUELS Pub Date : 2025-02-25 DOI: 10.1016/j.solener.2025.113345
Shoubhik De, Narendra Shiradkar, Anil Kottantharayil
Soiling significantly impacts the efficiency of photovoltaic (PV) systems, especially in regions with heavy dust deposition like India. The issue is exacerbated by spatially non-uniform soiling in utility-scale PV plants, where certain areas of the plant experience higher losses than others, complicating maintenance efforts. In this study, we analysed string-level SCADA data from a 50 MWp utility-scale PV plant in South India divided into several zones to create detailed soiling maps. Using these maps, we developed both string-optimized and zone-optimized cleaning methodologies. The string-optimized approach utilized four specific cleaning thresholds to help determine the most profitable cleaning areas in each zone, while the zone-optimized approach aimed to streamline cleaning processes, enhance PV plant performance, and resource efficiency. Additionally, unlike previous studies, this analysis accounted for DC cabling losses, further refining the evaluation of soiling impact. The results in-terms of cleaning profit generated were compared with the same made by actual logged cleaning.
Additionally, we performed a sensitivity analysis by varying solar PV electricity tariffs and cleaning costs to evaluate the economic viability of different cleaning strategies. The analysis indicated that the 85% cleaning threshold is the most economical, particularly as PV electricity prices continue to decline. Our findings suggest that structured cleaning schedules based on soiling data can significantly improve PV plant performance and profitability. This approach can be replicated in similar PV plants to support India’s growing PV sector, ultimately helping the country become a global leader in solar energy.
{"title":"Estimation of non-uniform soiling loss in a utility-scale PV plant in India and strategies for enhanced performance through optimal cleaning schedules","authors":"Shoubhik De,&nbsp;Narendra Shiradkar,&nbsp;Anil Kottantharayil","doi":"10.1016/j.solener.2025.113345","DOIUrl":"10.1016/j.solener.2025.113345","url":null,"abstract":"<div><div>Soiling significantly impacts the efficiency of photovoltaic (PV) systems, especially in regions with heavy dust deposition like India. The issue is exacerbated by spatially non-uniform soiling in utility-scale PV plants, where certain areas of the plant experience higher losses than others, complicating maintenance efforts. In this study, we analysed string-level SCADA data from a 50 M<span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> utility-scale PV plant in South India divided into several zones to create detailed soiling maps. Using these maps, we developed both string-optimized and zone-optimized cleaning methodologies. The string-optimized approach utilized four specific cleaning thresholds to help determine the most profitable cleaning areas in each zone, while the zone-optimized approach aimed to streamline cleaning processes, enhance PV plant performance, and resource efficiency. Additionally, unlike previous studies, this analysis accounted for DC cabling losses, further refining the evaluation of soiling impact. The results in-terms of cleaning profit generated were compared with the same made by actual logged cleaning.</div><div>Additionally, we performed a sensitivity analysis by varying solar PV electricity tariffs and cleaning costs to evaluate the economic viability of different cleaning strategies. The analysis indicated that the 85% cleaning threshold is the most economical, particularly as PV electricity prices continue to decline. Our findings suggest that structured cleaning schedules based on soiling data can significantly improve PV plant performance and profitability. This approach can be replicated in similar PV plants to support India’s growing PV sector, ultimately helping the country become a global leader in solar energy.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"290 ","pages":"Article 113345"},"PeriodicalIF":6.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143478636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solar Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1